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ZETA FUNCTIONS OF SELBERG'S TYPE FOR SOME

NONCOMPACT QUOTIENTS OF SYMMETRIC

SPACES OF RANK ONE

RAMESH GANGOLLP AND GARTH WARNER*

§ 0. Introduction

In a previous paper [5], one of the present authors has worked out
a theory of zeta functions of Selberg's type for compact quotients of sym-
metric spaces of rank one. In the present paper, we consider the ana-
logues of those results when G/K is a noncompact symmetric space of
rank one and Γ is a discrete subgroup of G such that G/Γ is not compact
but such that vol(GjΓXoo. Thus, Γ is a non-uniform lattice. Certain
mild restrictions, which are fulfilled in many arithmetic cases, will be
put on Γ, and we shall consider how one can define a zeta function ZΓ

of Selberg's type attached to the data (G, K, Γ).

This will be attempted as in [5], by first defining, via the trace formula,
the logarithmic derivative zΓ of ZΓ. The main reason why we get some-
where is the fact that in the case rank (GjK) = 1, the parabolic terms in
the trace formula can be fully evaluated, for a spherical admissible function
/, in terms of the spherical Fourier transform /. The computations neces-
sary for this were performed by the present authors, and were reported
in [21].

For technical reasons, presently to be explained, we shall eventually
exclude the case G = SU(2n, 1). Except for this case, our results for ZΓ

are pretty satisfactory. We shall see that ZΓ is a meromorphic function.
The location and orders of its zeroes and poles will turn out to contain
topological and/or spectral information. It will also be seen that ZΓ

enjoys a functional equation which involves not only the Harish-Chandra
c-function (which determines the Plancherel measure of GjK) but also the
determinant Ψ(s) of the intertwining operator M(s) which occurs in the
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2 RAMESH GANGOLLI AND GARTH WARNER

theory of Eisenstein series as developed in the last twenty years by Selberg
and Langlands.

The restriction G Φ SU(2n91) comes in for a purely technical reason.
In studying the analytic continuation of zΓ9 one writes it as a sum
Σ7

i=1Ai(s) and studies A^s) separately. For our method to work, it is
essential that each A^s) should have the following property: A^s) has a
meromorphic continuation to C with simple poles at which the residues
are integral. That this is the case can be proved for all the terms A^s)
except for A6(s). For that particular term, one sees that if G Φ SU(2n, 1)
then A6(s) Ξ O SO the above property is trivial. We were not able to
prove the property of meromorphy for A6(s) in general. It seems to us
that it is conceivable that A6(s) has the desired property, and a more
determined analysis of the term A6(s) will yield the expected result. Thus
the lacuna in our theory seems to be due not to any fault of the method,
but due to peculiar structural facts about G = SU(2n, 1), which lead to a
complicated expression for A6(s). Such difficulties have arisen in the same
case (G = SU(2n, 1)) in other work as well, see e.g. [13], [21], and we are
compelled to leave this lacuna in our theory unfilled at this time.

In the course of proving the results about ZΓ, it is necessary to get
some a priori information concerning the asymptotic behavior of the
spherical part of the discrete spectrum in U(GjΓ). A little more precisely,
suppose that {ίTJ^o are the spherical representations of G that occur
discretely in U(GjΓ), let {rij}^ be their multiplicities and let ωό be the
eigenvalue of the Casimir element in the representation Uό. For any
r > 0, we define the Weyl function N by N(r) — J^u. ι«yi£r}ty Some in-
formation about the asymptotic behavior of N(r) as r -> oo is needed for
our study of ZΓ. If G/Γ is compact, it is well known that N(r) ~ CGr

n/2

where n = dim (G/K), and CG is a constant depending only on G. In our
case, where G/Γ is not compact, there is a difficulty in proving such a
precise result. The difficulty is due to our ignorance of the asymptotic
behavior of Ψ'\Ψ along the imaginary axis, Ψ being the function referred
to above. If it could be shown that \Ψ'(ir)IΨ(ir)\ < Const. \r\d for r real,
and some d<n, then it is possible to get the asymptotic result N(r) ~
CGr

nβ. In all the known cases where W can be computed, this property
of W can be verified, but it follows from fairly subtle estimates for the
size of the Riemann zeta function and certain Dirichlet L-functions. In
the absence of detailed information about Ψ in the general case, one
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ZETA FUNCTIONS OF SELBERG'S TYPE 3

cannot get the precise estimate N(r) ~ CGr
n/2. Nevertheless, we are able

to prove that N(r) is tempered, i.e. for some integer k we have N(r) ~ Crk

as r—•oo. This fact turns out to be sufficient for our purpose, which is
to study ZΓ.

Finally, the analytic information about ZΓ (or rather about its loga-
rithmic derivative zΓ) enables us to prove a result about the length
spectrum' of the noncompact manifold K\G/Γ. This manifold has the
homotopy type of a compact manifold, and the length spectrum is the set
of lengths of minimizing geodesies in the free homotopy classes of closed
paths on K\G/Γ. The asymptotic behavior of the distribution function
of these lengths can be determined. In the compact case, analogous
results have been proved for G = SL(2, R) in [10], and for general G in

[1], [4].
In § 1, we deal with preliminaries. § 2 is devoted to a discussion of

the Weyl function N(r). In § 3, we define the logarithmic derivative zΓ

of ZΓ and study its analytic continuation. § 4 is devoted to studying ZΓ

and its properties. The functional equation is derived there. § 5 contains
the result on the length spectrum. An appendix contains a technical result
used in § 2.

We would like to acknowledge our indebtedness to the referee for a
very careful reading of the manuscript which brought to light a factor
in the functional equation in § 4 which we had inadvertently overlooked,
and also corrected several mistakes of sign in § 3 which made the original
version confusing.

§1. Preliminaries and the Trace Formula

Let G be a connected noncompact simple Lie group with finite center,
K a maximal compact subgroup. Denote by g, ϊ their respective Lie
algebras, and g = ϊ + P the Cartan decomposition with Cartan involution
θ. We denote by < , > the Cartan-Killing form and put \Xfθ = (X,X}Θ.
Then I \9 is a norm on g. We endow g with the Euclidean structure
corresponding to < , -}θ.

Let ap be a maximal abelian subspace of p. Extend ap to a 0-stable
maximal abelian subalgebra, say α, of g, and put α£ = α Π ί. We denote
by gc, ϊc, oF etc. the complexifications of g, ϊ, α etc. Then ac is a Cartan
subalgebra of gc. Let Φ = Φ(gc, a°) be the set of roots of (gc, αc), and
introducing, as usual, compatible orders on the duals of ap and ap + iat,
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4 RAMESH GANGOLLI AND GARTH WARNER

let Φ+ be the set of positive roots in Φ. Put P+ = {aeΦ+\a^0 on ap}

and P_ = Φ+ - P+. Put p = i Σ α 6 p + α.

Let g = ϊ + α<J + n, G = KAPN be the Iwasawa decompositions cor-

responding to these choices (Ap = exp a,, iV = exp n). Denote by M the

centralizer of A,, in K, and let P = MAPN be the minimal parabolic sub-

group determined by these choices. For x e G define H(x) e ap by x =

A exp jff(a;)n (keK,ne N). We denote by VF the Weyl group of (G, A,).

We assume throughout this paper that rank (G/K) = 1.

Let 2" be the set of restrictions to ap of the elements of P + . Then we

can find an element β e Σ such that 2β is the only other possible element

of Σ. Let p, q equal, respectively, the number of elements of P+ which

restrict to β and 2β. We fix an element Ho of ap by the condition β(HQ)

= 1. Then one knows that <fiΓ0, HQ)Θ = 2p + 8q and ^(iϊo) = (p + 2q)/2.

We shall often denote by c0 the number \HQ\Θ = (2p + Sq)ίβ and by ô0 the

number p(H0).

Let yl be the dual space of ap, Λ
c = A + iΛ its complexification. For,

λ e Ac, we write A = Re (λ) + i Im (λ), where Re (X), Im (λ) e yl. Since dim ap

= 1, we have Λ^ R, Λc = C, and we fix the following identification of

Λc with C for future use: Namely seC shall correspond to sβe Λc.

We denote by C°°(K\G/K) (resp. C~(K\G/K)) the spaces of smooth

spherical (i.e. uT-biinvariant) functions on G (resp. smooth compactly sup-

ported spherical functions on G). The spaces L\K\GjK), U(K\G/K) etc.

are defined similarly. The functions Ξ(x) and σ(x) are defined as in [19]

and one defines, as usual, Harish-Chandra's Schwartz space ^(G) (cf. [19]).

The Lp analogue <gv(G) is defined, as in [19], as follows: Let Du D2 be

respectively left and right invariant differential operators on G, r an in-

teger, and for fe C^iG), put

(1.1) τluD2,r(f) = sup Ξ(x)-^(1 + σ(x)Y \ f{Dxix\ A)I
xeG

where we use the notation of [19]. The space <gp(G) consists of those

fe C~(G) for which τp

DuD2,r(f) < oo for each Du D2, r. tfp(G) is a Frechet

space with τv

DuD^r as semi-norms. When p = 2, we have tfp(G) = ^(G) c

U(G). In general, VP(G) c LP(G), p > 0, and <^(G) c #*'(G) if p < p ; . The

subspace of K-biinvariant functions in <i£p(G) will be denoted by ^P(K\G/K).

We fix the normalized Haar measure dk on K, and the Haar measure

dn on N normalized by the condition
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ZETA FUNCTIONS OF SELBERG'S TYPE 5

(1.2) ί exp - 2p(H(n))dn = 1
JN

where n = θ(n~ι). Next fix the Haar measure dh on Ap as follows: For

he Ap put u(h) = β(logh). Then u = w(/&) is a coordinate function on Ap,

and h —> u(/i) is an isomorphism of Ap with R. Let dw be the Lebesgue

measure on R, and dh the Haar measure corresponding to it via this

isomorphism. Observe that for h e Ap, we have h = exp uH0 with u =

We now normalize the Haar measure dx on G by dx = exp 2p(log h)

dkdhdn, if # = £/m (cf. [19]). These normalizations remain fixed through-

out this paper.

For v e Λc, we denote by φv the elementary (or zonal) spherical function

corresponding to v, defined by

(1.3) φv(x) = f exp (iv - p)(H(xk))dk .
JK

One has then the spherical Fourier transform / and the Abel-Harish-

Chandra transform Ff defined by

(1.4) ffy) = f f(x)φXx)dx, »eΛc

J G

(1.5) Ff(h) = exp p(log h) ί f(hή)dn , heAp

for any fetf(K\GIK), and the relation

(1.6) ffy) = 27(y) = f ίV(Λ) exp ιV(log h)dh .
J -4p

jPjί8 is the Euclidean Fourier transform on the vector group Ap.

