ON KLOOSTERMAN SUMS WITH OSCILLATING COEFFICIENTS

BY
D. HAJELA, A. POLLINGTON AND B. SMITH

$$
\begin{aligned}
& \text { Abstract. An estimate for Kloosterman sums with oscillating } \\
& \text { coefficients is presented. Precisely we show: for any } \epsilon>0 \text { and } a, b \\
& \text { positive integers with }(a, b)=1 \text { we have, } \\
& \qquad \sum_{k \leqq n} \mu(k) e\left(\frac{\bar{k} a}{b}\right)<_{\epsilon} n b^{\epsilon}\left(\frac{(\log n)^{5 / 2}}{b^{1 / 2}}+\frac{(\log n)^{11 / 5} b^{3 / 10}}{n^{1 / 5}}\right) \\
& (k, b)=1, k \overline{\bar{k}}=1(\bmod b)
\end{aligned}
$$

Similar techniques may be used to estimate other Kloosterman sums with oscillating coefficients which are not smooth.

1. Introduction. In this note, we obtain some bounds on Kloosterman sums with oscillating coefficients. Precisely, we obtain an estimate for

$$
\begin{equation*}
\sum_{\substack{k \leqq n \\(\bmod b),(k, b)=1}} \mu(k) e\left(\frac{a \bar{k}}{b}\right) \tag{1.1}
\end{equation*}
$$

where $(a, b)=1$. The Theorem we prove about such sums is:
Theorem. For any $\epsilon>0$ and a, b, positive integers with $(a, b)=1$ we have,

$$
\sum_{k \leqq n} \mu(k) \chi_{b}(k) e\left(\frac{\bar{k} a}{b}\right)<_{\epsilon} n b^{\epsilon}\left(\frac{(\log n)^{5 / 2}}{b^{1 / 2}}+\frac{(\log n)^{11 / 5} b^{3 / 10}}{n^{1 / 5}}\right)
$$

where $\chi_{b}(k)=1$ for $(k, b)=1$ and 0 else, and $k \bar{k}=1(\bmod b)$.
The interest in estimating Kloosterman sums of this type stems from applications to additive problems when estimating similar types of Kloosterman sums, but with smooth coefficients. We refer to [2], [5] for various examples. The technique that is used for proving the above estimate is an application of Vaughan's identity [6] along with an estimate for incomplete Kloosterman sums due to Hooley [4] which follows from Weil's estimate for Kloosterman sums. The estimate of Hooley [4] that we shall need is

$$
\begin{equation*}
\sum_{k \leqq n} x_{b}(k) e\left(\frac{\bar{k} a}{b}\right) \ll_{\epsilon} b^{1 / 2+\epsilon}(a, b)^{1 / 2} \tag{1.2}
\end{equation*}
$$

Received by the editors December 24, 1985, and, in revised form, July 31, 1987.
AMS Subject Classification (1980): 10 Gl 10.
(c) Canadian Mathematical Society 1987.
for $n \leqq b$ (henceforth we shall write $\chi(k)$ instead of $\chi_{b}(k)$ when there is no confusion). It is readily seen that the above technique adapts to many other Kloosterman sums with non-smooth coefficients. Therefore, we have restricted ourselves to the above theorem. The notation is standard and is as in [3].

We are grateful to Henryk Iwaniec and Andrew Odlyzko for some discussions. We would also like to thank the referee for some suggestions which lead to a better formulation of the theorem.
2. Proof of the Result. We prove the theorem mentioned in the introduction.

Proof. Let

$$
\lambda(x, y)=\mu(y) \chi(x) \chi(y) e\left(\frac{a \overline{x y}}{b}\right)
$$

By Vaughan's identity,

$$
\sum_{y \leqq N} \lambda(1, y)=S_{0}+S_{1}-S_{2}-S_{3}
$$

where

$$
\begin{aligned}
& S_{0}=\sum_{y \leqq W} \lambda(1, y) \\
& S_{1}=\sum_{d \leqq W} \sum_{y \leqq N / d} \sum_{z \leqq N / y d} \mu(d) \lambda(d z, y) \\
& S_{2}=\sum_{d \leqq W} \sum_{y \leqq W} \sum_{z \leqq N / y d} \mu(d) \lambda(d z, y) \\
& S_{3}=\sum_{x>W} \sum_{\substack{y>W \\
x y \leqq N}} \tau_{x} \lambda(x, y) \\
& \tau_{x}=\sum_{d \mid x, d \leqq W} \mu(d)
\end{aligned}
$$

