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The interactions among pressure, density, vorticity and their gradients in compressible
turbulent channel flows (TCF) are studied using direct numerical simulations (DNS).
DNS of three isothermal-wall TCF for Mach number Ma = 0.2, 0.7, and 1.5,
respectively are performed using a discontinuous Galerkin method (DGM). The
Reynolds numbers of these three cases are ≈2800, based on the bulk velocity, bulk
density, half channel width and dynamic viscosity at the wall. A high cross-correlation
between density and spanwise vorticity occurs at y+ ≈ 4, which is coincident with the
peak mean spanwise baroclinicity. The relationship between the spanwise baroclinicity
and the correlation is analysed. The difference between the evolution of density and
spanwise vorticity very near the wall is discussed. The transport equation for the mean
product of density and vorticity fluctuations 〈ρ ′ω′

i〉 is presented and the distributions
of terms in the 〈ρ ′ω′

z〉 transport equation indicate that the minima and maxima of
the profiles are located around y+ ≈ 5. The connection between pressure gradients
and vorticity fluxes for compressible turbulent flows with variable viscosity has been
formulated and verified. High correlations (0.7–1.0) between pressure gradient and
vorticity flux are found very close to the wall (y+ < 5). The correlation coefficients
are significantly influenced by Ma and viscosity in this region. Turbulence advection
plays an important role in destroying the high correlations between pressure gradient
and vorticity flux in the region away from the wall (y+ > 5).

Key words: compressible boundary layers, turbulent boundary layers, vortex dynamics

1. Introduction
Vorticity can be generated at a solid surface, and, in the case of variable density

flows through the cross-product of density gradient and pressure gradient, which is
referred to as baroclinic torque or baroclinicity. Previous studies on vorticity dynamics
include the linkage between pressure gradient and vorticity generation on a solid wall
in laminar and turbulent flows; however, few studies exist for the pressure, density
and vorticity interactions, as well as quantitatively evaluating the linkage between
pressure gradient and vorticity generation as a function of Mach number and wall-
normal distance. Clarifying the interactions among pressure, density, vorticity and

† Email address for correspondence: pollard@me.queensu.ca
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their gradients is of great importance to understand the mechanism of vorticity
evolution in wall-bounded compressible turbulent flows.

Viscous vorticity flux is often used to describe vorticity generation at a solid surface
(Andreopoulos & Agui 1996). It was defined by Lighthill (1963) for a two-dimensional
incompressible laminar boundary layer: σ = − (ν∂ω/∂y)w , where ω is the vorticity, ν

is the kinematic viscosity and subscript w denotes on the wall. Panton (1984) extended
the definition to three-dimensional incompressible flow: σ = −(νn · ∇ω)w , where n is
the normal vector to the solid surface and ω is the vorticity vector. Wu, Wu & Wu
(1988) proposed a definition for compressible flow: σ = − n · ∇(µω), where µ is the
dynamic viscosity. The current study considers viscous vorticity flux both on the wall
and the regions away from the wall and the vorticity flux (‘viscous’ will be omitted
for simplicity hereafter) is not limited to the wall-normal direction, and therefore a
vorticity flux tensor is proposed: σij = ∂µωi/∂xj .

The influence of pressure gradients and fluid properties on vorticity flux has been
considered by a number of researchers. Lighthill (1963) proposed that the vorticity
flux (vorticity source strength) was dominated by wall-tangential pressure gradients in
a two-dimensional laminar boundary layer. Wu et al. (1988) extended the relationship
between vorticity and pressure to a viscous compressible flow under the assumption
of constant viscosity. A general theory for the interaction between vorticity-dilatation
field and the solid surface was outlined. Gad-El-Hak (1990) found that vorticity flux
can be affected by the wall-normal gradient of the kinematic viscosity as a result
of surface heating and chemical reaction. Wu, Wu & Wu (1993) considered vorticity
generation on an oscillating wall and found that wall oscillation generated additional
vorticity flux, which could affect either positively or negatively an existing vorticity
field. They claimed that this effect was partially responsible for the mechanism of
vortex flow control by waves. Developments of boundary vorticity dynamics theory
were reviewed by Wu & Wu (1998).

The interaction between pressure gradients and vorticity flux was employed
in flow control. Koumoutsakos (1999) proposed a control algorithm based on
the measurement and manipulation of the wall vorticity flux (or, equivalently,
pressure gradient) and applied this algorithm to a low-Reynolds-number turbulent
incompressible channel flow. The simulation showed that the resulting skin friction
drag reduction could be of the order of 40 %. Lee & Kim (2002) also investigated
vorticity generation and found it significant in the viscous sublayer of a turbulent
boundary layer. Drag reduction could be achieved through a suppression of spanwise
disturbances in the sublayer, which caused suppression of near-wall turbulence
structures.

