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0. Introduction. Let G be a group and

1^R-+F^G^>1 (1)

a free presentation of G, i.e. a short exact sequence of groups with Ffree. Conjugation in
F induces on R=R/R', the abelianized normal subgroup R, the structure of a right
G-module (if r e R, xeF then {rR'){xn) =x~lrxR'). The G-module R is called the
relation module determined by the presentation (1). For a detailed discussion of this
subject we refer to Gruenberg [3].

In this note, we study relation modules of free products with amalgamation and HNN
extensions. We will assume that these group-theoretic constructions are given by certain
canonical free presentations which are obtained from the defining data (free factors and
amalgamated subgroup, base group and associated subgroups, respectively) in a natural
way. In Section 1, we prove the exactness of a short sequence, characterizing the relation
module of an amalgamated free product in terms of the relation modules of the free
factors and the augmentation ideal of the amalgamated subgroup (Theorem 1). A similar
result for HNN extensions (Theorem 2) is proved in Section 2. The short exact sequence
obtained in Theorem 2 expresses the relation module of an HNN extension in terms of
the relation module of the base group and the augmentation ideal of the associated
subgroups. As an application of our results, we obtain the well-known Mayer-Vietoris
sequence for the (co)homology of a free product with amalgamation and a similar
sequence for HNN extensions. (This sequence is due to Bieri [1].)

I would like to thank R. Stohr for suggesting this problem and for his aid during the
preparation of this paper.

1. Free products with amalgamation. Let G = G1*u G2 be the free product of
groups Gj, G2 with amalgamated subgroup U and suppose that Ga, G2 are given by free
presentations

1 - ^ ^ ^ G / ^ l (» = 1,2). (2)

Then there is a canonical free presentation

l^R^Fl*F2^Gl*uG2-*l (3)

of G, where Ft *F2 is the free product of Fx and F2, and the epimorphism n is defined by

We denote the relation modules associated with (2), (3) by fl, 0 = 1, 2) and R,
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respectively. As usual, J.G denotes the integral group ring of G and 1G the augmentation
ideal, i.e. the kernel of the canonical homomorphism ZG-*Z.

THEOREM 1. There is a short exact sequence of G-modules

The proof will be given later in this section. Now let A be a right and B a left
G-module. As a consequence of Theorem 1 we obtain the following result.

COROLLARY 1. There are long exact sequences

. . .^> Hn+\U, A)^ Hn+2(G, A)^ H"+2(Gi, A)® Hn+2(G2, i4)-> Hn+\U, A)-*. . . ,

. . .-*Hn+2(U, B)^Hn+2(Gu B)®Hn+2{G2, B)^Hn+2(G, B)-*Hn+l(U, * ) - > . . . .

These are the well-known Mayer—Vietoris sequences for the (co)homology of an
amalgamated free product (see, e.g., [6, p. 30]).

Proof of Corollary 1. Using the change of rings (see [4, p. 164, Proposition 12.2])
and the reduction theorems (see [4, p. 199, Corollary 6.5]), one gets the following
isomorphisms:

Extn
G(R, A) = Hn+2(G, A) (n > 1),

Extn
G(IU ®„ TG, A) = ExtUIU, A) = Hn+\U, A) (n > 2),

ExtURi e G , TG, A) = Ext"Gi(Ri, A) = H"+2(Gh A) (n > 1).

Applying Exto(-, -<4) to the short exact sequence of Theorem 1 together with these
isomorphisms yields the first sequence. The exactness of the second sequence is proved in
a similar way.

Now we list some facts which will be used later.

LEMMA 1. Let a free presentation

l^N^Q^H^l (4)

of a group H be given. Then

where (nN')ic = (n - 1) <8> \H and ((1 - x) <8> lH)v = 1 - (xrj) (n eN, x e Q) is an exact
sequence of right H-modules.

A proof of this lemma can be found, e.g., in [4, p. 198, Theorem 6.3]. The exact
sequence in Lemma 1 is usually referred to as the relation sequence stemming from the
free presentation (4).

n

LEMMA 2. Let H= %vHt be the free product of Hlt . . . , Hn with amalgamated

subgroup V, i.e. the push-out of a family of embeddings q?, :V —* Ht (i = \, . . . , ri) in the
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category of groups. Then the augmentation ideal IH is the push-out of the family
{IV ®v ZH->IHi <8>HiZH) in the category of H-modules.

In other words, augmentation is a push-out preserving functor. For a proof of
Lemma 2, see [2, p. 141, Proposition 8].

n

LEMMA 3. Let H= * Htbe the free product of Hlt . . . , Hn. Then the map

Ii <8)HiZH)-*IH

given by

* 2 (.hi ~ l)^i> hi € Hi, kt e H,
;=i

is a natural isomorphism of right H-modules.

A proof of this lemma can be found in [2, p. 140, Proposition 7].