Here W is a parameter chosen later. Clearly $S_{0} \ll W$. To estimate S_{1},

$$
\begin{aligned}
S_{1} & =\sum_{d \leqq W} \mu(d) \chi(d) \sum_{k \leqq N / d}\left(\sum_{y z=k} \chi(z) \chi(y) \mu(y)\right) e\left(\frac{\overline{k d} a}{b}\right) \\
& =\sum_{d \leqq W} \mu(d) \chi(d) \sum_{k \leqq N / d} \chi(k)\left(\sum_{y \mid k} \mu(y)\right) e\left(\frac{\overline{k d} a}{b}\right) \\
& \ll\left|\sum_{d \leqq W} \mu(d) \chi(d) e\left(\frac{\bar{d} a}{b}\right)\right| \ll W
\end{aligned}
$$

To estimate S_{2}, we have used the estimate

$$
\begin{aligned}
& \sum_{k \leqq n} \frac{d(k)}{k} \ll(\log n)^{2}, \\
& S_{2}=\sum_{k \leqq W^{2}} \sum_{z \leqq N / k} \chi(z)\left(\sum_{\substack{y d=k \\
y \leqq W, d \leqq W}} \mu(d) \mu(y) \chi(k)\right) e\left(\frac{a \bar{k} \bar{z}}{b}\right) \\
& \ll \sum_{\substack{k \leqq W^{2} \\
(k, b)=1}} d(k)\left|\sum_{z \leqq N / k} \chi(z) e\left(\frac{a \bar{k} \bar{z}}{b}\right)\right| \\
& \ll \epsilon \sum_{k \leqq W^{2}} d(k)\left(\frac{N}{k b}+b^{1 / 2+\epsilon}\right) \\
&(\text { by }(1.2) \text { and evaluating Ramanujan sums }) \\
& \ll \epsilon \frac{N}{b}(\log N)^{2}+b^{1 / 2+\epsilon} W^{2} \log W
\end{aligned}
$$

To estimate S_{3}, we let

$$
\begin{aligned}
& A=\left\{2^{j} W \mid 0 \leqq j \leqq k, 2^{k} W^{2}<N \leqq 2^{k+1} W^{2}\right\} \\
& S(Y)=\sum_{Y<x \leqq 2 Y} \sum_{W<y \leqq N / x} \tau_{x} \chi(x) \chi(y) \mu(y) e\left(\frac{a \overline{x y}}{b}\right)
\end{aligned}
$$

where $Y \in A$. Thus

$$
S_{3}=\sum_{Y \in A} S(Y) .
$$

Since $\tau_{x} \ll d(x)$, we have by the Cauchy-Schwartz inequality,

$$
\left.\left.|S(Y)|^{2} \ll\left(\sum_{x \leqq 2 Y} d^{2}(x)\right) \sum_{Y<x \leqq 2 Y}\right|_{W<y \leqq N / x} \chi(y) \mu(y) e\left(\frac{a \overline{x y}}{b}\right)\right|^{2}
$$

Upon applying Hooley's estimate [4] (see (1.2) of this paper) and the evaluation of Ramanujan sums in the third line of the estimate that follows,

$$
\begin{aligned}
& \sum_{Y<x \leqq 2 Y}\left|\sum_{W<y \leqq N / x} \chi(y) \mu(y) e\left(\frac{a \overline{x y}}{b}\right)\right|^{2} \\
& \ll \sum_{y \leqq N / Y} \sum_{z \leqq N / Y}\left|\sum_{Y<x \leqq 2 Y} e\left(\frac{a \bar{x}(\bar{y}-\bar{z})}{b}\right)\right| \\
& \ll \epsilon \sum_{y \leqq N / Y} \sum_{z \leqq N / Y} \frac{Y(b, \bar{y}-\bar{z})}{b}+b^{1 / 2+\epsilon}(b, \bar{y}-\bar{z})^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& <_{\epsilon} \sum_{y \leqq N / Y} \sum_{k \mid b}\left(\frac{N}{Y k}+1\right)\left(\frac{Y k}{b}+b^{1 / 2+\epsilon} k^{1 / 2}\right) \\
& <_{\epsilon} \sum_{y \leqq N / Y} \sum_{k \mid b} \frac{N}{b}+\frac{N}{Y k^{1 / 2}} b^{1 / 2+\epsilon}+\frac{Y k}{b}+b^{1 / 2+\epsilon} k^{1 / 2} \\
& <_{\epsilon} \sum_{y \leqq N / Y} \frac{N}{b} d(b)+\frac{N}{Y} b^{1 / 2+\epsilon}+Y b^{\epsilon}+b^{1+\epsilon} \\
& <_{\epsilon} \frac{N^{2}}{Y b^{1-\epsilon}}+\frac{N^{2}}{Y^{2}} b^{1 / 2+\epsilon}+N b^{\epsilon}+\frac{N}{Y} b^{1+\epsilon} \\
& =\frac{N^{2}}{Y} b^{\epsilon}\left(\frac{1}{b}+\frac{b^{1 / 2}}{Y}+\frac{Y}{N}+\frac{b}{N}\right)
\end{aligned}
$$