The previous studies have considered the interplay between pressure gradient and
vorticity flux applied to incompressible flow; the relationship between them has been
considered neither for compressible flow as a function of distance from a solid wall
nor for the case when the viscosity is spatially variable. The motivation for the current
study is therefore to explore the variation in the correlations of the pressure gradients
and vorticity flux in near-wall turbulent flows as a function of Mach number for a
constant wall temperature, and to study the interactions among pressure, density and
vorticity in compressible wall-bounded turbulent flows.

The paper is organized as follows. The next section presents the formulation
of the linkage between pressure gradient and vorticity flux for compressible flows
with variable viscosity. It is then followed by the analysis of the data from the
direct numerical simulation (DNS) of compressible turbulent wall-bounded flows at
different Mach numbers, in which cross-correlations are proposed to quantitatively
evaluate the linkage between pressure, density and vorticity and the linkage between
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Interactions among pressure, density and vorticity 3

pressure gradient and vorticity flux. The budget for density vorticity correlation is
obtained and analysed. The influence of Mach number, viscosity and advection on
the correlations as well as the related flow physics is also discussed. The final section
provides a summary of the current work.

2. Vorticity dynamics formulation for compressible turbulent flows
with variable viscosity

Consider continuity, momentum and energy equations with an added driving force
for compressible, variable property flow:

∂ρ

∂t
+

∂ρuj

∂xj

= 0, (2.1)

∂ρui

∂t
+

∂(ρuiuj )

∂xj

+
∂p

∂xi

=
∂τij

∂xj

+ ρfi, (2.2)

∂E

∂t
+

∂(E + p)uj

∂xj

=
∂(τijui − qj )

∂xj

+ ρfiui, (2.3)

where τij is the viscous stress tensor: τij =µ(∂ui/∂xj + ∂uj/∂xi) − (2µ/3)δij ∂uk/∂xk ,
δij is Kronecker’s delta and the dynamic viscosity µ is a function of temperature:
µ = µ(T ), based on Sutherland’s theory of viscosity (Schlichting 1979); fi is the
driving force; E is the total energy, defined as E = p/(γ − 1) + 0.5ρuiui , where γ is
the specific heat ratio and qj is the heat flux: qj = −κ∂T /∂xj , where κ is the thermal
conductivity. The equation of state for a perfect gas is: p = ρRT , where R is the gas
constant.

The momentum equation (2.2) can be rewritten as (no assumption has been made
about the spatial variation of viscosity):

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj

+
∂p

∂xi

= −µεijk

∂ωk

∂xj

+
4

3
µ

∂Θ

∂xi

+
τij

µ

∂µ

∂xj

+ ρfi, (2.4)

where εijk is the permutation symbol, ωk is the vorticity ωk = εklm∂um/∂xl and Θ

denotes the dilatation Θ = ∂uj/∂xj .
The relationship between pressure gradient and vorticity gradient is affected by the

following terms:
(i) the substantial derivative: ρ∂ui/∂t + ρuj∂ui/∂xj , of which ρ∂ui/∂t is the

unsteady term and ρuj∂ui/∂xj is the advection term.
(ii) the vorticity gradient term: −µεijk∂ωk/∂xj , which involves vorticity flux.
(iii) the dilatation gradient term: (4µ/3)∂Θ/∂xi , which is related to compressibility

effects.
(iv) the viscosity gradient term: (τij /µ)∂µ/∂xj , which denotes the effect of

variations in viscosity mainly caused by the variations in temperatures (or heat
flux).

(v) the driving force term: ρfi .
Simplifications to (2.4) can be made on a no-slip isothermal wall (y = 0 or x2 = 0),
where velocities are zero u, v, w = 0 and temperature constant T = constant . First and
higher order derivatives of velocities and viscosity with respect to t , x and z (or x1

and x3) are also zero on the wall. The driving forces in the current simulations are:
fx = constant , fy = fz = 0. It then follows, on the wall, that

∂p

∂x
= −µ

∂ωz

∂y
+

∂u

∂y

∂µ

∂y
+

4

3
µ

∂Θ

∂x
+ ρfx, (2.5)
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4 L. Wei and A. Pollard

∂p

∂y
= −µ

∂ωx

∂z
+ µ

∂ωz

∂x
+

4

3
µ

∂Θ

∂y
+

4

3
Θ

∂µ

∂y
, (2.6)

∂p

∂z
= µ

∂ωx

∂y
+

∂w

∂y

∂µ

∂y
+

4

3
µ

∂Θ

∂z
. (2.7)

Further refinement of (2.5)–(2.7) gives,

∂p

∂x
= −∂µωz

∂y
+

4

3

∂µΘ

∂x
+ ρfx, (2.8)

∂p

∂y
= −∂µωx

∂z
+

∂µωz

∂x
+

4

3

∂µΘ

∂y
, (2.9)

∂p

∂z
=

∂µωx

∂y
+

4

3

∂µΘ

∂z
. (2.10)

Note that the terms in the above equations are instantaneous quantities although
some terms may have zero mean when averaged over time and the homogeneous
directions. It can be inferred from the above equations that the vorticity generation
from the wall is affected by pressure gradients, the driving force, dilatation
gradients (compressibility effects) and viscosity gradients. Specifically, the vorticity
flux in the wall-normal direction may be determined by wall-tangential pressure
gradients/driving force, wall-tangential dilatation gradients and wall-normal viscosity
gradients. On the other hand, the vorticity flux in the wall-tangential directions
may be determined by the wall-normal pressure gradient, driving force, wall-normal
dilatation gradients and viscosity gradients. It should be noted that when the region
away from the wall is considered, the vorticity flux becomes more complicated and
advection probably plays an increasingly important role (see (2.4)).

