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Ryohei Seto1,† and Giulio G. Giusteri2

1Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
2Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

(Received 25 June 2018; revised 9 September 2018; accepted 10 September 2018;
first published online 19 October 2018)

The presence and the microscopic origin of normal stress differences in dense
suspensions under simple shear flows are investigated by means of inertialess particle
dynamics simulations, taking into account hydrodynamic lubrication and frictional
contact forces. The synergic action of hydrodynamic and contact forces between
the suspended particles is found to be the origin of negative contributions to the
first normal stress difference N1, whereas positive values of N1 observed at higher
volume fractions near jamming are due to effects that cannot be accounted for in
the hard-sphere limit. Furthermore, we found that the stress anisotropy induced by
the planarity of the simple shear flow vanishes as the volume fraction approaches
the jamming point for frictionless particles, while it remains finite for the case of
frictional particles.
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1. Introduction

Steady-shear rheology provides a fundamental framework for the investigation
and description of the properties of incompressible non-Newtonian fluids. In the
presence of a simple shear flow, with shear rate γ̇ , the response of different fluids
is characterized by three degrees of freedom of the symmetric stress tensor σ (since
the others are fixed by the geometry of the flow). These are commonly identified
with the shear stress σ ≡ 〈σxy〉, through which the viscosity η ≡ σ/γ̇ is defined, and
the first and second normal stress differences, N1 ≡ 〈σxx − σyy〉 and N2 ≡ 〈σyy − σzz〉,
respectively. (We set x as the flow direction, y as the gradient direction and z as the
vorticity direction of the simple shear flow.) Newtonian fluids are characterized by a
constant value of η, while N1 and N2 are zero. On the other hand, all of the three
functions are required to identify or distinguish non-Newtonian fluids.

Historically, normal stress differences have been particularly important to characterize
viscoelastic fluids. In steady shear, it is impossible to distinguish the viscous and the
elastic contribution to the shear stress, but the presence of a non-vanishing N1 is a
signature of elastic effects. Indeed, the extensional component of the flow stretches
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elastic elements, such as polymer chains, and the convection determined by the
rotational component of the flow leads to positive values of N1. It is desirable to
be able, also for other fluids, to associate non-vanishing values of the normal stress
differences with some microscopic mechanism causing non-Newtonian behaviours.

Suspensions, namely mixtures of solid particles and viscous liquids, are an
important class of non-Newtonian fluids that exhibit shear thinning and thickening
(Laun 1984; Barnes 1989; Mewis & Wagner 2011; Guy, Hermes & Poon 2015). Since
suspended particles are usually very rigid, there is no obvious elastic component in
such fluids. To thoroughly characterize them, significant efforts have been made to
measure normal stress differences (Laun 1994; Zarraga, Hill & Leighton 2000; Singh
& Nott 2003; Lootens et al. 2005; Couturier et al. 2011; Dai et al. 2013; Dbouk,
Lobry & Lemaire 2013; Cwalina & Wagner 2014; Royer, Blair & Hudson 2016;
Gamonpilas, Morris & Denn 2016; Pan et al. 2017; Hsiao et al. 2017). Although
experimental results do not always agree, most of them reported a negative N1 for
moderately dense suspensions at high shear rates. Few of them also reported a
characteristic transition from negative to positive values of N1 at high shear rates in
very dense suspensions. By contrast with the positive N1 measured for viscoelastic
fluids, negative values of N1 are considered an unusual and unique rheological feature
of suspensions.

The question of what microscopic effects determine the observed normal stress
differences in suspensions has so far received only partial answers (for more details
see the recent review article by Guazzelli & Pouliquen (2018)). Stokesian dynamics
simulations by Phung, Brady & Bossis (1996) reproduced negative values of N1 at
relatively high shear rates, meaning large values of the Péclet number Pe. Bergenholtz,
Brady & Vicic (2002) presented a theoretical argument identifying a negative
hydrodynamic contribution to N1 and a positive one due to Brownian interactions
in dilute suspensions. More recent simulations, including frictional contacts besides
hydrodynamic interactions, reproduced the transition from negative to positive N1
(Mari et al. 2015; Boromand et al. 2018; Singh et al. 2018). As a consequence,
positive values of N1 in very dense suspensions tend to be explained as an effect of
frictional contact forces or granular dilatancy.