Above, we have used the elementary estimate [3], that for $\alpha \geqq 0$,

$$
\sum_{k \mid b} k^{\alpha}<_{\epsilon} b^{\alpha+\epsilon}
$$

Next applying the estimate [1], page 140,

$$
\sum_{x \leqq 2 Y} d^{2}(x) \ll Y(\log Y)^{3}
$$

we have,

$$
\begin{equation*}
|S(Y)|^{2}<_{\epsilon} N^{2}(\log N)^{3} b^{\epsilon}\left(\frac{1}{b}+\frac{b^{1 / 2}}{Y}+\frac{Y}{N}+\frac{b}{N}\right) \tag{2.1}
\end{equation*}
$$

Hence, we have the estimate for S_{3},

$$
\begin{aligned}
S_{3} & \leqq \sum_{Y \in A}|S(Y)| \\
& \ll \epsilon N(\log N)^{3 / 2} b^{\epsilon} \sum_{Y \in A} \frac{1}{b^{1 / 2}}+\frac{b^{1 / 4}}{Y^{1 / 2}}+\frac{Y^{1 / 2}}{N^{1 / 2}}+\frac{b^{1 / 2}}{N^{1 / 2}} \\
& \ll \epsilon N(\log N)^{3 / 2} b^{\epsilon}\left(\frac{\log N}{b^{1 / 2}}+\frac{b^{1 / 4}}{W^{1 / 2}}+\frac{1}{W^{1 / 2}}+\frac{b^{1 / 2}}{N^{1 / 2}} \log N\right) \\
& \ll \epsilon N(\log N)^{5 / 2} b^{\epsilon}\left(\frac{1}{b^{1 / 2}}+\frac{b^{1 / 4}}{W^{1 / 2}}+\frac{b^{1 / 2}}{N^{1 / 2}}\right)
\end{aligned}
$$

Putting the estimates on S_{0}, S_{1}, S_{2} and S_{3} together we have,
(2.2) $\quad \sum_{k \leqq N} \mu(k) \chi(k) e\left(\bar{k} \frac{a}{b}\right)$

$$
<_{\epsilon} N(\log N)^{5 / 2} b^{\epsilon}\left(\frac{1}{b^{1 / 2}}+\frac{b^{1 / 4}}{W^{1 / 2}}+\frac{b^{1 / 2}}{N^{1 / 2}}\right)+b^{1 / 2+\epsilon} W^{2} \log W
$$

Let $W=\left[N^{2 / 5}(\log N)^{3 / 5} b^{-1 / 10}\right]$. Then,

$$
\frac{N(\log N)^{5 / 2} b^{\epsilon+1 / 4}}{W^{1 / 2}}+b^{1 / 2+\epsilon} W^{2} \log W \ll N^{4 / 5}(\log N)^{11 / 5} b^{3 / 10+\epsilon}
$$

Thus (2.2) becomes,

$$
\begin{align*}
& \sum_{k \leqq N} \mu(k) \chi(k) e\left(\frac{\bar{k} a}{b}\right) \tag{2.3}\\
& <_{\epsilon} N(\log N)^{5 / 2} b^{\epsilon-1 / 2}+N^{1 / 2}(\log N)^{5 / 2} b^{1 / 2+\epsilon} \\
& +N^{4 / 5}(\log N)^{11 / 5} b^{3 / 10+\epsilon}
\end{align*}
$$

We may assume that $b \leqq N^{2 / 3}$, otherwise the estimate in (2.3) is trivial. Then,

$$
N^{1 / 2}(\log N)^{5 / 2} b^{1 / 2+\epsilon} \leqq N^{4 / 5}(\log N)^{11 / 5} b^{3 / 10+\epsilon}
$$

and using this in (2.3) completes the proof.

References

1. H. Davenport, Multiplicative Number Theory, Springer-Verlag, 1980.
2. J.-M. Deshouillers, H. Iwaniec, Kloosterman Sums and Fourier Coefficients of Cusp Forms, Invent. Math. 70 (1982), pp. 219-288.
3. G. H. Hardy, E. M. Wright, The Theory of Numbers, Oxford Press, 1975.
4. C. Hooley, On the Brun-Titchmarsch Theorem, J. Reine Angew. Math. 225 (1972), pp. 60-79.
5. H. Iwaniec, Promenade Along Modular Forms and Analytic Number Theory, Preprint.
6. R. C. Vaughan, An Elementary Method in Prime Number Theory, Acta Arith. 37 (1980), pp. 111-115.

Bell Communications Research
Morristown, New Jersey 07960
Brigham Young University
Provo, Utah 84602
Bell Communications Research
Morristown, New Jersey 07960