3. DNS of compressible turbulent channel flow
DNS of fully developed compressible turbulent flow between two isothermal parallel

plates at three different Mach numbers was carried out using a discontinuous Galerkin
method (DGM). DGM is a finite-element-based method that uses numerical fluxes
on element boundaries, which draws from finite volume method, so that it can
accommodate discontinuous solutions on element boundaries. It has many attractive
features including: high order accuracy, highly parallelizable and well suitable for
complex geometries (see Karniadakis & Sherwin 2005 and Cockburn, Karniadakis &
Shu 2000).

The Mach numbers of the cases considered were Ma = 0.2, Ma = 0.7 and Ma = 1.5,
respectively referred to as Ma02, Ma07 and Ma15 hereafter. The Mach number is
defined as Ma = Um/

√
γRTw , where Um is the mean bulk velocity and Tw the wall

temperature (Tw = 293.15 K for all three cases). Note that the local Mach number
Ma(y) is defined as the local mean velocity divided by the local mean sound speed.
For the case Ma15, the sonic line (Ma(y) = 1) is located at y = 0.115h (h is the
channel half-width) from the wall (see Wei 2009). The non-dimensional heat flux,
Bq = qw/(ρwcpuτTw), where the subscript w denotes the wall, cp is the specific heat
capacity at constant pressure and uτ the friction velocity is −0.001, −0.012 and
−0.047, for cases Ma02, Ma07 and Ma15, respectively.

The Reynolds number was ≈2800 in all cases, based on Um, h, the mean bulk
density ρm and the dynamic viscosity at the wall µw . The computational domain and
coordinate system was 12h, 2h and 6h in the streamwise, wall-normal and spanwise
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Interactions among pressure, density and vorticity 5

Case Ma Re Reτ Pr γ Lx Ly Lz ∆x+ ∆y+
min/∆y+

max ∆z+

MKM 0 2800 178 / / 4πh 2h 4
3
πh 17.7 0.1/4.4 5.9

CKM 1.5 3000 222 0.7 1.4 4πh 2h 4
3
πh 19 0.1/5.9 12

Ma02 0.2 2772 180 0.72 1.4 12h 2h 6h 4.74 0.19/2.81 4.74
Ma07 0.7 2795 186 0.72 1.4 12h 2h 6h 4.89 0.19/2.89 4.89
Ma15 1.5 2811 208 0.72 1.4 12h 2h 6h 5.42 0.22/3.24 5.42

Table 1. Physical and numerical parameters.

directions, respectively. The number of grid elements was 24 × 15 × 12, in these same
directions (x, y, z), respectively. The distribution of grid elements in x and z directions
was uniform. A hyperbolic tangent function was used to distribute elements in the
y direction. A DGM of 10th-order polynomial (P =10) and a second-order Adams–
Bashforth time scheme were employed. Over-integration with 2P grid points per
direction was applied to avoid aliasing errors. Details of the method can be found
in Wei (2009) and Wei & Pollard (2010). Physical and numerical parameters of the
current simulations are compared with Moser, Kim & Mansour (1999) (MKM) and
Coleman, Kim & Moser (1995) (CKM) in table 1.

The flow was assumed to be periodic in the streamwise and spanwise directions.
An analysis of the Kolmogorov microscale, one-dimensional energy spectra and
correlations showed that the grid resolution was fine enough to capture the smallest
scales and the domain size was large enough to include the largest eddies in the flow
(see Wei 2009).

The current simulation results that include mean profiles, second-order and higher-
order statistics were compared with the cases MKM and CKM (see Wei 2009 and
Wei & Pollard 2010). Very good agreement was found between the current simulations
and the two reference cases.

3.1. Cross-correlations between pressure, density and vorticity

The vorticity equation for compressible flow can be written as

∂ωi

∂t
+ uj

∂ωi

∂xj

= ωj

∂ui

∂xj

− ωi

∂uj

∂xj

+ βi + ηi, (3.1)

where βi is the baroclinic vector or baroclinicity, which represents a source for vorticity
generation (it is a measure of the alignment of density and pressure isosurfaces, and
is non-zero for compressible flows),

βi = εijk

1

ρ2

∂ρ

∂xj

∂p

∂xk

, (3.2)

and ηi is the shear stress term, which encompasses viscous effects,

ηi = εijk

∂

∂xj

(
1

ρ

∂τkm

∂xm

)
. (3.3)

The interaction between pressure, density and vorticity is explored using cross-
correlations. The cross-correlation coefficient (between variable a and variable b) is
defined as:

Ra:b =
〈a′b′〉

〈a′a′〉0.5〈b′b′〉0.5
, (3.4)
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y+
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R
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Figure 1. Cross-correlation coefficients between pressure and density near the wall.
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Figure 2. Cross-correlation coefficients between density (ρ) and spanwise vorticity (ω z)
close to the wall in wall units.

where angle brackets (〈 〉) denote average over time and x–z directions and the
apostrophe (′) denotes fluctuations with respect to the mean.