This fostered the misconception that the sign of N1 can discriminate between
regimes in which either hydrodynamic interactions are dominant (negative N1) or
contact interactions are (positive N1). With the present paper, we provide evidence that
a different interpretation is in order. Namely, upon increasing the volume fraction φ in
the high-Péclet-number limit, there is a transition from a regime in which the negative
values of N1 are essentially determined by hydrodynamic interactions to a regime in
which synergies between hydrodynamic and contact interactions produce even more
evident negative values of N1. It is only at volume fractions approaching the jamming
conditions that we can observe positive values of N1 and our results indicate that,
for a computational model that aims at simulating hard-sphere suspensions, these
ought to be regarded as artefacts of the numerical approximation. Indeed, we can
identify the origin of a positive N1 in the elastic interactions employed to regularize
the hard-sphere contacts. In turn, this fact suggests that experimental measurements
of positive values of N1 may indicate the presence of elastic interactions, such as
soft elastic layers at particle surfaces or some cohesive bonding between particles,
that cannot be captured by simple hard-sphere models. Another possible explanation
for these observations traces them back to boundary effects, due to the presence of
walls that cannot be avoided in a standard rheometer (Yeo & Maxey 2010; Gallier
et al. 2016). If this is the case, simulations of the bulk rheology, like the ones we
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performed, should not be expected to reproduce the measured values of N1 near
jamming.

A key point in our investigation is the geometric interpretation of N1 as a proxy
for the misalignment between the stress σ and the symmetric part of the velocity
gradient D (Giusteri & Seto 2018). Indeed, the ratio N1/σ determines the angle θs, in
the flow plane, between the eigenvectors of σ and those of D. Such misalignment does
not occur in planar extensional flows (Seto, Giusteri & Martiniello 2017). Another
fruitful heuristic step involves the approximation of N1 with the first normal stress
difference generated only by normal forces between pairs of particles. This allows us
to draw a direct and pictorial link between the microstructure of the force network
generated under simple shear and the macroscopic value of N1, which opens the way
for extending a similar analysis to the case of granular flows.

To complete our analysis of normal stresses, we study the quantity N0 ≡ N2 +

N1/2, that measures a stress anisotropy caused by the planarity of simple shear flows.
Differently from the standard N2, the quantity N0 is fully independent of N1, since
they relate to mutually orthogonal terms in a linear decomposition of the stress tensor
(Giusteri & Seto 2018). In this sense, N0 is more informative than N2, as appears
also from its use in presenting experimental measurements (see, for instance, Boyer,
Pouliquen & Guazzelli 2011b).

2. Computational model

The rheology of dense suspensions is dominated by the shear-induced microstructure
but, except for a few asymptotic regimes, a theoretical treatment of the problem is
out of reach. We employ a simulation model developed in previous works (Seto et al.
2013; Mari et al. 2014), aiming to reproduce inertialess particle dynamics in Stokes
flows. Our simulation is similar to Stokesian dynamics (Brady & Bossis 1988), but it
omits long-range hydrodynamic interactions as explained below.

It is known that the original Stokesian dynamics simulation is singular in the non-
Brownian limit (Pe→∞) due to a diverging factor of 1/h in the lubrication resistance
(Ball & Melrose 1995), where h is the interparticle gap. Since this singularity is due
to the mathematical idealization, we can obtain some physical insight by using a
slightly modified model. We thus regularize the lubrication resistance by introducing
a small length scale δ and replacing the factor 1/h with 1/(h+ δ). Although this is a
reasonable modification, it has a drastic consequence: particle contacts are no longer
forbidden. We then need to introduce also a contact model.

Particles in suspensions are very hard, so that deformations under typical stresses
are negligibly small and we can consider them as rigid bodies. A simulation strategy
for the dynamics of hard spheres with multiple contacts, in which overlaps are
perfectly avoided, is available (Lerner, Düring & Wyart 2012). However, this approach
is only for frictionless systems, where particles can freely slide against each other.
In real systems, particles may also experience some tangential contact forces. To be
able to capture these effects, we employ a frictional contact model commonly used
in discrete element methods. At each contact point, normal and tangential forces
are activated. The strength |Fn

C| of the normal repulsive force is proportional to the
overlap |h| between two particles, |Fn

C| = kn|h|. Although the constant kn could match
the real elastic modulus of the particles, we usually need to set a smaller value to
capture the contact dynamics with reasonably large time steps (more on this point
in § 3.5). The strength |Ft

C| of the tangential force is proportional to the sliding
displacement at the contact point, and the proportionality constant kt is set to be half
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of kn in this work. Regarding the maximum tangential force, we implement a simple
Coulomb friction model, where the static friction coefficient µ determines the bound
|Ft

C|<µ|F
n
C| (see Mari et al. 2014 for details).