Proof of Theorem 1. Let F = Fi*F2 and consider the following diagram.

0 0

1 I
®(R2<S>GlZG) 0

I I
> IF®FZG

I' I-
0 >IU®uZG -*-»• (/G1<g>G|ZG)©(/G2®G2ZG) -=-» IG > 0

I I
0 0

By Lemma 1,

0^f i , -» IF{ ®Fi ZG, -^ /G, -> 0 (i = 1, 2)

is exact. Tensoring with ZG over G, yields the exact sequence

*IFf ®F. ZG-+ IGi <8)G. Z G - * 0

(ZG is a free ZG,-module). Hence, the first column is exact. The second column is the
relation sequence for (3) and therefore exact. Using Lemma 3, one gets an isomorphism

<&: (IFX ® Fl ZF) © (IF2 ®F2 ZF) -^ IF.
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Applying — ®F ZG to this yields the isomorphism V. It is given by

(/2 - 1) <8>g2,

where / e Fit g, € G.
By Lemma 2, /G is the push-out of the family {<p,-<8> 1 : / £ / < 8 > U Z G - » / G / ® G . Z G } .

Hence, the bottom row is exact (see [2, p. 142]). Here n is defined as
{cpx <8> 1, — {(p2 ® 1)}, and e is given by

) 0 ((g2 - 1) ® A2))~ (g, - l)A, + (g2 - l)/,2,

where g, e G,, A, e G.
One has, obviously, Wv = i/>e. Hence,

# = ker v = ker xps.

Now the exactness of the first column and the bottom row imply that there is an exact
sequence

0 ^ (Rx <g>Gl ZG) 0 (R2 ®G2 Z G ) ^ ker xpe^IU ®^ Z G ^ 0

and this completes the proof of the theorem.

Theorem 1 can easily be generalized to the case of more than two free factors, i.e. if G
is the free product of groups Gt, . . . , Gn with amalgamated subgroup U, the G, are given
by free presentations with associated relation modules /?,, . . . , Rn, and the presentation
of G under consideration is constructed in the obvious way, then the result reads as
follows.

THEOREM 1'. There is a short exact sequence

0 ^ 0 (R, ®G.ZG)-*£-»"© IU®uZG-*0.
i ' i

The proof of Theorem 1 can be carried over without any difficulties, replacing the
direct sums of two modules in the diagram by direct sums of the corresponding n
modules. The exact sequence

O-*"© ( / I /®uZG)-»© (7G,-®CiZG)->/G-*0

replacing the bottom row can be found in [2, p. 142].

2. HNN extensions. Let G be a group given by a free presentation (1) and let A
and B be subgroups of G with cp:A—*B an isomorphism. Let

G* = (G, t; t~lat = a<p (aeA)}

be the HNN extension of G with stable letter t and associated subgroups A, B (see
[5, Chapter IV.2, p. 178ff.] concerning the definition and standard notations). Let
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F* = F* (t) be the free product of F and the infinite cyclic group generated by t. Then

where n* is given by
7i* P= 7i, tn* = t,

is a free presentation of G*. Let R, R* denote the relation modules determined by (1), (5),
respectively.

THEOREM 2. There is an exact sequence of G*-modules

Now let C be a right and D a left G*-module. Again, by applying the (co)homology
functor as in Section 1, one easily gets the following corollary.

COROLLARY 2 (Bieri [1]). There are long exact sequences

. ..^Hn+\B, C)-^Hn+2{G*, C)-^H"+2(G, C)->Hn+2(B, C)^.. . ,

In preparation for the proof of Theorem 2, we now start with some preliminary
considerations. Recall that a normal form for the HNN extension G* is a sequence

g0, t'\ . . . , te", gn («>0),

where £, = ±1 and
(i) go is an arbitrary element of G,

(ii) if e, = — 1 then g, e si, where si is a fixed system of representatives of the right
cosets of A in G such that 1 is the representative of A,

(iii) if e, = +1 then g, e S3, where 38 is a fixed system of representatives of the right
cosets of B in G such that 1 is the representative of B, and

(iv) there is no consecutive subsequence tE, 1, t~e.
The Normal Form Theorem for HNN extensions (see [5, p. 182]) states that any

element ca of G* has a unique representation as a> = got
ei . . . te"gn, where

g0, f\ . . . , f", gn is a normal form. From now on we will not distinguish between a
normal form and the corresponding element of G*. It will be clear from the context what
is actually meant.

LEMMA 4. Let G* be as above. Then the intersection of the right ideals generated by
1G and (t - 1), respectively, in ZG* is the right ideal generated by (t — 1). IB, i.e.

IG. ZG* n (t - 1). ZG* = {t-\).IB. ZG*.