For an isothermal wall, pressure and density should be perfectly correlated on the
wall through the equation of state as confirmed in figure 1, since the temperature
fluctuations are zero on the isothermal wall. The cross-correlation coefficient quickly
drops to a minimum value at the region y+ ≈ 8 for the case Ma15, which roughly
corresponds to the maximum temperature fluctuations (see the temperature fluctuation
figure shown later in this section). The correlation between density and pressure very
close to the wall decreases with increasing Mach number, which is due to the increase
of the temperature fluctuations with Mach number.

The correlation between pressure and every component of the vorticity is found to
be negligible; however, there is a significant correlation between density and spanwise
vorticity very close to the (bottom) wall for all three cases Ma02, Ma07 and Ma15
(see figure 2). Note that the correlations near the top and bottom walls have the same
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(ρ′)rms/〈ρ〉(Ma = 0.7)
(T ′)rms/〈T 〉(Ma = 0.7)
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w
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w
)

0.1
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0.3

0

(ω_z)rms/(τw/µw)(Ma = 0.2)
(ω_z)rms/(τw/µw)(Ma = 0.7)
(ω_z)rms/(τw/µw)(Ma = 1.5)

20 40 60 80 100

y+

Figure 3. Profiles of density, temperature and spanwise vorticity fluctuations: (a) (ρ ′)rms/〈ρ〉,
and (T ′)rms/〈T 〉; (b) (ω′

z)rms/(τw/µw), where τw is the shear stress at the wall.

magnitude but are opposite in sign. The cross-correlations in this figure indicate that
the maximum correlation occurs around y+ ≈ 4 for all cases (there is a very slight shift
away from the wall with increasing Mach number), an observation not previously
reported in the literature. The peak correlation coefficients are around 0.9 and they
increase (mildly) with Mach number. In other words, compressible isothermal-wall
channel flows share a common feature that density and spanwise vorticity are highly
correlated at y+ ≈ 4. This will be further explored shortly. It would be interesting to
determine if other compressible isothermal-wall-bounded flows, such as pipe flows,
have similar regions.

Fluctuations of spanwise vorticity and thermodynamic properties such as density
and temperature are also investigated to demonstrate the dynamical significance of
the correlation between density and spanwise vorticity. The root-mean-square (RMS)
of density ρ, temperature T and spanwise vorticity ωz (ω z or ω3) is shown in figure 3.
Figure 3(a) indicates that RMS density (ρ ′)rms/〈ρ〉 and temperature (T ′)rms/〈T 〉
increase significantly and the location of the peaks of the profiles shifts slightly away
from the wall as Mach number increases. The difference between the profiles of
(ρ ′)rms/〈ρ〉 and (T ′)rms/〈T 〉 at each Mach number is small over most regions except
on the wall, where the temperature fluctuations are zero. The difference between these
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Ma = 1.5 y+ ≈ 1
(a)

ρ: 1.34

z

xy Ma = 1.5 y+ ≈ 1
(d)

Z Vorticity: –10.6

z

xy

Ma = 1.5 y+ ≈ 4
(b)

ρ: 1.24

z

xy Ma = 1.5 y+ ≈ 4(e)
Z Vorticity: –9.54

z

xy

Ma = 1.5 y+ ≈ 20
(c)

ρ: 1.03

z

xy Ma = 1.5 y+ ≈ 20( f )
Z Vorticity: –2.99

z

xy

Figure 4. (Colour online) Contours of density and spanwise vorticity, nondimensionalized by
ρm and Um/h, respectively, on (x–z) planes close to the wall for the case Ma15. (a) Density
at y+ ≈ 1; (b) Density at y+ ≈ 4; (c) Density at y+ ≈ 20; (d ) Spanwise vorticity at y+ ≈ 1; (e)
Spanwise vorticity at y+ ≈ 4; (f ) Spanwise vorticity at y+ ≈ 20. Threshold is taken as the mean
value at the respective y location so that the blue colour represents the positive fluctuations
with respect to the mean and the grey colour negative.

two profiles seems to increase marginally with increasing Mach number. The profiles
of spanwise vorticity fluctuations shown in figure 3(b) change slightly with Mach
number except for a small region around y+ ≈ 15, where the maximum turbulence
production occurs. It can be seen from both figures that fluctuations of density and
spanwise vorticity are significant in the region around y+ = 4, especially when the
Mach number is greater than one.