Fix the Haar measure dv on A by requiring that the measures dh and

dv are dual in the sense of Fourier analysis, namely that we shall have

(1.7) g(ΐ) = f g*fy)dv for # e C?(AJ .
J Λ

Then we have the inversion formula for the transform f-+f9 given by

(i.8) /(l) = [W]-1 f RvMW-vyiώ,
JΛ

for /e V(K\GIK), where [VF] is the order of W and c( ) is the well-known

c-function of Harish-Chandra [8], It is known that c(v) = c(—v) for veΛ,
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6 RAMESH GANGOLLI AND GARTH WARNER

and φy'ci-vy'dv = \c(v)\~2 dv is the Plancherel measure for L2(K\G/K).

As in [5], we write r(v) — v{HQ) for vβ A. Then r = r(v) is a para-

meter on Λ, and it sets up an isomorphism of A with R. Let dr be the

usual Lebesgue measure on R. The measure dv on A fixed above corre-

sponds to the measure dr/2π under this parametrization. For fe ^p{K\GjK)y

p < 2, the formulas (1.4)-(1.8) can be written in terms of the parameters

r, u and it is best to set them out, since we shall use them in that form.

For fe VP(K\GIK), p<2, define F on R by

(1.9) F(u) = Ff(h) where u = w(Λ)

and let F* be the ordinary Fourier transform of F,

(1.10) F*(r) = Γ F(κ) exp (ira)Λ*.
J — 00

Then

(1.11) F*(r) = P » = /(v) , r = r{v)

and

F(u) = Ff(h)

(1.12) =(l/2w)Γ *"*(/•) exp (-iru)dr (u = u(h)) .
J ~ oo

The function c is given by

ir + Pl2)Γ(ίrl2 + (p + 2g)/4)
( L 1 3 ) ( ) Γ(p + 9)Γ(ίr)Γ(ir/2+p/4) '

where r = r(f) and /"( ) is the classical gamma function. The inversion

formula (1.8) reads
( )

formula (1.8) reads

/(I) = [W]-1j2π Γ

(1-14)
= (l/4ff) Γ F

J -oo

since [W] = 2.

Now let Γ be a discrete subgroup of G such that GIF has finite

volume, but is not compact. We normalize the G-invariant measure dx

on G/Γ so that the formula

(1.15) ί f(x)dx = f
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ZETA FUNCTIONS OF SELBERG'S TYPE 7

holds for fe CC(G).
Let d be the number of equivalence classes of Γ'-cuspidal minimal

parabolic subgroups of G, the equivalence relation being conjugacy by an
element of Γ. We fix parabolic subgroups P\= P), P2, , Pd to represent
these classes. One knows that we can find elements kt e K, such that
P* = kiPkϊ\ l<i<d; moreover, Pί = Λί'AJiV* is the Langlands decom-
position of P% with Mι = kiMkϊ1 etc. (of course kλ = 1).

By transport of structure, every concept defined relative to P will
give rise to an analogous concept relative to P\ We shall denote it by
adding a superscript ί. Thus for example βί will stand for the root β trans-
ported to αj. Similarly H^x), p\ v* have obvious interpretations.

We assume that Γ satisfies the following conditions.

(1.16) Let Z(Γ) be the center of Γ. Then Γ Π P* = Z(Γ)(Γ Π 2V1) (1 < i < d).

(1.17) Γ has no elements of finite order, other than those in Z(Γ).

It is known that Z(Γ) is contained in K and is therefore finite.

We now write down the Selberg Trace Formula in the form that we
wish to use. The technique of Langlands for obtaining this formula was
explained in detail in [21]. In § 9 of that paper, some computations done
by the present authors were also reported. We shall need those results.
Some familiarity with [21] may be useful. We stress that the normali-
zations of the various Haar measures we use here differ from those used
in [21]. We hope that no confusion will be caused by this.

Let U be the left regular representation of G on U{GjΓ). As we know,
U(G/Γ) then breaks up as the sum of three mutually orthogonal closed
[/-stable subspaces which we call L2

CUS(G/Γ), L2

Eis(GIΓ) and L^G/Γ). They
are respectively, the closures of the subspaces spanned by the cusp forms,
the wave packets formed with Eisenstein series, and the square-integrable
residues of the Eisenstein series (cf. [21]). The restriction of U to
L2

CUS(GIΓ) 0 Lles(G/Γ) is a discrete direct sum of irreducible unitary repre-
sentations of G, with finite multiplicities, while the restriction of U to
Lms(G/Γ) is a direct integral of unitary principal series representations.
For this reason we write L2

d(G/Γ) = LU^/Γ) Θ L2

res(G/Γ) and LKG/Γ) =
LEΪS(GIΓ), and call these respectively, the discrete and continuous pieces
of U(G/Γ).

Thanks to the work of Selberg and Langlands, the space L2

C(G/Γ) is

https://doi.org/10.1017/S002776300001878X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300001878X


8 RAMESH GANGOLLI AND GARTH WARNER

well understood. We shall be concerned with the subspace of L2

C(G/Γ)

which consists of those / such that f(kx) = f(x) (k e K, x e G). We denote

it by Ue{K\GjΓ). It is the closure of the subspace spanned by wave packets

formed with Eisenstein series of type 1 (1 e K being the class of the trivial

representation of K). Since we shall have to be involved in some aspects

of the theory of these series, we describe briefly what we need.

Let Pι = MίAί

pN
ί be one of our Γ'-euspidal parabolic subgroups, and

let v* 6 A^c. The Eisenstein series E(P\ v\ x) is defined in {vl e

> ή by

(1.18) E{P\ v\ x) = Σ exp (v< +
r/rpi

This series converges absolutely, uniformly on compact subsets of

{y e A^lEefy*) > p'} X G. For fixed xe G it is a holomorphic function of

v% it is a left if-invariant, right /^-invariant eigenfunction of every element

of the center of the enveloping algebra of G.

The constant term of E(P\ v\ x) along Pj is by definition the function

EPJ(P\ v\ x) where

(1.19) EPJ(P\ v\ x) = (vol (Nj/Γ Π NO)"1 f E(P\ v\ xnj)dήj .
JNJ/ΓΠNJ

Here dήj is the measure on 2V7//7 Π Nj induced by dnj (which has been

fixed), when we endow Γf]Nj with counting measure.

One has

(1.20) EPJ{P\v\x)=

where Wi3 is the set of bisections from A1 —• Aj induced by inner automor-

phisms of G, and Mi^w, vι) are certain complex numbers. For fixed w e Wij9

the function v* —• M^w,)/) is holomorphic in {v* e ΛίiC\Re(vί) > p1}.

Now let w be the non-trivial element of W and define the d X d

matrix-valued function M{v) on {v e Ac \ Re (v) > p} by

(1.21) M » = Mίjikjwkϊ1, ktυ) .

The central result of the theory of Eisenstein series, applied to our

case, is as follows: Let E(v, x) be the column vector with entries E(P\v\

x)9 ()/ = kiv)-th.en the functions E(v, x), M(v) have an analytic continuation

to all v e Λc and are meromorphic when so continued. The poles of E(v, x)
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ZETA FUNCTIONS OF SELBERG'S TYPE 9

are independent of x, and belong to the set of poles of M{v), and we have

the functional equation

(1.22) E(v9 x) = M(v)E(-v, x) , v e Ac .

The function M has no poles in Re (v) > p, and its poles in Re (v) > 0 are

known to be finite in number; they are all simple, and lie on the line

segment {v e A \ 0 < v < p}. The poles in Re (v) < 0 are not known. M

satisfies the functional equations

(1.23) M(v)M(-v) = Identity

(1.24) M*(v) = M(v)

where Λf * is the adjoint of M with respect to the Hermitian structure on

Λc given by < , -}θ. In particular, when veiΛ, we see that M(v) is uni-

tary, and hence holomorphic on iΛ. We shall sometimes refer to M as

the intertwining function of Γ. These results are specializations of those

in [12]. Ψ(v) will stand for detM(i/).

In the sequel, we shall often use for v e Λc, the parameter s = s(v) =

v(H0) to parametrize Λc. By means of this parametrization, the function

M becomes a meromorphic function on C, and we have

(1.25) M(s)M(-s) = Identity

(1.26) M*(s) = M(s) .

Similarly Ψ will be viewed as a function on C. We have

(1.27) Ψ(s)Ψ(-s) - 1

(1.28) ¥(s) = Ψ(s) .

The following lemma will be used below.

LEMMA 1.1. Ψ'(s)Ψ(s)~ι is a meromorphic function having simple poles

and integer residues, and we have Ψ/(s)Ψ(s)~1 = trace (M/(s)M(s)~ί), seC.

Proof. Since Ψ(s) = det M(s), and M is meromorphic, so is Ψ. Hence

Ψ'jW has simple poles with integer residues. Next, to prove the equality

ψ'jψ = trace (M'Λf"1), we need only prove it for s in an open set. Fix

soeC such that M(s0) is non-singular and put R(s) = M(sQ)~ιM(s). Then

M(s) = M(sQ)R(s). If s is near to s0, say in a neighborhood U, we have

R(s) near to the identity matrix, so we can write R(s) = exp A(s) where
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10 RAMESH GANGOLLI AND GARTH WARNER

A is holomorphic in U. It is easily seen that if Ψ(s) = det R(s), then
f(s) = exp (trace A(s)), so Ψ\t = trace (A'(s)) = trace (R/(s)R(s)'ί). But it
is easy to check that Ψ\Ψ = Φ'\Ψ, and that

trace (R/(s)R(s)-1) = trace (M'(s)M(s)-1) .

Hence our assertion follows. []
We are indebted to David Ragozin for suggesting this proof, which

is simpler than the one we had originally put in.
The nature of the function Ψ'jψ will be quite important to us. Not

much is known about Ψ in general. However, when rank (G/K) = 1, it
can be shown that Ψ is the quotient of two entire functions, say P and
Q, both of finite order. This result, due to Selberg for G = SL(2, R), can
be generalized to any G such that rank (G/K) = 1, as is seen by an ex-
amination of the work in [2], [20]. The generalization depends, as is seen
from these works, on the fact that άimΛ = 1, and proceeds as in the
classical case of G — SL(2, R). We shall use this result freely below.

As we have noted above, the restriction of U to L\(GjΓ) is discretely
decomposable with finite multiplicities. Let Uu U2y be a complete list
of mutually inequivalent irreducible unitary representations of class one
which occur in L2

d(G/Γ)9 and let n3 be the multiplicity of Us. Each n5 is
finite. Moreover, as observed in [21, § 8] for example, only a finite number
of the Uj can occur in LleQ(G/Γ). Since U3 of class one, it corresponds
to a unique elementary positive definite spherical function, say, φvp with
vό e Λc. Vj is defined uniquely up to an action of W. Since φvj is positive
definite, one knows that v3 is either purely real on ap or purely imaginary
on αp. We pick Vj in such a way that if v5 is purely real, we will have
Vj(HQ) > 0, while, if it is purely imaginary, we will have Im {vj(H<)) > 0.
This fixes the various v3 unambiguously (cf. [5]).