Thanks to the regularization of the lubrication resistance and the introduction of an
effective contact model we can simulate arbitrarily high values of Pe, and we focus
our attention on the infinite-Pe limit. This regime could not be explored by previous
theoretical studies developed in the low-Pe regime (Brady & Vicic 1995; Bergenholtz
et al. 2002). In the infinite-Pe limit, we can neglect Brownian forces. Then, most
of the particles come into contact or in near contact with others in shear flows. In
this case, for the investigated range of volume fractions the long-range hydrodynamic
interactions are much less important than the short-range lubrication interactions and
we can thus ignore the former in our simulation.

We target sufficiently small particles in a viscous liquid, whereby particle and fluid
inertia do not play a role: both the Stokes number and the Reynolds number are
assumed to be zero. In this Stokesian regime, the particles obey the overdamped
equations of motion in the form of a balance

FH +FC = 0 (2.1)

between hydrodynamic and contact forces, FH and FC, respectively. The hydrodynamic
interactions (force and torque) can be expressed as the sum of linear resistances to
the relative velocities and imposed deformation. We have

FH =−R · (U− u)+ R′ : D, (2.2)

where R and R′ are the resistance matrices. The linear and angular velocities globally
represented by the vector U can be determined by solving (2.1) and (2.2), and
particles are moved and rotated accordingly. The simulation box of volume V (on
which periodic boundary conditions are imposed) is deformed by following the simple
shear flow u= γ̇ yex. The stress tensor is given by

σ = V−1
∑

i

S(i)H + V−1
∑
i>j

(r( j)
− r(i))F(ij)

C , (2.3)

where S(i)H is the stresslet on the ith particle, generated by hydrodynamic interactions.
We use an adaptive time step 1t to update the particle positions based on the

determined velocities in such a way that a given maximum displacement dmax of the
particles is respected in each step: 1t = dmax/max|U(i)

|. The parameter dmax must be
selected appropriately, depending on the value of the stiffness kn. This procedure,
necessary to avoid flaws such as inactive tangential contact force due to unphysical
jumps, makes the simulations for stiff particles near the jamming point very time
consuming.

3. Results and discussion
We work in the infinite-Pe limit and we are interested in exploring the dependence

of the rheology of dense suspensions on the volume fraction φ of solid particles
dispersed in a Newtonian fluid with viscosity η0. The reported data are, unless
specified otherwise, ensemble averages of time averages (taken in a statistically
steady state) over 20 independent three-dimensional simulations of 1000 particles,
with a bidisperse size distribution characterized by size ratio 1.4 and volume ratio of
approximately 1. The cutoff length employed to regularize the lubrication singularity
is set to δ = 10−3a (Wilson & Davis 2002), with a being the radius of the smaller
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FIGURE 1. (Colour online) The relative viscosity η/η0 diverges as the volume fraction
φ approaches the jamming point φ(µ)J , a decreasing function of the friction coefficient µ.
Solid lines are obtained by fitting η/η0 = c(φJ − φ)

−λ to the data with the filled symbols.
Vertical dashed lines represent the values of φ(µ)J estimated from the fitting for each µ. The
data corresponding to the open symbols near jamming are omitted in the fitting because
of the potential inaccuracy due to the particle softness.

particles. The parameter kn for the contact model is set to 105k0, where the constant
k0 ≡ 6πη0aγ̇ is a reference value determined by the Stokes drag under a constant
shear rate γ̇ . (Our simulation is analogous to rate-controlled rheological measurements,
thus the shear rate γ̇ is constant over time.) The maximum particle displacement is
set to dmax = 5× 10−4a and the time step adaptively computed as described above.

3.1. Geometric interpretation of N1 and its presence in dense suspensions
As is well known, the relative viscosity η/η0 is a monotonically increasing function of
the volume fraction φ (figure 1). It follows the functional form η(φ)/η0= c(φJ −φ)

−λ

(solid lines in figure 1), featuring a power-law divergence at a jamming point φJ that
depends on the friction coefficient µ (vertical dashed lines in figure 1). As is expected
in the presence of a similar divergence, we observe a growth of several orders of
magnitude in the relative viscosity.