To explore the spatial distribution of density and spanwise vorticity around y+ =4,
snapshots of density and spanwise vorticity contours at y+ ≈ 1, 4, 20 for the case
Ma15 are given in figure 4. In the figure, the blue and grey shades represent positive
and negative fluctuations, respectively about a mean value; The mean value is noted
in the graph legend. At y+ ≈ 4, the density (figure 4b), and the spanwise vorticity
(figure 4e) share similar long regions of streamwise ‘streaks’ in both size and position,
which further confirms their high correlation around this location (‘streaks’ is used
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Interactions among pressure, density and vorticity 9

here to convey the idea of contiguous regions and hereafter, the quotation marks are
not used). However, the density and spanwise vorticity behave differently at y+ ≈ 1
and y+ ≈ 20. The spanwise vorticity streaks at y+ ≈ 1 (figure 4d ) look very similar
with those at y+ ≈ 4 (figure 4e), which is different in shape and size from those streaks
at y+ ≈ 20 (figure 4f ). The spanwise vorticity is defined as ωz = − ∂u/∂y + ∂v/∂x,
where −∂u/∂y is the dominant term and ∂v/∂x is negligible within the viscous
sublayer y+ < 5. The streaks of the spanwise vorticity should be similar as those of
the streamwise velocity in this viscosity-dominant region. Away from the wall, the
spanwise vorticity streaks become less coherent and organized with decreasing viscous
effects and increasing turbulence activity.

The development of the density is different. Unlike the spanwise vorticity, the density
streaks change considerably within the viscous sublayer, but the change between
y+ ≈ 4 and y+ ≈ 20 is small (see figure 4a–c). The main reason is that temperature has
a significant influence on density through the equation of state including the influence
of the isothermal wall. On the isothermal wall, the temperature fluctuations are zero
and density and pressure are non-zero and are perfectly correlated. The influence
of temperature fluctuations on the density streaks is negligible. Away from the wall,
temperature fluctuations increase in magnitude and play an increasingly important
role on the density fluctuations. Note that temperature streaks are coherent close to
the wall, as shown in figure 5. The streamwise coherence of density streaks is increased
from y+ ≈ 1 to y+ ≈ 4. Although the spatial contiguousness in density and spanwise
vorticity develop differently with distance from the wall, they are well correlated at
y+ ≈ 4, as noted in figure 2.

The mean spanwise component of the baroclinic vector (〈β3〉 or 〈β z〉),
nondimensionalized by U 2

m/h2, for three cases is displayed in figure 6. Note that
the profiles for the cases Ma02 and Ma07 are almost identical. The locations of the
peak values are the same as the correlation in figure 2, although the magnitude of the
peak for Ma15 is markedly higher than the others. The trend of the curves is similar
and the intersection between the profile for the case Ma15 and those for the cases
Ma02/Ma07 is located approximately at y+ ≈ 40 in both figures. A question arises:
is the correlation between the density and spanwise vorticity and the mean spanwise
baroclinicity related?

The near-wall relationship between the mean spanwise baroclinic torque and
the correlation between density and spanwise vorticity can be obtained through
rearranging the vorticity equation (3.1) to obtain 〈β3〉 as a function of 〈ρ ′ω′

3〉. The
unsteady terms are removed when taking average over time and x–z directions of (3.1).
Since ηi in (3.1) is the only term that contains both density and vorticity, nonlinear
terms can be considered as a source term. Let i = 3, then (3.1) can be rewritten
as

〈β3〉 =
∂

∂x2

〈
1

ρ

∂µω3

∂x2

〉
+ S1, (3.5)

where S1 is a source term which is a combination of the terms that do not have both

ρ and ω3. Further expansion of (3.5) gives

〈β3〉 = − ∂

∂x2

(
〈µ〉
〈ρ〉

∂〈ρ ′ω′
3〉

∂x2

)
− ∂

∂x2

(
〈ρ ′ω′

3〉
〈ρ〉2

∂〈µ〉
∂x2

)
+ S2, (3.6)

where S2 is a sum of the terms that do not contain 〈ρ ′ω′
3〉.
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Ma = 1.5 y+ ≈ 1(a) T: 1.04

z

xy

Ma = 1.5 y+ ≈ 4(b) T: 1.13

z

xy

Ma = 1.5 y+ ≈ 20(c) T: 1.35

z

xy

Figure 5. (Colour online) Contours of temperature, nondimensionalized by the wall
temperature Tw , on (x–z) planes close to the wall for the case Ma15. (a) y+ ≈ 1; (b) y+ ≈ 4;
(c) y+ ≈ 20. Threshold is taken as the mean value at the respective y location so that the
blue colour represents the positive fluctuations with respect to the mean and the grey colour
negative.
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Figure 6. Mean spanwise component of the baroclinic vector (β z) nondimensionalized by
the bulk velocity and half channel width close to the wall in wall units.
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Figure 7. Cross-correlation coefficients between 〈ρ ′ω′z〉 and 〈β z〉 close to the wall in
wall units.