We shall write r/ = Vj(HQ), rj = —v3{H^ and put sj = p0 + ir/, sj =
p0 + ίrj, j > 0. Then (r/)2 is real and lies in [—pi, oo). Also either (i)
Re (sj) = <0O or (ii) Im (sj) = 0 and sj lies in [0, ̂ 0) Note also that s0

+ = 0.
Let γ e Γ be a semisimple element which is not elliptic, i.e. which is

not conjugate to any element of K, and let Gr be its centralizer in G.
Then γ is conjugate to some element of A, say h(γ). Let h(γ) = ht(γ)hp(γ),
with ht(γ) e Al9 \(γ) e Ap. We can always choose h(γ) so that /3(log hp(γ))
> 0. We shall assume that we have picked and fixed h(γ) with this
property. As observed in [4], the centralizer of h(γ) in G is equal to
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ZETA FUNCTIONS OF SELBERG'S TYPE 11

MhωAp, where Mhω is the centralizer of h(γ) in K. We normalize the

Haar measure on Mh(ΐ)Ap so that the compact group Mh{ΐ) carries normalized

Haar measure, and Ap carries the Haar measure dh fixed above. Since

G7 is conjugate to Mhir)Ap, this gives us a unique measure on Gr, which

is in fact independent of the choices made in defining it. Having fixed

this measure on Gr, we call it dxr, and endow Γr(= GrdΓ) with count-

ing measure. These normalizations force us into unique choices of in-

variant measures dxγ on GγjΓγ, and dxf on G\Gr in the usual way, so

that we have dx — dx*dxr etc. Finally let CΓ stand for a complete set

of representatives for .Γ-conjugacy classes of semisimple elements in Γ.

The following result was proved in [21, § 8], in a more general form.

THEOREM 1.2. Let fe tfp(K\G/K), with p<l. Then the restriction of

U(f) to L2

d(GjΓ) is a trace class operator, whose trace is given by either

side of the following trace formula.

Σ 4 " y ) = ίZ(Γ)] vol (G/Γ)/(l)

+ Σ vol(Gr/Γr)f fixγx'^dx*
rQGr~Z(Γ) J G/Gγ

(1.29)
ds

-1 ί f(v) trace (M'(iv)M(ίv)-ι)dv
J A

-—/(0) trace (M(0)).
4

Here, s is a complex variable and H/(s) is a certain family of distri-

butions, depending analytically on s, discussed fully in § 6, 8 of [21]. The

above theorem is just an application of Theorem 8.4 of [21], bearing in

mind that our / is spherical.

For fixed fe^p(K\G/K), p < 1, the function s->Hf(s) was shown to

be meromorphic in a vertical strip containing s = 0; H/s) has a simple

pole at s = 0 and so lim^o (dlds)(sJΛf(s)) is just the constant term in the

solved; Laurent expansion of M7 about s = 0.

The problem of computing lims_0 (d/ds)(sH/(s)) is not yet completely

cf. [13] for a partial solution. The present authors, in § 9 of [21], did

however compute it for fe^p(K\GjK). We quote it here.

THEOREM 1.3. For fe ^p(K\GjK) with p < 1, we have
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12 RAMESH GANGOLLI AND GARTH WARNER

(1.30) lim (dlds)(sVf(s)) = Cβ(Γ)Tβ(f) + C'β{Γ)T'β(f) + C2β(Γ)T2β(f) .
$-*0

Here Cβ(Γ), C'β(Γ) and C2β(Γ) are certain constants depending on (G,

K, Γ), and C2β(Γ) = 0 if N is abelian. Moreover 7^/), T'β(f) and Γί//)

are certain distributions fully discussed in § 9 of [21]. (They were called

Tλ(a:0), T[(a:0) and T2λ(a:0) there). More precisely we have, allowing

for the differences in normalizations of the measures, from Theorems 9.3

and 9.4 of [21], that

(1.31) Cβ(Γ)Tβ(f) = κx f f(v)dv
J Λ

C'β(Γ)T'β(f) = κz ί f(v)dv + d/4f(0)
(1.32) JΛ

-d /(v)Γ'(l + iv(H0))IΓ(l + w(H0))dv
JΔ

and

(1.33) C2β(Γ)T2β(f) = κ% f f(v)J{v)du
J Λ

where κu κ2, κz are constants depending on (G, K, Γ), whose exact value

will not concern us, and J is an entire function on Λc, whose nature

depends on (G, K), and which we need to explicate a little bit more here

because we shall need these facts later in § 3. The formulas for J were

written out in § 9 of [21]. We quickly recapitulate them. In doing so,

we shall generically denote by C any constant depending only on (G, K),

and not necessarily the same in different locations. We have (cf. [21,

Theorem 9.4])

Άβ(f) = C I U F f ) itp = 4k, k e Z

= C J k t k ( F f ) i f p = 4 k - 2, k e Z

where Ik>k, Jk%k are certain distributions that were explicitly computed in

[21, § 9], and were expressed in terms of /. More specifically, we have

(1.35) Ikik{Ff) = Σ aMIUFf) + Σ Uk)IiΛ{Ff)
£ i

where the sums are finite, a£(k), be(k) are integers, and JΛ0, I£fί are certain

distributions. In fact

(1.36) IUFf) = f
J Λ
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ZETA FUNCTIONS OF SELBERG'S TYPE 13

(1-37) IeΛ(Ff) = [ f(v)qe(v)dv

where pe and q£ are even polynomials in v (i.e. p£(v) = p£( — v) and q#(v) =

<li(—v)) As to Jktk9 we have

(1.38) Jttk(Ff) = Σ c£k)J£>Q(Ff) + Σ d£{k)J£Λ{Ff)

where the sums are finite, c£(k), djji) are integers, and Jέt0, JtΛ are certain
distributions. In fact

JUF,) = Γ (D"F)(u)du
(1.39) J o

= i h)Gt(v)dv
JΛ

where D is the operator (sinh u)~1dldu, F(u) = Ff(h) if u — u(h), and G£{v)
is given by

(1.40) Glv) = A Γ 2^(cos (v(H0)u))du
π Jo

similarly,

J4 ̂ F,) = - Γ (Du-Ψ)(ύ) cosh u du
(1.4D ' ;°

- I f(v)Hlv)dv
J Λ

where

(1.42) #χ.) = 1 Γ Fiv, μ) μή**μjμ
4 J - COSI17Γμ — 1

and

(1.43) F£(v, μ) = A Γ D2^-2(cos (v(H0)u)) cos /̂ w d a .
7Γ Jo

Summarizing all this information, we see that the function J{v) referred
to above is entire. In fact it is an even polynomial whenever the integer
p is = 0 (mod 4). When p is of the form 4k — 2, the formulas above make
it plain that J(v) is a finite linear combination of the functions Gέ(v) and
He(v) described above. These facts will be important to us in § 3.

(1.29) now reads as follows.
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14 RAMESH GANGOLLI AND GARTH WARNER

Σn}f(vj) = [Z(Γ)]vol(GIΓ)f(ϊ)

Σ vol (Gr/Γr)f f(xrχ-ι)dx*
Γ-Z{Γ) JG/GγγeϋΓ

+ λ(d - trace (M(0)))f(0)
4

(1.44) - d ί fo)Γ'(l + iv(H0))/Γ(l + ίv(H0))dv
JΛ

+ κ4 f(v)dv
JΛ

+ ΛΓ3 f f(v)J(v)dv
JΛ

+ JL Γ /(̂ ) trace ( M ^ ) - ^ ^ ) - 1 ) ^ .
47Γ JΛ

For a semisimple element γ, we have, as in [4],

(1.45) vol (GrIΓr) ί Kxγx-^dxf = β(log K{r))j{r)^C{h{r))F}{hp{r)).
J G/GγG/Gγ

Here, j(γ) is the positive integer such that γ = δHr) with ^ primitive in Γ,
cf. [4], and C( ) is the positive function on A9 defined by

(1.46) C(h) = εiWUKiγ))-1 Π (i - UKr))'1)-1 -

Expressing F 7 in terms of its Fourier transform Ff (which equals /),
we can write

vol
4TΓ J -°

1 Γ°°
+ 2 u(hp(ΐ))J(τyiC(h(7)) F*(r) exp — (i;

+ l-F*(O)(d - trace (M(0)))
(1.47) 4

_ d r F * ( r ) / V ( 1 + ί r ) / Γ ( i + ir)dr
Alt J -°°

+ *,Γ F*(r)dr + *, Γ F*(r)J(r)dr
J -oo J -oo

+ — Γ F*(r) trace (M^M^r)" 1 )^
4 τ r J -oo

where the kappas are constants depending on (G, K, Γ), and J is the
function discussed above (of course we now write J(r) = J(v) if r = r(v) =
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ZETA FUNCTIONS OF SELBERG'S TYPE 15

v(H0)). Remember that u(h) = β(log h). In the sequel we shall often write

ur for u(hp(γ)) = β(\og hp(γ)). Then ur > 0, by our choice of h(γ) and hp(γ).

It will be useful to have a condition on F* which will imply that the

corresponding / lies in C€V{K\G\K) for some p < 1. This can be done as
in [17]; for example, if ί1* satisfies (i) F*(z) = F*(-z), (ii) for some ε > 0,

F* is holomorphic in the strip {z e C\ |Im(z)\ < ρQ + ε} and (iii) F* is rapidly

decreasing as a function of Re (z) on the boundaries of that strip, then one

can show that there exists p < 1 and an fe <^v{K\GjK) such that f{v) —

jF*(r) ( r _ r(j,))# Such an / is admissible for the trace formula.

Finally, we have the following proposition [6].

PROPOSITION 1.4. There exists an integer m such that 2L>0

 nΐQ + (r/)2

+ pirm < oo.
In particular, the numbers r/ have no finite point of accumulation in C.

§2. An estimate for the spectrum

We will need an estimate for the Weyl distribution function N(r)

defined for any r > 0 by

(2.1) N ( r ) = Σ nj.

In the case where GjΓ is compact, one has the estimate N(r) ~

CGYόl(GIΓ)rn/2 as r->oo where n = dim (GIK) [3]. It would be nice to

have a similar estimate in the present case. Unfortunately, we are not

able to get such a precise estimate due to our ignorance of the detailed

behavior of the function trace (Mf{ir)M{ir)~ι). However, we are able to

get a less precise estimate for N(r), which will suffice for the applications

that we have in mind. As we will point out more fully below, the

precise asymptotic estimate can be proved if we are willing to assume some

moderation in the growth of the function r—> trace {Mf(ir)M{ir)~ι).