By contrast, the φ-dependence of the first normal stress difference normalized by
the solvent stress η0γ̇ is non-monotonic: it is negative and slowly decreasing for
moderate volume fractions, reaches a minimum and then rapidly increases to large
positive values in the vicinity of the jamming point (figure 2a). Nevertheless, a better
appreciation of the role of N1 and its rheological importance relative to that of the
divergent viscosity comes from the analysis of the ratio N1/σ or the reorientation
angle θs (figure 2b). In fact, a non-vanishing N1 indicates that the eigenvectors of the
stress in the flow plane are rotated with respect those of D by an angle

θs ≡ tan−1

(
−N1/σ

2+
√

4+ (N1/σ)2

)
, (3.1)

depicted in figure 2(c), which is determined only by the ratio N1/σ (Giusteri & Seto
2018).
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FIGURE 2. (Colour online) (a) The value of the normal stress difference N1 divided by
the solvent stress η0γ̇ remains negative with an increasing intensity up to high volume
fractions φ, where a sudden inversion towards large positive values is observed. The
behaviour is similar for different values of the friction coefficient µ. Vertical dashed
lines indicate the respective jamming points φ(µ)J . (b) The ratio between N1 and the shear
stress σ or the corresponding reorientation angle θs give a better idea of the mildness of
the effect measured by N1 over the whole range of explored volume fractions. (c) The
reorientation angle θs is defined as the angle, in the flow plane, between the eigenvectors
of the stress tensor σ and the eigenvectors of D (oriented at 45◦ from the flow direction).

In terms of these quantities, the measured values of N1 are seen to correspond to
a minor rheological feature – at least an order of magnitude smaller than the shear
stress – that varies smoothly with the volume fraction. Indeed, N1/σ is negative
at lower volume fractions, decreases to a minimum and then gradually increases
towards zero, turning to positive values only in close proximity to the jamming point
(figure 2b).

3.2. Synergy and competition between hydrodynamic and contact interactions
When discussing the φ-dependence of the viscosity and, through N1/σ , of the
reorientation angle, it is instructive to break down the total values into hydrodynamic
and contact contributions. This is possible by taking advantage of the ‘perfect
knowledge’ offered by simulations, which is of course not available when treating
experimental data. As for the viscosity, upon increasing the volume fraction contact
interactions become more and more likely to occur and progressively hinder
hydrodynamic interactions. We can pictorially say that the two effects ‘fight for
space’ and the shear stress σ is mostly determined by contact interactions. Moreover,
as one would expect, the presence of friction enhances the preeminence of contacts
(figure 3a,b).

The situation for the ratio N1/σ is quite different (figure 3c,d). At lower volume
fractions the main contribution, with a negative sign, is given by hydrodynamic
interactions, at intermediate volume fractions contacts begin to contribute, again with
a negative sign, and the reorientation effect is strongest (N1/σ minimum) in a regime
where the hydrodynamic contribution is still significant and the contact contribution is
growing. After this synergic regime, both the hydrodynamic and contact contributions
approach zero and, close to jamming, only the contact contribution survives and
switches to a positive sign.

It is thus clear that the change in the sign of N1 near the jamming point does not
indicate the transition from a preeminence of contacts over hydrodynamic interactions,
which mostly cooperate in building a microstructure that induces negative average
contributions to N1.
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FIGURE 3. (Colour online) (a,b) The contact contribution σC to the total shear
stress σ dominates the hydrodynamic one σH over almost the whole range of
explored volume fractions, both in the absence and presence of friction, even when
hydrodynamic interactions determine a major fraction of N1. (c,d) Hydrodynamic and
contact contributions to N1/σ for frictionless and frictional contacts are negative over
a wide range of volume fractions φ. The hydrodynamic contribution decreases upon
increasing φ. The negative contact contribution becomes dominant but then vanishes,
before turning to positive values near the jamming point.