The terms in (3.6) have been calculated. It is found the magnitude of the first
two terms on the right hand of the equation is over 10 times larger than 〈β3〉 at
around y+ =4. The cross-correlations between 〈β3〉 and 〈ρ ′ω′

3〉 have been generated
and shown in figure 7 to examine their relationship very near the wall. Although the
magnitudes of the correlation coefficients are not high very close to the wall, peaks
in the profiles are located at y+ ≈ 3–4. The peak values decrease with increasing
Mach number. One possible reason is that the fluctuating spanwise baroclinic torque
term (〈β ′

3β
′
3〉) in the denominator of the correlation definition increases with Mach

number. The spanwise baroclinic torque seems to have a closer relationship with the
correlation between density and spanwise vorticity at y+ ≈ 3–4 than other locations
close to the wall.

To investigate why the peak values of the correlation occur at y+ ≈ 4 instead of on
the wall or some other regions, the transport equation for 〈ρ ′ω′

i〉 is derived. Through
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Reynolds averaging and some algebraic manipulation of (3.1), it is

A︷ ︸︸ ︷
∂〈ρ ′ω′

i〉〈uj 〉
∂xj

=

D︷ ︸︸ ︷
−

∂〈ρ ′ω′
iu

′
j 〉 + 〈ρ ′u′

j 〉〈ωi〉
∂xj

+

S︷ ︸︸ ︷〈
ρ ′

(
ωj

∂ui

∂xj

)′〉

−〈ωiuj 〉∂〈ρ〉
∂xj︸ ︷︷ ︸

G

−
〈

ρωi

∂uj

∂xj

〉
︸ ︷︷ ︸

d

+ 〈ρ ′β ′
i〉︸ ︷︷ ︸

B

+ 〈ρ ′η′
i〉︸ ︷︷ ︸

V

. (3.7)

The first term on the left-hand side of (3.7) is the advection term (A), which should
be zero. The first term on the right-hand side of (3.7) is the diffusion term (D). The
second term (S) denotes the stretching of vorticity. The third term (G) represents the
contributions from the gradients of density. The fourth term (d) is the dilatation term.
The fifth term (B) is involved with baroclinicity and density fluctuations. The sixth
term (V ) denotes the influence of viscous effects.

The distribution of the terms in the 〈ρ ′ω′
z〉 (or 〈ρ ′ω′

3〉) equation close to the wall,
nondimensionalized by ρmUm/h, for all three cases is shown in figure 8. The advection
term A and the baroclinic term B are essentially zero for all three cases.

For Ma02, shown in figure 8(a), the two dominant terms are the dilatation term d

and the viscous term V . One might wonder why the term d is dominant as the local
mean dilatation is almost negligible for Ma02 (see figure 10). The main reason is that
the term d also includes the dilatation-related fluctuation terms which clearly must
balance the viscous term V simply because all other terms in (3.7) (D, S and G) are
found to be nearly zero. The peaks in these curves occur at about y+ ≈ 4.

For Ma07, shown in figure 8(b), the dilatation term d follows the trend and
magnitudes established at Ma02. However, the viscous term decreases in magnitude
at the expense of growth in other terms (D, S and G) in the transport equation. The
interesting feature of figure 8(b) is the viscous term. It displays the beginning of a
transition from a simple decay process from y+ ≈ 4 to y+ ≈ 20 at Ma02 to one where
the maximum is shifted farther away from the wall with a concomitant inflexion at
y+ ≈ 2.

The trends established at Ma07 are further enhanced in the case of Ma15, shown in
figure 8(c). The maximum negative value for the dilatation has moved slightly farther
away form the wall to y+ ≈ 6. The viscous term now features within 0<y+ < 40 a
double crossing of the zero line. The vortex stretching term, S now dominates and is
assisted by increased diffusion (D) and transportation through density gradient (G).

It is interesting to note that the peak locations of the profiles of D, S and G

change little as Mach number increases. Conversely, the viscous term V close to the
wall drops significantly when Mach number increases, due to the combined effect of
viscosity and shear. The value of V on the wall, however, remains almost constant
with Mach number. Note that the wall temperature and its fluctuation remain the
same for all three cases, so do the viscosity and its fluctuation on the wall. For all
profiles with peaks/minimums, the locations of these peaks/minimums are around
y+ ≈ 5, which in some sense suggests this active region around the edge of viscous
sublayer where the peaks of the correlation between the density and the spanwise
vorticity are located.