To study the behavior of N(r), we use the fundamental solution ht of

the heat equation on GjK as in [5, p. 22]. Thus ht is the fundamental

solution of the heat equation Ωu = c\{dujdt) where c2

0 = \H0\
2

θ = 2p + 8q. As

pointed out in [5, p. 22], we have ht(v) = exp—(r(ρ)2 + pl)t for any t > 0.

Thus, if we write H?(r) = ht(v), r = r(v), we have JTf (r) = exp — (r2 + ρl)t.

It is clear that ht is admissible, and the trace formula applied to ht yields

the following:
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16 RAMESH GANGOLLI AND GARTH WARNER

Σ rij exp - ((r/)2 + pl)t

= [Z(D] vol (filiy±- Γ exp - (r2 +
Aπ J-oo

recΓ-z(D

+ — Γ exp - (r2 + ρl)t'Ψ'(i
(2.2) f J -

+ 4 exP ~ /* (rf - trace (Af(0)))
4

— exp — (r2 + ρl)t-Γ'(l +
2 ^ J-oo

Λoo

+ κ5 exp — (r2 + ρl)tdr
J - o o

+ κ6 Γ exp - (r2 + pl)t-J(r)dr .
J - o o

Now let L(ί) be the Laplace transform of the measure dN(r). Thus,

by definition,

L{t) = Γ e-«dN(r) = Σ ^ exp - (r/) 2ί .
J 0 ^ ^ 0

One finds from (2.2) that we have

L(t) = [Z(Γ)] vol (G/Γ)— Γ exp - rH c{r)-ιc(-ryιdr
4π J-oo

exp - u)\U

— Γ
4π J -

±(d - trεice(M(0)))
4

exp - r2ί Γ'(l + ir)/Γ(l + ir)dr
2π J -

Λoo Λoo

+ Λ:5 exp — rHdr + Λ:6 exp — rH J{r)dr .
J -oo J -oo

We will label the various terms on the right J^i), J2(t), , <J7(t). We

want to study lim^o tn/2L(t) for rc = dim (G/K). Ideally, we would like

lim^o tn/2L(t) = CG vol (G/Γ). In fact, as in [3], we find that limt_0 t
n/2 Jx(t)

= CG vol (G/Γ) where CG is a constant depending only on G, so the issue is

reduced to a study of lim^o tn/2Ji(t), 2 < i < 7. The term c/2(0 can be dealt

with as in [3]. We have lim^0 t
n/2J2(t) = 0. J3 is the troublesome term,

which we discuss below. It is clear that lim^0 t
n/2J4(t) = limf_0 t

n/2J6(t) = 0.

As for J5(i), observe that we have the classical estimate (cf. [11, p. 317])
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(2.4) |Γ'(1 + ir)/Γ(l + ίr)\< Const, log |r|, |r| > 2 .

It follows that lim^o tn/2J*,(i) = 0 for every τι > 1. Similarly, using the ex-
pression for J(r) in §1, we conclude that \J(r)\ < Const. |r|fc, where k<
dim (G/K). This of course needs a careful reference to [21, §9], and in
particular, needs a calculation of the integer kλ mentioned there. Anyhow,
the upshot is that

(2.5) \J7(t)\ < Const. Γ exp - rHrkdr < Const. Γ exp - ut'Uk/2~ί/2du .
Jo Jo

It follows from an application of the Tauberian theorem for the Laplace
transform that lim^0 t

n/2J7(t) = 0, because k < n = dim (G/K). Thus we
have dealt with all the terms Jt(t) except the term J3(t).

Clearly, if one could show that

(2.6) \Ψ\ir)Ψ{ir)-ι\ < Const. |r|fe

with k < dim (G/K), the above argument can be repeated to yield
lim^o tn/2J3(t) = 0. Now, in all the cases where Ψ can be explicitly computed,
one can show that (2.6) is true, and, in fact, a much better estimate of the
form

(2.7) I Ψ'iίrWiίr)-1 \ < Const, (log |rψ

holds. This is because in all the known cases, the function Ψ(s) can be
expressed in terms of P-functions, the Riemann zeta function, and Dirichlet
L-functions (cf. [9], [15], [16]) and then one can invoke classical estimates
for the logarithmic derivatives of these functions. It would be interesting
if a non-computational method could be found which would yield the esti-
mate (2.7) or, what is adequate for our purposes, the estimate (2.6), with
k< dim (G/K).

While we cannot prove (2.6) in general, we can show that there exists
an integer k such that N(r) < Crk. We shall now describe how such an
estimate can be made. If it could be shown that (2.6) holds with an in-
teger < n, we would of course have N(r) ~ CGr

n/2.
In § 8 of [21], it was proved that all the terms in the trace formula

(as written there) are continuous linear functionals on a certain function
space, called <&\(G) there, ε being any positive real number. This conclu-
sion is the content of Theorem 8.4 of [21]. &)(G) is the space #*(G), with
p = 2/(2 + ε); observe that p < 1. We can therefore conclude that if
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18 RAMESH GANGOLLI AND GARTH WARNER

fetfp(K\GIK), then the linear functional T(f) defined by

(2.9) T: f~> f f(v) trace (M\iυ)M{iv)-ι)dv
JΛ

is continuous on the Frechet space C€V(K\G\K), for every p < 1. If we
write the integral in terms of the parameter r = r(v), we conclude that
the assignment

(2.10) T: f -> Γ F*(r)Ψ'{ir)Ψ{ir)-'dr

where F*(r) = f(v), r = r(*), is continuous on ^{K\GjK\ if p < 1.

Now fix p < 1-then the Frechet space ^P(K\G/K) is isomorphic (via

the transform /->/) to the Frechet space 2P'v (cf. [17]) consisting of all

even functions / holomorphic on the strip Sp = {v e Λc \ |Im (v(H0))\<ρ0(2lp—1)}

and for which every seminorm τ(/) defined below is finite. The seminorms

τ are defined by

(2.11) τ(f) = suv\P(X)(Df)(λ)\

where P is a polynomial and D is a differential operator with constant

coefficients.

The topology given by the seminorms τ defined above is equivalently

also given by the seminorms τk)β9 (k, ί > 0, integral), defined by

(2.12) τhti(F*) = sup
dre

Thus, the continuity of the distribution /-> T(f) defined in (2.9) amounts

to the following assertion.

LEMMA 2.1. Let fe ^P(K\G/K)9 and put F*(r) = f(v) for r = r(v). Then

there exist integers k9 £ such that we have

(2.13) F*{r)Ψ'(ir)Ψ(ir)-*dr

Now considering the function ht as above, we note that ht is in

), so that (2.12) holds for J5Γ* in place of F*. Recalling that

H?(r) = exp — t(r2 + pi), it follows that for suitable k, £ we have, after

cancelling a factor of exp — tpl9
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<2 14) 1 1 1 e x p - < sup
res,

(1 +
dre

\1 ~τ r ) ^exp — r r̂

In other words

(2.15) I J2(t)\ < sup

for suitable k, £.

It is easy to see that the right side can be estimated by Const. t~N

for t < 1, and N some non-negative integer. See the appendix. It follows

that for any integer k > N, we shall have

(2.16) lim tkJ3(t) = 0 .
ί->0

We note that the above discussion shows that there exists an integer k

such that lim^o tkL(t) = 0. By applying the Tauberian theorem for the

Laplace transform, we can deduce

PROPOSITION 2.2. The Weyl function N(r) is tempered. More precisely,

there exists a positive integer k and a constant C > 0 such that N(r) < Crk

for all r > 0.

It should be noted that if we could obtain a more precise idea of

which seminorm τ can be used in (2.13) we would be able to get a precise

estimate for k.

§ 3 Definition of zΓ and ZΓ

As in [5], we want to define the logarithmic derivative of ZΓ, and

study its analytic continuation.

Let ε0 > 0 be fixed, and let g be a real-valued function in C^iR) such

that (i) g is even (ii) g vanishes in a neighbourhood of 0, (iii) g is con-

stant, equal to c say for |x |>ε 0 , and (iv) 0<g<c. The values of c,ε0

will be chosen later.

For seC, put

(3.1) g(s, ύ) = g(\u\) exp ((pQ - s)\u\) , ue R .

Then for fixed s,g is smooth, even and g(s, u) ~ cexp((pQ — s)\u\) if

\u\>εQ.

Now suppose that Re (s) > 2p0. Then by the remarks at the end of

§ 1, we can find p(=p(s)) < 1 and an /, e tfp(K\G/K) such that Ffs(h) -
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g(s, u(h)). We shall put Fs(h) = Ffs(h) = g(s, u{h)). Since /, is admissible,

we get (cf. [5]),

Σ nlivj) = [Z(Γ)] vol (G/Γ)/f(l)

+ Σ UrJirr'CWrMs, ur)
QCz(Γ)

+ _L Γ F*(r) trace {M'(ir)M(ίr)-ι)dr
4π J -«»

(3.2)
+ —F*(pχd - trace (M(0)))

4

F*(r)J(r)dr.

The numbers |Mr|, pe CΓ — ^(^7), are bounded away from zero (this is

an easy deduction from the convergence of the series on the right side

of (1.47)). Fix ε0 > 0 so small that it is smaller than all of the numbers

\u\r. Then g(s, ur) = c exp ((#, — s) |ur\). Thus, we get

PROPOSITION 3.1. The series

(3.3) zΓ(8, g) = ί(ε0) Σ IiMΛr)-1 W r ) ) e χ P ( ^ - s) \ur\)
e c z ( Γ )

converges absolutely for each s in Re (s) > 2p0. The convergence is uniform

for s in any half plane of the form Re (s) >2po + e, ε > 0.

Observe that, because of (3.2) we have

zM g)=Σ n,H»ύ ~ fJQMΓft vol (Gin - i-F*(0)(d - trace (M(0)))

(3.4) + " έ ί l F ( r ) Γ ( 1 + ir)IΓ(1 + ίr)dr ""
- Λ:6 ί°° F*(r)J(r)dr - J L Γ Ff (Γ) trace (M'(ir)M(irYl)dr .

J-°o 4TΓ J-oo

There are seven terms on the right side. We shall call them Ax{s),

A2(s), , A7(s). We shall now study the analytic continuation of each of

these terms.

For any complex r, put

(3.5) H(r) = Γ g'(u) exp (iru)du .
Jo
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As in [5], we have the lemmas:

LEMMA 3.2. H is an entire function of r. Moreover, for each integer

n>l, we can find Cn > 0 such that

\H(r)\<Cn\rr if I m ( r ) > 0

<Cn \r\~n exp (ε0 |Im (r)|) if Im ( r )< 0 .