Proof. Let T denote the set of all normal forms with g0 = 1, F~ the set of normal
forms with g o = l and Ex = — 1, and F+ the complement of F~ in F. For
7 = t~lg\te2 • • • te"gn e F", we define

Y- = fK..tE»gn, g(r)=gi.
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We define a partial ordering on F as follows: Yi > Y2 if and only if there is a y3 e F such
that Yi = y3 • 72-

Now we can state the following obvious facts.
(I) Every element a e ZG has a unique expression as

ftgy, where fteZB, g, e SB.
y

(II) Every element co € ZG* has a unique expression as

« = 2 AyS/ft (6)

with Ay e Zfl, g, e SB, YI e r.
(III) An element t» e ZG* is in IG. ZG* if and only if in (6)

i

for all i.
Now suppose that we are given an element to e ZG* such that

(t-1). ooelG.ZG*.

We denote by Fo the set of all y e F such that y occurs with non-zero coefficient in (6).
Then we have, by using the HNN relations tb = b<p~H {b e B),

C -1) 2 Pusm = 2 (/M^X&y*) + 2 (^-'^(yOrr - 2 Ay&r,, (7)
i.i '•)

where the first sum runs over all i, j with g; =#= 1 or y, ^ r~, and the second sum runs over
all /, ; with gj = 1 and y, e F~. q> denotes the ring isomorphism q> :ZA—>ZB, induced by
the group isomorphism q>:A—>B.

Let y0 be maximal in Fo with respect to the partial ordering introduced above. Then,
if (case 1) y0 occurs in the first sum, (tgjYo) is maximal among the normal forms occurring
in (7). Consequently, by (III), we have /Jq,(p~r e IG and this implies /30/ € IB. If (case 2) y0

occurs in the second sum then the normal form (y0) occurs with coefficient — £ BOjgj in
i

(7), because all normal forms (tgjYi) occurring in the first sum are in F+ and y0 is greater
than all normal forms occurring in the second sum. Hence, by (III), S BOjgt e IG. But, by
case 1, all /?Oy with g, =£ 1 are in IB. Consequently, all fiOj e IB. '

Now we can apply induction on the number of elements of Fo, and this completes the
proof.

Proof of Theorem 2. Denote by T the infinite cyclic group generated by t and
consider the following diagram.
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0 0

I !
R®GZG* R*

I I
(IF®FZG*)®(IT®TZG*) -^* IF*®F.ZG*

[. I
0 > kere -^-> (IG®GZG*) 0 (IT®TZG*) *—> IG* >Q

I I
0 0

By Lemma 1, 0->R-+IF<8>PZG-+IG-*0 is exact. Tensoring with ZG* over ZG
yields the exactness of the first column (ZG* is a free ZG-module). The second column is
the relation sequence for (5) and therefore exact. Using Lemma 3, one gets an
isomorphism

<D: (IF ®F IF*) 0 (IT ®T ZF*)-> IF*.

Applying - ® F . Z G * to this yields the isomorphism XV. It is given by

W: ( ( ( / - 1) ® / ? ) 0 ((t - 1) <g>/2*)) -> (f - 1) ®f* + (t-

w h e r e / e F , / * e F * .
Obviously, the bottom row is exact. Here e is given by

where g e G, gf e G*.
Since Wv = ipe, one gets

7? * = ker v = ker i/;£.

Now the exactness of the first column and the bottom row imply that there is an exact
sequence

^ ^ * ^ k e r £-»0.

Consider e^.IG ®CZG*-^>IG* and e2:IT®T ZG*^>IG*, given by
el:((g-\)®g*)^(g-\)g* and e2:((f-1) ®g*)^(t- l)g*, respectively. Since ^
and £2 are injective, one gets ker e = (Im £j) D (Im £2); hence

ker £ = (IG. ZG*) n (* - 1). ZG*.

By Lemma 4, ker £ s ( r - 1). IB. ZG*. So it remains to show that IB®BZG* and
(t — 1). IB. ZG* are isomorphic as right G*-modules.

The canonical map IB <8»B ZG*-» /B . ZG*, given by (b - 1) <8>g* *-* (b - l)g*,
where beB, g*eG*, is obviously an isomorphism. Now consider the map T:ZG*—>
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ZG*, where r is given by r:g* *-+(t- l)g*. The restriction of r to IB. ZG* yields an
epimorphism IB . ZG*^(t-1) . IB. ZG*. We claim that r is injective. Then the
restriction of r to IB . ZG* is also injective, and we are done.

To establish the claim, suppose that we are given a e ZG* such that (t — 1). a = 0,
i.e. a = tka for every integer k. Express a as

<x = %nj-Yi> tjeZ, YjeG*. (8)
i

Let go be an element of G* occurring in (8) with non-zero coefficient. The elements g0,
tg0, t2g0, . . . are pairwise distinct. Since only a finite number of elements of G* occur in
(8) with non-zero coefficient, there exists an integer k such that tkg0 and g0 have distinct
coefficients in (8). But this implies a¥=tka for some k. Hence, r is injective, and this
completes the proof of Theorem 2.
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