3.2. Cross-correlations between pressure gradient and vorticity fluxes

The cross-correlations between pressure gradients and vorticity fluxes have not been
previously investigated. R∂p/∂xk :∂µωi/∂xj

and R∂p/∂xk :∂ωi/∂xj
for three cases (Ma02, Ma07
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Figure 8. (Colour online) Balance of ρ ′ω′
i (nondimensionalized by ρmUm/h): (a) Ma = 0.2; (b)

Ma =0.7; (c) Ma = 1.5. A denotes ∂〈ρ ′ω′
i〉〈uj 〉/∂xj ; D denotes −∂(〈ρ ′ω′

iu
′
j 〉 + 〈ρ ′u′

j 〉〈ωi〉)/∂xj ;

S denotes 〈ρ ′(ωj∂ui/∂xj )
′〉; G denotes −〈ωiuj 〉∂〈ρ〉/∂xj ; d denotes −〈ρωi∂uj/∂xj 〉; B denotes

〈ρ ′β ′
i〉 and V denotes 〈ρ ′η′

i〉; where i = 3 and j = 1, 2, 3.
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Figure 9. Cross-correlation coefficients between streamwise pressure gradient and spanwise
vorticity fluxes in the wall-normal direction including the influence of viscosity.

and Ma15) were generated to investigate the influence of Mach number, viscosity, and
compressibility/dilatation. Of the 54 correlations considered in R∂p/∂xk :∂µωi/∂xj

and
R∂p/∂xk :∂ωi/∂xj

, only 6 were found to be significant. Additionally, cross-correlations
Rp:∂ωi/∂xj

and R∂p/∂xk :ωi
were also generated; however, all these correlations were found

to be very small and thus are not shown here. Therefore, only the highly correlated
terms within R∂p/∂xk :∂µωi/∂xj

and R∂p/∂xk :∂ωi/∂xj
are discussed in the following sections.

The cross-correlation coefficients between streamwise pressure gradient and
spanwise vorticity flux in the wall-normal direction R∂p/∂x:∂µωz/∂y and R∂p/∂x:∂ωz/∂y are
shown in figure 9. The correlation coefficients are high in the magnitude very close
to the wall, but negative in sign, which is suggested by (2.5) and (2.8). The absolute
value of the correlation coefficients decreases as Mach number increases because of
the influence of ρfx in which the density fluctuation increases with increasing Mach
number (see figure 3). The profile of R∂p/∂x:∂µωz/∂y for three cases is not very sensitive
to Mach number in the region 0.5 <y+ < 5. The difference between two correlations
R∂p/∂x:∂µωz/∂y and R∂p/∂x:∂ωz/∂y on the wall is negligible except for 0 <y+ < 4, where
there is a clear departure of R∂p/∂x:∂ωz/∂y from its viscosity-related correlation for the
case Ma15 and it is to this that attention is now turned.

The fluctuations of temperature and viscosity, based on the Sutherland’s law
(Schlichting 1979), are zero on the isothermal wall and the wall-normal gradients
of the temperature and viscosity fluctuations on the wall are very small for the cases
considered here, as indicated in figure 3. The direct influence of the viscosity on
the correlation R∂p/∂x:∂µωz/∂y is almost negligible on the wall for the current cases.
The negligible difference between R∂p/∂x:∂µωz/∂y and R∂p/∂x:∂ωz/∂y on the wall confirms
the weak influence of the viscosity there. Note that the difference will probably not
be negligible if the Mach number is much higher than the current cases. Very close
to the wall, however, the fluctuations of temperature and viscosity as well as their
wall-normal gradients increase significantly as Mach number increases from subsonic
to supersonic, which is the main reason for the difference of the two profiles very
close to the wall for the case Ma15.

The variation in the mean dilatation Θ with distance from the wall is presented
in figure 10. It is zero on the wall for all three cases and it is negligible everywhere
for the case Ma02. The maximum compression occurs at y+ ≈ 7 and y+ ≈ 9 for the
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Figure 10. The mean dilatation Θ , scaled by Um/h.
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Figure 11. Cross-correlation coefficients between spanwise pressure gradient and streamwise
vorticity fluxes in the wall-normal direction including the influence of viscosity.

case Ma07 and Ma15, respectively. The region y+ > 30 is where expansion occurs.
The compressibility effect increases with increasing Mach number, but the absolute
values remain small for the current cases. The influence of the streamwise gradient of
dilatation ∂Θ/∂x on the correlation R∂p/∂x:∂µωz/∂y seems insignificant.

The cross-correlation coefficients between spanwise pressure gradient and
streamwise vorticity flux in the wall-normal direction R∂p/∂z:∂µωx/∂y and R∂p/∂z:∂ωx/∂y

are presented in figure 11. High positive correlation coefficients are observed close
to the wall. Again, the relationship is inferred from (2.7) and (2.10). Unlike figure 9,
the absolute values of correlation coefficients in figure 11 approach 1.0 as the Mach
number increases. The profile of R∂p/∂z:∂µωx/∂y for three cases is sensitive to Mach
number very close to the wall. It seems that the term ∂µΘ/∂z, compared with the
terms ∂p/∂z and ∂µωx/∂y in (2.10), becomes relatively less important on the wall
as Mach number increases. The difference between the correlations R∂p/∂z:∂µωx/∂y and
R∂p/∂z:∂ωx/∂y is almost negligible for the current cases; however, the trend suggests that
the difference increases slightly with increasing Mach number. Compared with the
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Figure 12. Cross-correlation coefficients between wall-normal pressure gradient and
streamwise vorticity fluxes in the spanwise direction including the influence of viscosity.

difference for the case Ma = 1.5 observed in figure 9, the difference for the Ma = 1.5
in figure 11 is negligible and this is because ∂w/∂y < ∂u/∂y very near the wall.