LEMMA 3.3. Let fs be as above, with Re (s) > 2p0. Then all for v e Λc

for which fs(v) makes sense, we have

(3.7) fs(v) = H(ίs ~ ίp0 + V(H°^ + H(ίs ~ ίp0

s — po — iv(HQ) s — pQ + ίv(HQ)

The estimate for H and the formula for fs are at the basis of the

investigation of the A^s).

PROPOSITION 3.4. The function Aj(s) = ΣJ^O njfs(v3), defined for Re (s)

> 2ρ0, has a meromorphic continuation to the whole complex plane. Its

poles are simple, and are located at the points sj, sj, j > 0, where Sj =

Po + ivj(H0), sj = p0 — ivj(H0). The residues at both sj and sj equal H(0)nj,

if sj Φ sj. (It is understood that the poles at s0

+ and SQ are present only

if KQ > 0). Finally, if sj = sj for some j, the residue of A^s) at sj is

Proof. The proof is exactly the same as in [5]. We have

(3.8) Ms) =Σ s — Sj S — Sj J

in Re (s) > 2pQ. Each term on the right is meromorphic in s, and thanks

to Lemma 3.2 and Proposition 1.4, the series converges absolutely, uniformly

on compacta disjoint from {sf} and thus defines a meromorphic function

in C. This proves the proposition. []

PROPOSITION 3.5. The term A2(s) = -fs(ΐ)[Z(Γ)] vol (G/Γ) has a mero-

morphic continuation to the whole complex plane. In fact we have

(3.9) A2(s) = - i vol (GIΓ)[Z(Γ)] g ( s + )
k

s — p0 — ίrk

where {rk\k> 0} are the poles in the upper half-plane of the function r —•

c{r)~ιc(—r)"1 and dk is the residue of that function at rk. The series on

the right converges absolutely, uniformly on compact subsets of C disjoint from

{p0 + irk I Jz > 0}, and defines the meromorphic continuation of the left side.
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Thus, the function A2(s) has simple poles at pQ + irk, k>0, with residue

-i[Z(Γ)] vol (G/Γ)H(0)dk at the pole p0 + irk.

Proof. The proof differs in no essential way from the one given in
[5], hence can be omitted. []

It is to be noted that in the event that the function r-x^r)"1^—r)"1

has no poles in the upper half-plane (in which case it is actually a poly-
nomial), the term Az(s) is zero. This sort of phenomenon will reappear
below in the study of A6(s) and will be very useful to us.

PROPOSITION 3.6. We have

(3.10) A3(s) =-i(d- trace (M(0)))H(i(s - Po))l(s - Po)

for Re (s) > 2pQ. The right side defines a meromorphic continuation of A3(s)

with a simple pole at s = p0 with residue — jH(0)(d — trace (ikf(O))).

Proof. We have F*(0) = /s(0). Now use (3.7). D

PROPOSITION 3.7. We have

A4(s) = A Γ F*(r)Γ'(l + ir)/Γ(l + ir)dr

( 3 ' Π )

 = _ Σ d H(ί(s - P o + k))
• fc^i S — p0 + k

for Re (s) > 2p0. The series on the right converges absolutely, uniformly on

compact subsets of C disjoint from {p0 — k \ k > 1}, and defines a meromorphic

continuation of the left side to all of C. The poles of A4(s), thus continued,

are all simple, and are at the points p0 — k, k>l. The residue at each

pole is ~dH(0).

Proof. We have

A4(s) = A Γ F*(r)Γ'(l + ir)/Γ(l + ir)dr
ΔTZ J - o o

(3.12) d H(is - iPo + r) + H(is - iPo - r) \ Γ'(l + ir)
/ Γ(2π J-oo\ s — pQ — ir s — pQ + ir / Γ(l + ir)

In the integral involving the first term in the parentheses, we shift the
integration into the complex plane, to the line Im(r) = T, and let Γ—> oo.
Using standard estimates on Γf\Γ, and the estimate on H given by Lemma
3.2, we see that we pick up contributions from the residues of the function
r -> Γ"(l + ir)jΓ(l + ir) in the upper half-plane. The poles of this function
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are at r — ik, k > 1, and the residue at each pole is equal to i. It follows

that the first term contributes the series on the right side of (3.11). «Now

consider the second term. The integral involving it can be written as

H(ίs - ίPo + r) Γ'Q. - ir) d γ

s — p0 — ir Γ(l — ir)

Once again we shift the integration to Im (r) = T, and use Lemma 3.2 to justify

this. But this time r -> Γ'(l — ir)/Γ(l — ir) has no poles in the upper half

plane, and this implies that the integral is zero. Thus (3.11) is verified,

and we argue as in the case of A^s) to prove our proposition. []

PROPOSITION 3.8. We have

(3.13) A,(s) = 0 .

Proof. In fact

A5(s) = -K, Γ Ff{r)dr
J — oo

= -κig{s, 0)

= 0

from the definition of g. Q

PROPOSITION 3.9. The term A}(s) is identically zero, provided that

G Φ SU(2n, 1).

Proof. We must show that

F*(r)J(r)dr = 0 for Re (s) > 2p0 ,

where J{r) is described in § 1. But we have, using the fact that J(r) is

even,

Γ F*(r)J(r)dr
J — CO

- / H(is - ip0 + r) + H(is - iPa - r)
-~\ s — pa — ίr s — p0 + ir

H(is-ip0 + r)

s — pQ — ir

Because we have excluded the case G — SU(2n, 1), the integer p is = 0
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(mod 4), so that J(r) is a polynomial. Let T > 0, and use Cauchy's theorem

on the contour consisting of the semicircle of radius T centered at 0.

We see that

r)-J(r)dr
S — po— IT

equals the integral of the same integrand along the curved upper semi-

circle, say ΩT9 traversed positively. Now, using Lemma 3.2, we see that

the latter integral is 0(T'n) for every integer n, since J(r) is a polynomial,

and the length of Ωτ is πT. Letting Γ-> oo, we see that (3.14) is indeed

zero as claimed. []

We now need to discuss the term

A7(s) = - — Γ F*(r) trace (M'{ίr)M(ir)-ι)dr .
4π J-«>

Recall that as mentioned in § 1, the function ¥ is in our case a ratio

of two entire functions say P, Q, both of finite order. Thus

(3.15) Ψ(s) = P(s)IQ(s) .

We may assume (if necessary, by modifying P and Q by appropriate

Weierstrass products) that P and Q have no zeroes in common. Let {pk}k^ι

be the zeroes of P, {qk}k^.ι those of Q, and let {ak}k7ίl {bk}k^ι be their

multiplicities—then the zeroes of Ψ are precisely the {pfc}fcs>i and the poles

of ¥ are precisely the {qk}k^i. Since ¥ is holomorphic in Re (s) > p0, we

have Re(qk) < ρQ for all k. Moreover, since Ψ(s)W(—s) — 1, as a con-

sequence of (1.23), we see that there can be no zero of ¥ in Re(s) < — pQ.

Thus Re(p f c)> — pQ. Since ¥ has only a finite number of poles in Re(s)

> 0, all of these being on the line segment 0 < Re (s) < ρ09 we see that only

a finite number, say qu , q£, of the g's lie in Re (s) > 0, and they lie on

0 < Re(s) < p0. Now (1.23) leads easily to the conclusion that ¥/(s)¥(s)~ί

is invariant under the transformation s—•— s. Since ¥/(s)¥(s)~1 =

P/(s)P(s)~1 — Q'(s)Q(s)-\ we conclude from this that if qk is a zero of

order bk of Q, then — qk is a zero of order bk of P, and conversely. It

follows that we can label the pks in such a way that pk = —qk, and then

ak = 6fc. This said, consider the function P(s)/Q(—s). It is seen to be an

entire function with no zeroes, hence it is of the form exp R(s), with R(s)

entire. Thus P(s) = Q(—s) exp R(s), and hence ¥(s) = Q(—s) exp.
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moreover, R(s) = —R(—s). Note that the zeroes of Ψ are at { — qk}k^i and
the poles of Ψ are at {qk}k^u of orders {&fc}fcs>i. It follows that the poles
of Ψ/(s)Ψ(s)~1 are all simple, and are at {±gfc}fcΞ>i. The residue at qk

is — bk and the residue at — qk is bk. Note that bk>0 and is integral.
Finally, since Q is entire and of finite order, we know that for some
integer N>0, we have Σk*ibk\qk\~N < oo.

PROPOSITION 3.10. We have

A7(s) = —-L Γ F*(r) trace (M'{ir)M{ir)-')dr

- v h
* ^ + i s — Po — qk

for Re (s) > 2/o0. ΓΛe series on the right converges absolutely, uniformly on
compact subsets of C disjoint from {p0 + qk | k > £ + 1} and defines a
meromorphic continuation of the left side to all of C. The poles of AΊ(s),
thus continued, are all simple, and are at the points {p0 + qk \ k > £ + 1}.
The residue at the pole p0 + qk, is bkH(0).

Proof. We have

A7(s) = — L Γ F*{r)Ψ'(ir)Ψ(ir)-ιdr
4π J-°°

A Γ ( H^8 ίr)) H^s + ir)) ) ψ &) dr.( + )
4π J -co \ s — p0 — ir s — p0 + ir J Ψ{ίr)

Using the fact that Ψf{ir)IΨ(ir) is invariant under r-+ —r, we get

(3.18) A7(s) = — ! - Γ H^s -?*- ίr^ Ψ\ir)Ψ(ir)-'dr .
2π J-- s — po — ir

We are now going to shift the contour of integration into the complex
half plane Im (r) > 0. Let R > 0, and consider the semicircle of radius R
in the upper half r-plane, centered at 0. If we write θ(r) = Wf{ir)W{ir)~l

for brevity, we see, bearing in mind our discussion above, that θ has simple
poles at — iqk, k>l, with residues ibk, k>l. Moreover, we also see that
of these poles, only the poles at — ίqk, k>£ + l, lie in the upper half
plane. Applying Cauchy's residue theorem to the semicircular contour
mentioned above, we find
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—Lj^ H^s-P«-^θ{r)dr
(3.19) π P°

H(ί(s-po-qk)) ^ 1_C H(i(s - Po - iz))
2π Jcs — Po — qk Δπ JCR S — po — IZ

the sum being over those poles that lie within the contour, and where CR

is the curved boundary of the contour. Now recall that θ{z) = Ψ/(iz)W(iz)~1

and Ψ is the quotient of two entire functions of finite order. By a classical

theorem, see e.g. [18, p. 74], there exists a sequence of positive real numbers

εk approaching zero , and constants K, m, such that if S is the union of

the closed disks of radius εk centred at qk and — qk, k> 1, then for z in

the complement of S, we have

(3.20) \θ(z)\<K\z\m .