3.3. From the microscopic force network to the macroscopic normal stress
We still need to understand what determines the sign of N1/σ . To this end, we
introduce a simplified quantity that retains the basic features of N1. Any force
between particles i and j can be decomposed into two parts, normal and tangential
forces, by means of projections involving the normal vector n(ij) ≡ (1/rij)(r( j)

− r(i)).
Tangential contact forces play an essential role in the particle dynamics and rheology.
Indeed, the friction coefficient µ shifts the jamming point and also determines the
behaviour of N1 as shown in § 3.1. However, we can verify that normal forces
constitute the dominant part of the stress, and especially the contributions of the
tangential forces to N1 are very minor. Here, we introduce the reduced stress tensor
including only normal forces,

σ̃ ≡ V−1
∑
i>j

(r( j)
− r(i))F̄(ij)

, (3.2)

where F̄(ij)
≡ (F(ij)

· n( ji))n( ji)
=−F̄ijn(ij) is the normal force acting on particle i from

particle j. Here, positive (respectively negative) F̄ij gives a repulsive (respectively
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FIGURE 4. (Colour online) (a) The reduced normal stress difference Ñ1 (open symbols)
constructed by omitting tangential lubrication and contact forces can reproduce N1 (solid
symbols), especially at higher volume fractions. (b) Even the instantaneous value Ñ1(t)
linearly correlates with N1(t).

attractive) force. The reduced normal stress difference Ñ1 is defined as

Ñ1 ≡ 〈σ̃xx − σ̃yy〉

=

〈
V−1

∑
i>j

rijF̄ij[(n(ij)x )
2
− (n(ij)y )

2
]

〉
=

〈
V−1

∑
i>j

(−r′ijF̄
′

ij sin 2θij)

〉
=

〈∑
i>j

Ñ ij
1

〉
,

(3.3)

where the local angle θij is the one formed between the projection of the normal vector
n(ij) in the flow plane and the compression axis. (Additionally, r′ij and F′ij are norms
of the projected vectors on the plane.) By analysing the data from our simulations,
we can confirm that not only is Ñ1 a good approximation of N1 (figure 4a), but
even the instantaneous value N1(t) can be reasonably reproduced by the reduced Ñ1(t),
especially at higher volume fractions where the contact forces are predominant, as
seen in figure 4(b).

To illustrate how the local contributors Ñ ij
1 relates to the force network, we perform

some two-dimensional (2-D) monolayer simulations, which retain the qualitative
features of the 3-D simulations while allowing for an easier visual perception, that
can guide our understanding of the microscopic interactions. Figure 5(a) presents
typical snapshots of the force network for a frictional system (µ = 0.5) at area
fraction φarea = 0.7 (upper panel) and φarea = 0.8 (lower panel). Normal forces F̄(ij)

between interacting pairs are drawn as segments. The red and blue colours indicate
repulsive and attractive forces. The strength of the normal forces is visualized by
varying the thickness of the segments. We see that the most significant normal forces
in these snapshots are repulsive (red).

The local contributors Ñ ij
1 to the reduced normal stress difference Ñ1(t) are

represented in a similar manner in figure 5(b). They contain the normal force F̄ij
as a factor (see (3.3)), but it is the factor n2

x − n2
y (a function of the local angle θij)

that decides the sign of the contribution to Ñ1(t), as shown in figure 5(c). (We observe
that Ñ1(t) is negative at φarea = 0.7 and positive at φarea = 0.8.) When two particles
align along the compression axis (θij = 0), the normal force does not contribute to
Ñ1 at all. The instantaneous value of Ñ1 is given by the sum of many contributions,
from all the particle pairs, with opposite sign. Indeed, in a typical snapshot, we can
find strong local contributions of both positive (red) and negative (blue) sign.
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FIGURE 5. (a) Snapshots of 2-D monolayer simulations to show the force network of the
pairwise normal force F̄(ij)

. The thickness of the segments indicates the intensity of the
force. Repulsive forces (F̄ij > 0) are in red and attractive forces (F̄ij < 0) in blue. (b) The
pairwise local contributions Ñ ij

1 to the first normal stress difference. The vertical repulsive
forces contribute positively (red), and the horizontal ones negatively (blue). (c) Illustration
of the factor n2

x−n2
y , that determines the sign of Ñ ij

1 , in terms of the local orientation angle
θ formed by the normal force and the compression axis.

A more quantitative understanding of this observation can be reached by evaluating
the time-averaged distribution of the normal forces and the normal stress components,
F̄ij and Ñ ij

1 , in terms of the local angle θ for 3-D simulations. Figure 6(a) shows the
distribution 〈F̄(θ)〉 of the normal forces divided by the maximum value F̄max. The
peaks of the force distributions are found around the compression axis (θ = 0). This
confirms that, although we can find some attractive forces (negative values) along the
extension axis at lower values of φ, the significant normal forces are mostly repulsive.