The cross-correlation coefficients between wall-normal pressure gradient and
streamwise vorticity flux in the spanwise direction R∂p/∂y:∂µωx/∂z and R∂p/∂y:∂ωx/∂z are
given in figure 12. It is evident that there is little difference between these correlations.
This is obvious on the wall because the term ∂µωx/∂z in (2.9) is equal to µ∂ωx/∂z in
(2.6). For the region away from the wall, it indicates that ∂p/∂y is not well correlated
with µ or ∂µ/∂z as ∂µωx/∂z = µ∂ωx/∂z+ωx∂µ/∂z. The correlation coefficients for all
three cases are also high on the wall. The profile of R∂p/∂y:∂µωx/∂z for three cases does
not collapse with Mach number very close to wall. However, it is interesting to note
that the highest correlation occurs for the case Ma07 and the profile for the case Ma15
in the region around the edge of viscous sublayer is higher than the other two cases,
which could be due to the combined effects of wall-normal gradients of viscosity,
dilatation and advection. The wall-normal pressure gradient correlation shows a more
complicated behaviour than the wall-tangential pressure gradient correlations.

Equations (2.6) and (2.9) suggest that the wall-normal pressure gradient would
possibly be correlated with spanwise vorticity fluxes in the streamwise direction
(∂µωz/∂x). The results from the current simulations demonstrate that the cross-
correlation coefficients for all three cases are positive but below 0.2 on the wall because
∂µωz/∂x is much smaller than ∂µωx/∂z there. The driving force in the streamwise
direction leads to large streamwise shear stress close to the wall, which causes streaks
and vortex lines close to the wall to be stretched in the streamwise direction. This
streamwise stretching makes streamwise gradients smaller than spanwise gradients.

It is also interesting to note from the above figures that high correlations between
pressure gradients and vorticity fluxes only exist very close to the wall. The correlations
are almost negligible in the region removed from the viscous sublayer. As (2.4)
suggests, the vorticity flux is also affected by advection, besides viscosity and pressure
gradients. The advection is negligible very close to the wall and viscosity effects
dominate; however, advection begins to play a dominant role away from the wall.
Advection is an important reason that the high correlation between pressure gradient
and vorticity flux decreases with distance from the wall. In other words, when the
vorticity is generated on the wall, the pressure gradient plays an important role as
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advection very near the wall is small. The vorticity is then diffused into the flow first
due to viscosity before being advected away.

4. Summary
DNS of three isothermal-wall-bounded turbulent channel flows (cases Ma02, Ma07

and Ma15) have been carried out with Re ≈ 2800 using DGM. The interactions among
pressure, density, vorticity and their gradients have been investigated. A summary of
the current findings is as follows.

The correlations among pressure, density and vorticity are generated and studied.
Pressure and density are perfectly correlated on the wall, but correlations between
pressure and vorticity components are negligible. Among the correlations between
density and vorticity components, it is found that a high correlation between density
and spanwise vorticity occurs at y+ ≈ 4, where the peak mean spanwise baroclinicity
is located. The relationship between the spanwise baroclinicity and the correlation
was analysed. The difference between the evolution of density and spanwise vorticity
very near the wall is discussed and temperature has a great effect on the distribution
of near-wall density streaks. The balance of 〈ρ ′ω′

z〉 and related influential terms were
formulated and analysed. It is found that the peaks/minimums of the profiles are
located at around y+ ≈ 5.

The connection between the pressure gradient and vorticity flux for compressible
turbulent flow with variable viscosity was derived, which further extends the vorticity
dynamics theory based on Lighthill’s essays (1963) in laminar boundary layers.
Correlations were employed to evaluate their linkage for the first time. The correlations
between streamwise pressure gradient and spanwise vorticity flux in the wall-normal
direction, between spanwise pressure gradient and streamwise vorticity flux in the
wall-normal direction and the correlation between wall-normal pressure gradient and
streamwise vorticity gradient in the spanwise direction, are very high (0.7–1.0) very
close to the wall. It is also found that both Mach number and viscosity affect the
correlation between streamwise pressure gradient and spanwise vorticity flux in the
wall-normal direction very close to the wall.

The authors would like to thank Dr G. Karniadakis and his CRUNCH group
and Dr M. Kirby for providing the original discontinuous Galerkin code and the
related helpful email discussions. The reviewers are acknowledged for their insightful
comments. One reviewer is especially thanked for suggesting a derivation of the
spanwise baroclinic torque as a function of the correlation between density and
spanwise vorticity. The research was funded through grants from NSERC Canada.
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