It follows from this result that we can find a sequence of positive

real numbers 2?̂ —• oo such that on the circles \z\ = Rj9 we have

(3.21) \θ(z)\<K\zr.

We now pick 2? to be equal to one of these 2?̂ , and want to estimate

the second term on the right side of (3.19) for R = Rj. Since Re(s) > 2ft,

and Im (z) > 0 for z on CRp we see that Im (i(s — ρ0 — iz)) > 0, so that the

estimates of Lemma 3.2 are available, and for any integer n, we have Cn > 0

such t h a t \H(i(s — ρQ — iz))\ < Cn\s — pQ — ίz\~n. In addition \s — pQ — iz\ >

\z\ — \s — pQ\ = Rj — \s — ft I for z on CRj. So using all of this we obtain

the estimate

(3.22) j r H(i(s - p0 - fe)) θ{z)dz

2π JOR) S — p0 — iz
<K'Cn

where Kr is some constant. Since n is at our disposal, we conclude that

this integral goes to zero as i?j->oo. It thus follows from (3.19) that

(3.23) — Γ ^ Σ k
2π J -oo s — ρ0 — ir * ^ + i s — p0 — qk

The sum is over k > £ + 1, because these are precisely the indices for

which the poles of 6(r) are in the upper half r -plane, as we noted above.

This proves the first assertion of the proposition. The other assertions

follow as in the propositions above, bearing in mind the fact that

Σ b* \Vic\~N < oo for a suitable N. Q
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The net result of all these propositions is seen to be that zΓ has a

meromorphic continuation to all of C, with simple poles. The residues

at these various poles are set out above.

We now choose the value of the constant c = g(e0), which was left

unspecified in the definition of the auxiliary function g at the beginning

of this section. Note that g(εQ) = H(0).

By using the results of [7], it can be shown, exactly as in [5], that

in our normalization of measures, the volume vol (G/Γ) is a rational

number. In fact the manifold K\GjΓ has the homotopy type of a compact

manifold M, and vol (G/Γ) is a rational multiple of the Euler-Poincare

characteristic E of M. Moreover, as observed in [5], the numbers iάk,

k>l, are all rational, with denominator depending only on (G, K) and

not on k. Thus there exists an integer K > 0 such that i vol (G/Γ)dk =

ekE/κ, where ek is an integer, and ekE and idfc are of like sign. We now

choose H(0) to be equal to Ate. With this choice, we observe that zΓ is

meromorphic, with simple poles and integer residues, so that there exists

a meromorphic function ZΓ (unique up to a multiplicative constant) such

that zΓ = Zr/ZΓ. At any pole of zΓ where the residue is a negative inte-

ger equal to — m say, the function ZΓ has a pole of order m, and ZΓ has

a zero of order m wherever zΓ has pole with positive residue equal to m.

For the reader's convenience let us summarize the information about the

poles of zΓ:

TABLE I

Pole Residue

s+ = pQ -f ivj(H0) Afcuj j > 1, v3 Φ 0
sj = Po — ivj(H0) 4κn5 j > 1, Vj Φ 0

(8κnj - 2κ(d - trace (M(0))) if for some , Vj = 0
Po \-2κ(d - trace (M(0))) if for no j , vs = 0

Po — k —4κd k>l, kΦ po
^ (4K — 4e0E if ρ0 is not integral

l4κ — 4e0E — 4κd if p0 is integral
2p0 4ΛΓ

Po + irk -4ekE k>l
Po + <2fc 4/c6 fc k > £ + 1

Recall here that d is the number of cusps of Γ. The reason for the

dichotomies for the residues at ^0 and 0 is pretty clear: different terms

Ai(s) contribute to the residues there. Thus, if for some j , Vj = 0 (so that
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0 e A occurs in the spectrum), the poles sj and sj coalesce and produce

the residue 8κΠj for that j . In this case sj = sj = p0. Moreover, the term

Az(s) contributes the residue — 2κ(d — trace (Λf(0))), in any case. Note

that the residue at p0 is a non-negative even integer. It was to make this

integer even that we chose H(0) = 4κ. As for the residue at 0, the term

Aχ(s) contributes 4/c, while — 4e0E comes from A2(s). If p0 is an integer,

the term AA(s) contributes a residue equal to — 4κd at 0. The residue at

2p0 comes from the fact that so~ = 2p0, so that the term A^s) contributes

the residue 4κ there.

There are a few possible overlaps in the sets of poles displayed above.

It can be checked quite easily that the sets of poles on the first seven

lines in the above table are mutually disjoint. As for the set {p0 + qk\k

> £ + 1}, we shall see that there is no overlap between this set and any

of the following sets: {p0 + irk\k > 1}, {po}9 {2po}9 {sj \j > 1, v5 Φ 0}. Indeed

if Po + Qk belongs to {p0 + irk | k > 1} for some k, we would have qk purely

imaginary, which is an impossibility because Ψ has no poles on the im-

aginary axis. For the same reason, p0 + qk cannot equal p0. Next, if

Po + Qk = 2p0 for some k, we would have qk = p0, but since k > £ + 1 we

already know that Re q% < 0. Thus p0 + q^Φ 2po for any k. Finally, if

pQ + qk = sj for some j , we would have qk = ivj(H0) for some j . This is

impossible if ^(flΌ) is real, because qk cannot be purely imaginary. On

the other hand, if Vj(HQ) is not real, we know that it is purely imaginary

and sj lies in (p0, 2ρ0], It follows that qk would have to lie in (0, p0] which

is impossible since k > £ + 1. Proceeding further in this fashion we see

that there are some possible overlaps between the set {p0 + qk\k> £ + 1}

and the sets {0}, {p0 — k\k>ϊ\, and {sj |j > 1, Vj(HQ) purely imaginary}.

We cannot be precise about these overlaps because the location of the

poles qk is essentially unknown, as also is the presence of the comple-

mentary series {sj \j > 1, Vj(H0) purely imaginary}. Of course, when such

overlaps occur the residues are to be added up at those locations.

Now denote by m0 the integer that equals the residue of zΓ at the

pole s = pQ. Note that m0 is even, and > 0. We now normalize ZΓ by

requiring that lims_^0 (s — poy
m°ZΓ(s) = 1. This fixes ZΓ completely. We

call ZΓ the Selberg zeta function of (G, K, Γ).

§ 4. Properties of ZΓ

The following properties of ZΓ are immediate from Table I of § 3.
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(4.1) ZΓ is a meromorphic function, having no poles in Re(s) > 2pQ.

(4.2) Zr has zeroes at Sj,s],j> 1, vό Φ 0. These we call spectral zeroes,

as in [5]. These zeroes determine the location of the vό which correspond

to the spherical representations U5 occurring in Ld(G/Γ). The order of

the zero at sj or sj is 4mά where n5 is the multiplicity of Uj in Ld(GjΓ).

There is also a spectral zero of order 4κ at 2ρ0. (However, see (4.7) below).

(4.3) There are also certain topological zeroes or poles of ZΓ. They only

occur when dim(G/K) is even. They occur at {̂ 0 + iτk\k>l) where

{rk\k>ϊ\ are the poles of r-*c{r)~ιc{—r)~x in the upper half plane

Im (r) > 0. The numbers {p0 + irk \ k > 1} are all negative integers, and for

G given, they are either all poles or all zeroes of ZΓ, Whether they are

poles or zeroes depends on the sign of the numbers {idfc | k > 1} where dk

is the residue of c(r)'1c{—rYι at rfc. The numbers {id f c |£> 1} are all real

and nonzero, and have the same sign. If they are positive, then ZΓ has

poles at {p0 + ίrk\k> 1}; otherwise these are zeroes of ZΓ. The order of

the zero or pole at ρQ + irk is \4ekE\y and ek is explicitly computable.

(4.4) The point p0 may be a zero or a pole of Z Γ . It will be a zero of

ZΓ if there exists an index j for which v} — 0, i.e. if 0 occurs in the

spherical spectrum of Ud{GjΓ) and if 8m d — 2κ(d — trace (M(0))) is positive.

In that case, the order of the zero at ô is 8/crij — 2/c(d — trace(ikf(0))), where

Πj is the multiplicity with which the spherical representation corresponding

to Vj = 0 occurs in LKG/Γ). If Vj Φ 0 for any j , so that 0 does not occur

in the spherical spectrum of Ld(GjΓ), then p0 may still be a pole of ZΓ,

if d — trace(M(0)) > 0. In that event, the order of this pole is 2/c(d —

trace(M(0))). In all other cases, ρQ is not a pole or a zero of ZΓ.

(4.5) The point s = 0 may be a zero or a pole of ZΓ. If ρ0 is not an integer

and 4(κ — e0E) is positive (resp. negative), then s = 0 is a zero (resp. pole)

of ZΓ of order |4(ΛΓ — e0E)\. If p0 is an integer, then we have a zero (resp.

pole) at s = 0, of order |4(Λ: — e0E — κd)\ if 4(κ — eQE — icd) is positive (resp.

negative). In all other cases, 0 is neither a zero nor a pole of ZΓ.

(4.6) ZΓ has trivial poles all of order 4/cd at the points {p0 — k; k integral,

k > 1, k φ p0}.

(4.7) ZΓ has zeroes of order 4κbk at the points {pQ + qk\k> £ + 1}. Here

the points qk9 k > £ + 1, are the poles of the function Ψ(s) = det M(s),,
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which lie in the half plane Re (s) < 0, and bk is the order of the pole at

qk. It is to be understood that, in the event that some of these zeroes

overlap with the other zeroes or poles of Z.Γ described above, then the

orders of those other zeroes or poles are to be augmented or diminished

as the case may be, according to the usual conventions.

We now turn to an important property of ZΓ9 namely its functional

equation. We shall first establish this functional equation for the loga-

rithmic derivative ZΓ of ZΓ.

Define

(4.8) θ(s) = zΓ(s)
s - p0) *-i (s- p 0 - qk)

Adding the extra terms on the right has the following rationale: the term

in Γr\Γ serves to kill the poles of zΓ at p0 — k, k> 1. The last term is

introduced to supply the missing poles pQ + qk, k = 1, - -, £.

Now put Φ(t) = 4κyol(GIΓ)[Z(Γ)\c(it)'1c(--it)'1.

LEMMA 4.1. The function

Θ(s) + Θ(2p0 -s) + Φ(s - p0) - 4A: ψ ' ^ ~ s)

¥(p0 - s)

is an entire function.

Proof This is a routine computation, using Table I of § 3, and the in-

formation about the poles of Γ\Γ, Ψf\Ψ and Φ. •

PROPOSITION 4.2. We have

(4.9) Θ(s) + Θ(2pQ - s) + Φ(s - p0) - 4A: ψ ' ^ ~ s ) - K, - κ6J(s) = 0
Φ(Po ~ s)

where A:5, Λ:6, J are as in § 1.