The angular distributions Ñ1(θ)/σ in figure 6(b) show very prominent positive
and negative peaks. Nevertheless, the global value of Ñ1/σ , obtained by integrating
Ñ1(θ)/σ over the entire range of directions, is somehow small with large fluctuations
over time. The fact that the global values are the result of a cancellation between
large contributions of opposite signs makes the sign of its fluctuating instantaneous
values uncertain.

We can conclude that a global non-vanishing value of N1 is generated by a small
imbalance of positive and negative contributions in the angular distributions presented
above. This is associated with a mild preference of the dominant branches of the force
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FIGURE 6. The significant normal forces are mostly repulsive and the time-averaged
values of N1/σ are the result of cancellations among local contributions of opposite sign.
This can be seen from the angular distributions of (a) the projected normal force 〈F̄(θ)〉
on the flow plane and (b) the ratio Ñ1(θ)/σ , obtained from 3-D simulations with friction
coefficient µ= 1.

network to be aligned along a direction different from the compression axis defined
by the shear flow.

3.4. Anisotropy due to the planarity of the flow
As mentioned in the introductory section, the stress tensor in steady simple shear
is characterized by three degrees of freedom. So far, we have discussed the
φ-dependence of the viscosity η = σ/γ̇ and the first normal stress difference N1.
The third degree of freedom is normally associated with the second normal stress
difference N2 but, as shown by Giusteri & Seto (2018), this quantity is not fully
independent of N1, since it is a combined measure of the misalignment between σ
and D (already captured by N1) and of a second effect. The latter corresponds to
a stress contribution which is isotropic in the flow plane (i.e. the x–y plane) but
globally anisotropic, when the vorticity direction is taken into account. In a simple
shear flow, the non-vanishing vorticity is everywhere orthogonal to the flow plane and
the invariance under any translation along this direction characterizes the planarity of
such flows. A good measure of the third independent degree of freedom is given by

N0 ≡

〈
σxx + σyy

2
− σzz

〉
=N2 +

N1

2
. (3.4)

N0 is normalized by the isotropic pressure Π ≡ −(1/3)〈Trσ 〉, so that N0/Π can
be understood by considering that it reflects an anisotropy of the normal stress (or
‘pressure’) originating from the planarity of the flow. The negative values of N0/Π

in figure 7(a) indicate that the flow generates more ‘pressure’ in the flow plane than
in the vorticity direction. This anisotropy monotonically decreases as the system
becomes denser and denser, and the viscosity higher and higher (see figure 1). In
the limit where the viscosity of frictionless systems (µ= 0) diverges, the anisotropy
looks to vanish. This is consistent with the idea that flow-induced microstructures
are not relevant to frictionless jamming, this being dominated by geometric effects.
On the other hand, a residual stress anisotropy survives in the limit of jamming with
friction µ > 0. Indeed, it has been suggested that flow-induced microstructures may
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FIGURE 7. (Colour online) (a) The absolute value of the ratio N0/Π , a measure of the
anisotropy of the stress in the vorticity direction, decreases upon increasing the volume
fraction φ since the force network becomes more and more isotropic as the jamming point
is approached. For frictional systems, a residual anisotropy is observed. (b) The ratio of
σ to Π , a measure of the anisotropy in the flow plane, also decreases with φ. The data
for different values of the friction coefficient µ display a nice collapse as a function of
φ − φJ , except for the points close to the jamming condition.

contribute to the jamming of frictional systems (Cates et al. 1998; Bi et al. 2011).
A similar observation was also reported as ‘absence of dilatancy’ in the quasi-static
limit of frictionless granular flows (Peyneau & Roux 2008).

