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1. INTRODUCTION

A natural question is why Al in design? Although the design
applications written about in the journal vary widely, the
common thread is that researchers use Al techniques to
implement their ideas. The use of Al techniques for design
applications, at least when Al EDAM was started, was par-
tially a reaction against the predominant design methods
based on some form of optimization. Knowledge-based tech-
niques, particularly rule-based systems of various sorts, were
very popular. One of the draws of these methods, I believe,
was their ability to represent knowledge that is hard or awk-
ward to represent in traditional optimization frameworks.
This mirrors my experience: at the time, I was working in
configuration with components that had a large number
compatibility and resource constraints. Although many con-
straints could be represented in mixed integer linear pro-
gramming systems, it was not easy to conceptualize, write,
and most importantly, maintain the constraints in those
systems.

This is more an explanation from the side of conve-
nience: it was easier to build systems. Yet, there is some-
thing more: Al is fundamentally bound to computation—
the science of computation—ijust like other fields of computer
science. I acknowledge that there are philosophical issues
that transcend computation, but, and particularly from a
design perspective, Al is about computation. Because Al is
bound to computation, the programs we write operate under
the limits described by computer science theory.

Given this context of computation, I am pleased that today
I rarely hear the comment “we don’t know how to solve the
problem, so we used Al technique X,” where X is the tech-
nique of the day, be it rules, fuzzy logic, genetic algorithms,
or agents. Unfortunately, this phrase was common in the Al
and design community in the past. There is no magic in the
world, and we cannot expect Al to magically solve prob-
lems we do not know how to solve.
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There is yet more to the “Why AI?” question: design can
help us to understand Al and computation. In the 1980s,
there was a great deal of interesting design work presented
at conferences like AAAI and IJCAI, and there were Al
researchers spending their time looking at design problems.
This work was attractive to both Al researchers and design
researchers.

From systems like R1 (McDermott, 1982) and VT
(Marcus et al., 1985), design researchers learned about how
constraints could be represented and manipulated. In addi-
tion, this research paved the way for the commercial con-
figuration and part-selection systems that today have wide
application.

Al researchers also learned a few things about computa-
tion by using design problems. The size of design prob-
lems, stemming partly from the large number of constraints
and parts that must be considered, posed substantial software-
engineering issues and motivated work in machine learn-
ing. More fundamentally, this exposed the enormous
combinatorial problems inherent in many design problems.
This, in turn, led to research into better algorithms for search-
ing large spaces of design alternatives (e.g., backtracking
and preprocessing).

The size of systems necessary to solve even small design
problems could not be ignored by Al researchers. Thus, Al
research moved into building and maintaining large knowl-
edge bases. Design applications again played a major role.
Machine learning (Mitchell et al., 1985) used electronic
design, and knowledge acquisition used elevator design
(Marcus et al., 1985). These applications helped research-
ers uncover the computational properties of their approaches.

Another example of the interplay between Al and design
is multiagent systems. The idea of agency has a long his-
tory in Al, both as a model of intelligent behavior and as a
way of organizing computation (e.g., a form of distributed
computing with varying degrees of decentralization). Dur-
ing the 1990s, the tremendous growth of the Internet and
Web spurred great interest among computer scientists in
distributed computing. Al researchers, in particular, were
very interested in developing scaleable models that cap-
tured the autonomy of computation on the Web while allow-
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ing resources to be exchanged to aid in computation.
Economic, voting theoretic, distributed constraint solving,
and distributed decision making models, to name a few,
gave rise to powerful computational systems when agents
have separate knowledge (which they are unable or unwill-
ing to share) and preference structures (again, which are not
shareable).

At this time, design researchers were interested mostly in
problems that were solved by a single designer, usually in
the context of larger design activity. Designers rarely work
in isolation. They work with other designers, other organi-
zations, and almost certainly with clients. Thus, the “single
designer” model implicit in much of the design research at
the time was limiting.

The advent of powerful multiagent systems marked a
major change in the direction of design research. Wellman
(1995), for example, demonstrated how decentralized mech-
anisms could solve design problems. More importantly, these
systems captured the kinds of interaction that are typical of
design processes. Groups of designers and organizations
collaborate on large projects, bargain over budgets, and share
design information, but typically not their knowledge. In
addition, these systems had the opportunity to scale in a
sustainable way: rather than creating enormous knowledge
bases, agents representing this knowledge can be used as
appropriate. This avoided the nasty scaling problems that
dogged earlier design systems.

During this time, new ways of conceiving and extending
old design problems were formulated. D’ Ambrosio et al.
(1996) found ways of distributing the configuration prob-
lem based on real organizational models from the automo-
bile industry. Darr and Birmingham (2000) inspired by Ward
et al. (1990) developed representations that naturally sup-
ported concurrent engineering using ideas of distributed
agency. These systems, like those of Wellman and others,
had well-developed and understood computation and math-
ematical properties.

Design spurred Al research by presenting real problems
and pushing the limits of certain systems. For example,
design problems motivated work in distributed constraint
satisfaction, where there is a need to search spaces that are
not shared among agents.

There are other areas of cooperation, such as constraint
solving and grammars. I have highlighted a few of the ones
in which I worked most closely.

2. CONCLUDING THOUGHTS

This process of give and take between design and Al has
served both disciplines well. Al methods, particularly in the
areas of machine learning and probabilistic reasoning, con-
tinue to have great promise for design research.

Our AI colleagues have done an excellent job in firming
up the theoretical underpinnings of their work. I think it is
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important for design researchers to do the same. Design
research does not typically involve the development of for-
mal theory. We build software systems for either a new
design method, a new application, or sometimes both. The
evaluation of these systems typically consists of running
some test cases; this type of evaluation is more anecdotal
than empirical. Yet, for those areas where it is appropriate,
formal analysis is essential if the field is to move forward.
Without this, we are left with little to mark our progress.

Recall my earlier statement that Al is about computation:
basic algorithmic analysis is still necessary to understand
the quality of the systems we build. Without this analysis, it
is hard to figure out what makes the difference: was it an
important insight into design or a clever algorithm? Algo-
rithmic analysis can yield important insights: we may find
that simple computational methods go far for some hard
problems or that combinatorial effects of a design problem
indicate that the only practical approach is heuristic.

I look forward to the next 20 years of Al EDAM. I hope to
see that the field has made substantial progress in under-
standing the computation necessary to solve design prob-
lems. I cannot wait to obtain a copy of a book of algorithms
for design problems, similar to those we use in algorithms
classes (e.g., Cormen et al., 2003).
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