Proof. The proof is patterned after the proof of Proposition 2.8 of [5].

We shall not spell out all the details since no new principle is involved.

Due to the extra terms occurring in the definition of Θ, the manipulations

are messier.

Let β(s) be the function

θ(2Pΰ -s) + Φ(s - P o ) - 4κ Ψ'^ ~ s)
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Introduce the variable r — ί(p0 — s) and regard all the above functions as

functions of r. When so viewed, we shall not change the notation and

instead will simply write β(r) = β(ρQ + ir), Θ(r) = Θ(p0 + ir), Φ(r) = Φ(p0 + ir),

(W'lΨXr) = (Ψ'IW)(po + ir). Fix ε > 0, and choose F * as in [5, p. 16]-then

we can find a p < 1 and fe <g*(K\GIK) such that f(v) = F*(r), r = r(v).

This / is admissible for the trace formula; we now proceed exactly as in

[5], and integrate F*(r)Θ(r) around the rectangular contour in the complex

plane with corners at ±22 ± (ρQ + ε)i, use Cauchy's theorem on it, and then

let 2?->co. The absolute value of θ(r) can be estimated by means of

Proposition 2.2, the explicit knowledge of the numbers dk, and the location

of the poles rk. The application of this procedure can then be justified

as in [5]. Because of the last term in the definition (4.8) of Θ, there will

be a finite number of residues coming from the terms involving (s — p0 — qk)~\

k < I. However, these eventually cancel because of the extra terms in-

volving Ψ'\Ψ in the trace formula. The final result is that

F*(r)J{r)dr.

Since F*(r) can be varied over a wide class of functions, it follows that

β(f) = ΛΓ5 + yc6J(r) for r real. However, these functions are entire, so the

assertion is proved. []

We may now write down the functional equation for ZΓ. To do this,

observe that Θ(s) is the logarithmic derivative of the function Ω defined by

(4.10) Ω(s) = ZΓ(β) Γ{\ + s - p o ) - i κ d U ( s ~ P o - qky«b> .
& = 1

LEMMA 4.3. The following functional equation holds for Ω:

Ω(2Po -s) = Ω(s)Ψ(Po - sF
(411) Γ Cs~po Cs 1

X exp IJ ̂  Φ(i)dt + K, J J(t)dt + φ - p0)

where Φ(t) = 4κ vol (G/Jπ)[Z(2Ί)]c(iί)"1c(—iί)"S and κ^ κe and J are as in § 1.

Proof. Proposition 4.2 leads to

Ω(2p0 -s) = CΩ(s)Ψ(p0 - sF
(4.12) γcs-po rs Ί

X exp y Q Φ{t)dt + it, J J{t)dt + φ - £0)J

where C is some nonzero constant. We claim that C = 1. We proceed
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exactly as in [5, Theorem 2.9]. Let mQ be the order of the zero of ZΓ at

s — pQ. Then m0 is even and m0 > 0. Thus we conclude, as in [5], that

(s — poy
m°ZΓ(s) and (ρ0 — s)-m°ZΓ(2p0 — s) both approach 1 as s~+p0.

Multiplying (4.12) by (s — po)
m° and letting s -> p0, we conclude that C = 1.

Bear in mind that \¥(0)\ — |detM(0)| and none of the qk are zero. []

As an immediate consequence, we have

THEOREM 4.4. The following functional equation holds for ZΓ:

- a)]- Π

X exp ΓΓ '° Φ(*)cft + A:6 Γ

where Φ(t) = 4c[Z(Γ)] vol ίG/Γ)^) ' 1 ^—iί)" 1 , A;5, Λ:6, J are as m § 1, d is the

number of cusps, Ψ is the determinant of the intertwining operator M, and

{Qk 11 < k < £} are the finitely many poles of Ψ in the interval (0, ̂ 0] bk is

the order of the pole at qk9 and K is the integer depending only on the

structure of (G, K) which was defined above.

The functional equation (4.13) can be explicated for special choices
of (G, K, Γ), i.e. whenever the number of cusps, and the function Ψ can
be calculated explicitly. In his classic paper, Selberg makes his usual
cryptic comments about some such functional equation in the case of G
= SL(2, R), cf. [15, p. 78]. However, no further details have appeared any-
where, even in manuscript form, so far as we know, even for that case.

It is to be noted that the term involving κβ and J arises only in the
cases G = SU(n, 1), G = Sp(n, 1) or G = FA. In particular, it does not
arise in the case G = SO(n, 1), and thus there is no reference to it, even
obliquely, in Selberg's paper.

We want to end this section with two miscellaneous properties of ZΓ

the proofs of these are analogous to the proofs of similar facts in [5], and
we shall omit them.

Let ht, t > 0, be the spherical fundamental solution of the heat
equation Ωu = c\{dujdt), where cj = |J3"0|

2 = 2p + 8q, and Ω is the Casimir
operator of G. Then we have ht(v) = exp — (r(v)2 + pl)t and ht is admis-
sible for the trace formula. Using it as input, the trace formula reads
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Σ Πj exp - (r(v3)
2 + pl)t

= [Z(Γ)]vol(GIΓ)ht(ϊ)

+ (4πt)-w Σ Iur\j(r)-'C(h(r)) exp - (pit + u)\U)
recΓ-z(Γ)

( 4 . 1 4 ) + ™r f_ exp - (r2 + /φί Ψ'ψWφ yW

+ —(d - trace (M(0))) exp - ^ ί
4

- A Γ exp - (r2 + /φ< Γ'(l + ir)/Γ(l + ir)dr

+ Λ:5 J
00 exp - (r2 + ^ ί d r + κ6 J°° exp - (r2 + p$t-J(r)dr .

Now define a theta function 0Γ(£) to be equal to the second term on

the right side of this formula. Observe that this is the term coming from

just the hyperbolic elements in C r . The first term on the right represents

the contribution of the central elements, while the other terms on the right

arise from the parabolic elements. Proceeding then as in [5], we see that

we have the relation

(4.15) Γ exp - s(s - 2po)t-θΓ(t)dt = S-'K'^S - PoY^As)
Jo

so that

(4.16) -^-(log ZΓ(s)) = 8 φ - Po) Γ θΓ(t) exp - s(s - 2po)tdt.
as Jo

This relation is one of the two miscellaneous properties promised above.

Finally, proceeding exactly as in [5, p. 31], we obtain the following

infinite product for ZΓ:

(4.17) ZΓ(s) = C Π Π [(1 - UK*)))'1 exp - suδ]^ .
δ e P i λβL

Here C is some constant determined by our normalization of ZΓ, PrimΓ

is the set of primitive hyperbolic conjugacy classes, L is the semi-lattice

of linear forms on α of the form Σl=1 m4α4, aΛ, •••,<*« being the elements

of P+ and mu , mt being non-negative integers, mλ is the number of

distinct ^-tuples (mu , mt) of non-negative integers such that λ =

Σ L i Witti, and ξλ is the character of α corresponding to λ.

This is the second miscellaneous result which we promised above.
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A number of fragmentary results concerning the non-tempered
spherical spectrum can be obtained in the spirit of [5, p. 23]. However,
to exploit the perturbation method of [14] successfully, we need a trace
formula for the discrete part of the decomposition of the representation
of G induced from an arbitrary finite dimensional unitary representation
of Γ. Since we do not yet have such a formula, we shall leave matters
here for the present.

§ 5. Conjugacy classes in Γ

The analytic continuation of ZΓ which was established in § 3 above
has an interesting application to the study of the distribution of conjugacy
classes in Γ. In turn, this is related to certain geometric information about
the space K\GjΓ. We want to describe this application in this section.
To avoid awkward formulations, we shall assume that Z(Γ) = {1}. This is
no essential loss of generality. Of course, the other assumptions on Γ
still continue in force.

Let γ € CΓ — {1}. Then the number ur (defined in § 1) = β(log hp(γ))
depends only on the conjugacy class of γ. Thus, the distribution of con-
jugacy classes can be studied by studying the numbers ur

The numbers ur also have a geometric interpretation. Remember that
K\G/Γ has the homotopy type of a compact manifold, and that Γ is iso-
morphic to its fundamental group. We may, therefore, interpret each con-
jugacy class in Γ as a homotopy class of free closed paths on K\G/Γ.
Each such free homotopy class contains a geodesic which is of minimal
length among all paths in that class. The number uγ is essentially (i.e.
up to a fixed constant multiple independent of γ, and depending only on
our choice of invariant metric) the length of the minimal geodesic in the
homotopy class corresponding to γ (cf. [4]). The numbers {ur\γe CΓ — {1}}
cannot have a finite point of accumulation in [0, oo), as is evident from
the trace formula (cf. (1.47)). The distinct members of the set {ur \ γ e CΓ

— {1}} comprise what has been called the length spectrum of K\GjΓ.
Suppose these are £x < £2 < £% , and let m* be the number of elements
γ in CΓ — {1} for which ur — £t — then mt is called the multiplicity of the
length £i, and the set {£u mj^i is called the length spectrum with multi-
plicity.

Recall also that a γ e Γ is primitive if it cannot be written in the
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form γ = δ3 with δ e Γ and j > 1. Every γ e Γ can be written uniquely in

the form γ = δj(7) with δ primitive and j(γ) > 1. We denote by Prim/7 a

complete set of representatives for the conjugacy classes of primitive hyper-

bolic elements in Γ. The set {uδ\δe PrimΓ} can be ordered in a sequence

0 < Pi < p2 < to yield the primitive length spectrum, {pj^i. Letting

gi be the cardinality of {δ e Prim Γ\uδ = p%), we get the primitive length

spectrum with multiplicity, viz. the set {pu gj^i.

Now for any i > 0, define

(5.1) QM= Σ gt
{i: Pi<LZ)

(5.2) Qι(£)= Σ mt.
{i: - - '

Note that Qo(£) is just the number of primitive elements δ in CΓ,

counting multiplicity, such that uδ < t. Thus QQ(£) is the distribution

function of the primitive length spectrum with multiplicity. A similar

observation holds for

We are going to study the asymptotic behavior of Q0(S) and Qx(i).

Qo(£) will be studied first. The assertions about Q^ΰ) will then be deduced

from those about Qo(£).

In order to do this, we introduce the generalized Dirichlet series

(5.3) E(s) = Σ uδ exp — suδ .

The strategy will be to study the analytic behavior of E(s) using properties

of zΓ and then use the Tauberian theorem of Wiener-Ikehara, as is custo-

mary in such problems.

It will be convenient to introduce

(5.4) F(s) = Σ ujir)'1 exp - suγ

recΓ-{i}

(5.5) G(s) = Σ uγj(γY'C(h(γ)) exp (p0 - s)uγ .
recΓ-{i}

Note that G(s) is just a multiple of zΓ{s). In fact G(s) = zΓ(s)/4fc. Thus

G(s) converges if Re (s) > 2p0.