To complete our discussion of the stress anisotropy, we now consider the anisotropy
generated in the flow plane by the shear flow itself. This is of course a dominant
effect in shear rheology and it can be measured by the ratio of the shear stress σ =
ηγ̇ to Π , a quantity that defines the macroscopic friction coefficient in the context
of granular flows (Boyer, Guazzelli & Pouliquen 2011a). The ratio σ/Π displays a
decreasing trend upon increasing the volume fraction, but a finite anisotropy seems to
survive even in the proximity of jamming (figure 7b). Notably, for a range of volume
fractions that are not too close to the jamming point, the data for different friction
coefficients collapse on the same curve. This points to a geometric origin of this
anisotropy in dense suspensions, that makes it insensitive to friction, which is in turn
essential in determining dynamical properties of the system such as the intensity of the
stress response. Nevertheless, close to jamming we observe a measurable difference in
the residual anisotropy for frictional and frictionless systems. Such difference seems
equivalent to what is observed in the quasi-static limit of granular dynamics, that is
σ/Π ∼ 0.1 for µ= 0 (Peyneau & Roux 2008) and σ/Π ∼ 0.35 for µ > 0.4 (Singh,
Magnanimo & Luding 2013; Azéma & Radjaï 2014).

3.5. The role of elastic effects near jamming
In view of the link we established between the microscopic properties of the force
network and the macroscopic value of N1, the presence of a non-vanishing N1 near
jamming appears to be puzzling, irrespective of its sign. In the limit of jamming
with hard spheres, we expect that effects of the rotational component of the flow are
negligible compared to those of the extensional component (Seto et al. 2017). If so,
the force network would become statistically symmetric across the compression axis in
the flow plane, entailing a vanishing N1. Nevertheless, our data indicate the presence
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FIGURE 8. (a) The positive value of N1/σ , observed at the volume fraction φ= 0.56 with
friction coefficient µ = 1, decreases if we increase the elastic constant kn employed in
the contact model to approximate the hard-sphere interaction. This indicates such elastic
interactions as the origin of the positive N1 near jamming. (b) The observed value of
N0/Π is not significantly affected by changes in kn over the explored range. (c) The
dependence of the average maximum overlap 〈−h〉 on kn indicates that our simulation
is gradually approaching the hard-sphere limit as the elastic constant kn increases.

of a symmetry breaking measured by non-zero values of N1. We thus need to identify
some factor that has been ignored in our previous arguments.

In analogy with what happens in viscoelastic fluids, the symmetry could be broken
by the vorticity if some elastic links were actually convected by the flow. While
there is no such link in a hard-sphere suspension, the contact model employed in
our simulation effectively approximates hard spheres with high-stiffness elastic ones.
We then argue that the observed positive values of N1 are due to a failure of the
simulation strategy in resolving contacts in a sufficiently rapid way. Particles that
overlap significantly for some time produce normal forces with directions that are
rotated towards the gradient direction, inducing an average reorientation of the stress
eigenvectors.

To confirm this interpretation, we analysed the dependence of N1/σ on the effective
normal stiffness kn of the frictional contact model (µ= 1) by running 20 independent
3-D simulations for each value of kn at the volume fraction φ=0.56, which is close to
jamming and gave a positive value of N1 in the data reported above. (The maximum
displacement is set to a common constant value dmax=5×10−4a for kn 6105k0 and, to
ensure the reliability of the simulations, reduced in inverse proportion to kn for stiffer
particles with kn > 105k0.) Even though we cannot test extremely large values of kn

(the time steps would get extremely short and the simulation time diverge) we found
a clear trend of N1/σ decreasing as kn increases (figure 8a). We may infer that, in
the hard-sphere limit, N1/σ is negative below jamming and asymptotically approaches
zero at the jamming point. In the same conditions, the value of N0/Π is not affected
by the tested increase in kn (figure 8b). This means that the finite stress anisotropy
observed near the frictional jamming and due to the planarity of shear flows is not
an artefact of the simulation but a genuine phenomenon.

Based on the awareness we gained from the computational results for stiffer
particles, we can make an instructive comparison with experimental studies. We take
the work by Royer et al. (2016) as an example. In these experiments, a suspension of
silica particles with 2a= 1.54 µm is fully thickened under a shear stress of 6000 Pa
and exhibits a positive N1 for volume fractions above φ = 0.54. The typical contact
deformation in such situation can be estimated as 10−4a, by using the Hertzian
contact model F= (4/3)E∗a1/2h3/2 with an effective elastic modulus E∗=E/2(1− ν2)
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given by assuming Young’s modulus E= 70 GPa and Poisson ratio ν = 0.17 of silica
particles. Such average overlaps can be realized with kn/k0 ≈ 107 in our simulation,
if the results of figure 8(c) are simply extrapolated. For such stiff particles, the
computational value of N1/σ is expected to be vanishing or slightly negative from
extrapolating the data presented in figure 8(a). Nevertheless, the data from Royer
et al. (2016), red circles in figure 9, show definitely positive values of N1/σ . The
discrepancy between simulations and experiments can be explained either with the
presence of interactions absent from our model, if it concerns bulk rheology, or as
a signature of boundary effects due to the presence of walls in standard rheometers.
Indeed, Gallier et al. (2016) numerically investigated wall effects on N1 and found
that N1/σ can be largely positive due to wall-induced ordering.

4. Conclusions

We investigated, by means of particle dynamics simulations, the presence and the
microscopic origin of normal stress differences in dense suspensions under simple
shear flows in the high-Péclet-number limit. By interpreting the first normal stress
difference N1 as a measure of the misalignment between the stress σ and the
symmetric part of the velocity gradient D, we have shown that it represents a minor
effect in comparison to the increment in the viscous response due to the interactions
among the dispersed particles. Importantly, we provided evidence that the sign of
N1 cannot be used to discriminate whether hydrodynamic or contact interactions are
dominant. In fact, in the dense regime, hydrodynamic and contact interactions always
cooperate to give negative contributions to N1. From our analysis, it appears how
the properties of the force network generated under shear are key to understanding
the rheology of the system. Indeed, the observed misalignment is so mild because it
originates from a small imbalance of intense but competing local contributions, that
cancel each other in the macroscopic average.

Moreover, microscopic arguments allow us to understand the meaning of positive
values of N1. For hard-sphere suspensions close to the jamming condition the force
network becomes symmetric across the compression axis in the flow plane, implying
a vanishing N1. This is a clear discrepancy with the positive values of N1 found in
some experiments. We argue that those values ought to be traced back to effects
that cannot be accounted for with simple hard-sphere models. In fact, we show that
the positive values obtained in our simulations are due to the presence of elastic
interactions employed to regularize the (numerically stiff) hard-sphere constraint. A
possible explanation of the experimental results could be sought in the presence of
persistent elastic interactions between particle pairs that are advected by the flow.
However, as shown in figure 9, definitely positive values of N1/σ near jamming
are found in experiments with particles that are much stiffer than in our simulation,
such as those by Royer et al. (2016). This may suggest boundary effects due to
the presence of walls in experiments, rather than bulk rheological properties, as an
alternative explanation for the observed positive values of N1/σ .

In place of the second normal stress difference N2, we studied the quantity
N0 ≡ N2 + N1/2. This measures an effect genuinely independent of the misalignment
measured by N1, namely a stress contribution isotropic in the flow plane but globally
anisotropic. It reflects an anisotropy in the force network originating from the planarity
of the flow. The force network tends to be isotropic near jamming for frictionless
contacts, and N0 vanishes accordingly, but some residual anisotropy is observed near
jamming for the case of frictional contacts.
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FIGURE 9. (Colour online) Comparison of our simulation results for the cases µ=1 (solid
grey line) and µ= 0 (dashed grey line) with some reported experiments from the literature.
Our frictionless simulation agrees with the Stokesian dynamics by Sierou & Brady (2002),
indicating that the lubrication approximation is justified at such high volume fractions.
The frictional simulation near jamming shows a value of N1/σ much closer to zero than
the reported experimental data, suggesting that some effects are being neglected in the
computational model. The material and diameter of the particles used in the experiments
are: 1. silica, 1.54 µm; 2. silica, 0.52 µm; 3. polystyrene, 40 µm; 4. polystyrene, 40 µm;
5. polystyrene, 140 µm.

In this work, we restricted our attention to the high-Péclet-number limit, where
only hydrodynamic and contact forces determine the particle dynamics. Under lower
stresses, some other force, such as Brownian forces or short-range repulsive forces,
tends to prevent contact and to maintain a lubrication layer between particles. Such
lubricated contacts are more similar to those obtained in the frictionless system. Under
higher stresses, the effect of the additional force declines and frictional contacts appear.
As a consequence of this mechanism, the shear thickening of dense suspensions, a
rate-dependent feature, can be reproduced by interpolating between two points on the
rate-independent frictionless and frictional rheology curves in figure 1 with a function
of a state parameter that controls the effective jamming point (Wyart & Cates 2014;
Singh et al. 2018). Analogously, a possible way to predict the rate dependence of
N1/σ would involve interpolating the reported results for frictionless and frictional
systems. Nevertheless, the non-monotonic behaviour of N1 makes it harder to find a
suitable interpolating function.
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