LEMMA 5.1. (i) Both F(s), E(s) are absolutely convergent if Re (5) > 2p0.

(ii) We have
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F(s) = Σ us exp — suδl(l — exp — suδ) for Re (s) > 2pQ .
δGPrimΓ

(iii) The function E(s) — .F(s) is holomorphic in Re (s) > ρQ.

Proof As we saw above, G(s) converges absolutely in Re (s) > 2p0.

Now consider the coefficient C(h(γ)) exp ρour. Clearly pour = p(log hj(χ)). It

follows that C(h(γ)) exp Aκ> = e£(Λ(r)) Π«ep+ (1 - fαWr))"1)"1. Endow CΓ-

{1} with the discrete topology, so that γ -> oo means, as usual, that γ

eventually stays outside every finite set. Then we have ur -> oo as γ -> oo.

It is easy to see that \ξa(h(ΐ))\ — eχPa(K(ΐ))> # e P + . So |fα(Λ(^))| —> oo as

f—>-oo. It follows that C(h(γ)) exp ρour-^ 1 as ^->oo. From this, it is

easily concluded that the series for F(s) converges absolutely for Re (s) >

2p0. Since the series E(s) consists of terms that occur in F(s), (i) follows.

Next, observe that CΓ — {1} is the union of {δj \j > 1} as δ ranges over

Prim/7, and uγj(γYι = uδ if γ = δj(r\ Thus

F(s) = Σ uδ Σ e χ P — SJU*

= Σ uδ exp — swδ/(l — exp — suδ)
δ G P i Γ

which proves (ii).

Next consider E(s) — F(s) for Re (s) > 2ρQ. We have

E(s) — F(s) = Σ uδ exp — suδ(l — (1 — exp — s^)"1)

= Σ uδ e x P ~ 2su§l(l — exp — suδ) .
3 G Prim Γ

It is clear that the series on the right converges absolutely for Re (s) > pQ,

by comparison with the series for E(s). This proves (iii). []

LEMMA 5.2. There exists ε > 0 such that G(s) is meromorphic in

Re (s) > 2|O0 — ε. This statement holds even when G = SU(2n,1). Moreover,

the only singularity of G(s) in the half plane Re (s) > 2pQ — ε is a simple

pole at s = 2pQ with residue 1.

Proof Consider zΓ(s). In § 3, we had expressed zΓ(s) as a sum of

seven terms A^s), , A7(s). A glance at § 3 shows that the terms A2(s),

As(s), A4(s), A5(s) and A7(s) all have holomorphic continuations to a half-

plane of the form Re (s) > 2ρ0 — ε for some ε > 0. As for A^s), we note

that it has a meromorphic continuation to the complex plane, and its poles

are all simple and are located at the points sj, sj, j > 1. Now, for j — 0,

we have v0 = ip, and so SQ = 0, so~ = 2pQ. As we noted in § 1, these SQ
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correspond to the occurrence of the trivial representation in L\GjΓ), and

the multiplicity nQ with which that representation occurs is 1. Thus

Aj(s) has a simple pole at 2p0 with residue 4κn0 = 4κ. Moreover, the other

poles of A^s) lie either on the line segment [0, 2ρ0] or on the line Re (s)

= p0. It follows that for some ε > 0, A^s) is meromorphic in a half-plane

of the form Re (s) > 2pQ — ε and. the only pole in that half plane is a simple

pole at 2ρ0.

It remains to discuss the term A6(s). If G Φ SU(2n, 1), we have seen

above that A6(s) is identically zero. It remains to consider the case G =

SU(2n, 1). We will show that in this case, A6(s) is holomorphic in a half-

plane Re (s) > 2p0 — ε for some ε > 0. By the results of [21, § 9], summarized

in § 1 above, we have

(5.8) A6(s) = Const. Jktt(F/.)

where k is defined by p = 4k — 2. Thus k = (p + 2)/4. Observe that k

is integral, in fact, k = n. Now Jk>k is a sum of distributions of the type

c/Λ0 and JίΛ where ί ranges over the set of positive integers 1 < & < k;

thus it is enough to prove our assertion for Jίt0(Ffs) and JSΛ(Ffs) for i > 1.

Consider first JίtQ(Ffs). We have

(5.9) JM(F,) = Γ (D*Ψs)(u)du
Jo

where Fs(u) = Ffs(h), u = u(h), and D is the operator (sinh u)~ιdjdu. By

our choice of fs, we have F/w) = g{u) exp (<o0 — s)w. Thus the integrand

is holomorphic in s. Now g being zero near u = 0, the integral is well-

behaved at the lower limit for any s. For large u, an easy inductive

argument shows that \(DuFs)(u)\ is O(exp (p0 - Re(s) - 2£)ύ). It follows

that the integral converges nicely if Re (s) > p0 — 2ί and thus (5.9) is

holomorphic in Re (s) > ρQ — 2ί which is much more than what we need.

Similarly, we have

(5.10) JeΛ(Ff) = - Γ (LP-ψχu) cosh udu .
Jo

Arguing as above, we see that as α->oo, we have ((D^i^Xu) ! =

O(exp ( 0̂ — Re (s) — 2ί + l)u), so that the integrand is O(exp (̂ 0 — Re (s) —

2S + 2)ύ), and we have convergence for Re (s) > ρ0 — 2ί + 2. Since ί is

at least one, this shows that (5.10) is holomorphic in Re (s) > p0, which is

better than what is necessary.
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The net result of our considerations is that for some ε > 0, zΓ(s) is

meromorphic in Re (s) > 2p0 — ε, and its only pole in that half-plane is a

simple pole at s = 2pQ with residue 4tc. Since G(s) = zΓ(s)/4/c, our lemma

is proved. []

LEMMA 5.3. There exists ε > 0 such that the function F(s) — G(s) is

holomorphic in Re (s) > 2p0 — ε.

Proof. We have, for Re (s) > 2p0,

(5.11) F(s) - G(s) = Σ u7j(γ)-\l - C(h(γ)) exp pour) exp - sur .
recΓ-{i}

Now consider 1 — C(h(γ)) exp pour Because C(h(γ)) exp pour is positive,

we have

Π
( 5 1 2 ) (

+

= ( Π 11 - ξJWr))'1] - i ) / Π | i -
V6P+ / / «e?+

The term Γ W + (1 - ξa{h{γ)Yλ) is of the form 1 + Σ ; ± ftWr))"1 where the

sum is finite and λ runs over a finite subset of the semi-lattice L. It

follows that 1 — C(h(γ)) exp pour is dominated in absolute value by a finite

sum of terms of the form

(5.13) MKr))-1]/ Π l(i -

Now fix 2eL, and consider the series

(5.14) pλ(s)= Σ ujirr^UKrW1 Π
recr-{i} «ep+

In this series |fr(&(?-))~1| = exp — λ(hp(γ)), λ being purely imaginary on ht(γ).

On the other hand, if λQ = Λ(Ho), then we have λ(hp(γ)) — λour Thus

(5.15) pχ s )= Σ Mr)" 1 Π \(i - ξMr))-^-1 exv - (s + λo)ur
e c { i ] βP

and, of course, Λo is positive, since each λ e P+ is positive on Ho. Because

\ξa(h(γ)yi\-^O as γ—> oo, we see by comparing this series with the series

for F(s) that Pλ(s) converges absolutely as long as Re (s) > 2p0 — Λo Now

the series F(s) — G(s) is dominated by a sum of finitely many series of

the form Pλ(s) and if we choose ε > 0 small enough, we conclude that the

series defining F(s) — G(s) converges absolutely in some half-plane Re (s)

> 2ρ0 — ε. Since each term is clearly holomorphic, the lemma is proved. []
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It follows from Lemmas 5.1, 5.2, 5.3 that E(s) is meromorphic in some

half-plane of the form Re (s) > 2ρ0 — ε with ε > 0, and that the only sin-

gularity of E(s) in that half-plane is a simple pole at s = 2pQ with residue

1. The stage is set for an application of the Tauberian theorem of Wiener-

Ikehara.

To carry out this application, let us define A(t) for t > 0 by A(t) =

Σ^ePrimΓ uδ. We claim that for any s with Re(s)>2^ 0 , we have A(t)e~ts

—> 0 as t —> oo. Indeed, if Re (s) > 2p0, then we have s = s' + ε with ε > 0

and Re(s') > 2p0 for a suitable ε. Write A(t)e~ts = (A(ί)e-">"'•. Since

\A(t)e-ts'\ = A(ί)e" ίRe(s/) < Σ wδe-WδRe(5/) ,

and the series on the right converges, A(t)e~ts' is bounded, so our claim

is proved. It follows from this claim that for Re (s) > 2p0, we have

(5.16) Γ A(t)e~tsdt = — f°° e-"dA(i) .
Jo s Jo

Now the integral on the right is a Stieltjes integral, and the function A(t)

has jumps of size uδ at t — uδ so

/»oo

β~ί5cίA.(ί) = Σ uδe~SUδ = E(s) .

Jo

Thus if we write

H(s)= Γ A(t)e'tsdt,
Jo

we have that H(s) — E(s)ls. In particular, H(s) is meromorphic in a half-

plane Re (s) > 2̂ 0 — 5 for some ε > 0, and has only a simple pole at 5 = 2p0

in that half-plane with residue l/2p0. Now an application of Wiener-

Ikehara's theorem yields

(5.17) 2p0A(tl2p0) ~ eι as t -> oo

or

(5.18) Σ %pouδ ~ & as ί -> oo ,

Now put vδ = exp 2/?owδ and for any x > 0, put

(5.19) ω(x) = I

Then (5.18) reads
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(5.20) ω(x) ~ x as x -> oo .

This said, let

(5.21) π(x)= Σ 1.
δePrim Γ

Vδ<.x

Then it is well known that ω(x) ~ x is equivalent to

(5.22) π(x) ~ x/log x as x -> oo .

Now,

(5.23) Qo(̂ ) = Σ 1 = ^ ( e χ P 2<M) ~ exp 2pJ/2pQ£ as ^ -* oo .
S G P i Γ

As for Qi(^), we have

= Σ 1 < QxW) - #{(«, i) I δ e Prim Γ, j > 1, juδ < £}
SGPrim Γ

(5.24)
Σ

δePrim Γ

= f -dQΰ(y) = Qo(̂ ) + Γ (£lf)Q0(y)dy .
JO V JO

Since both sides of this inequality are asymptotic to exp 2po£l2ρo£, we have

Qι(S) ~ exp 2pQ£l2ρQ£ as ^ —> oo. Thus we have proved:

PROPOSITION 5.4.

(Qo(4) ~ exp 2pQ£/2pQ£ as £ -> oo

iQi(^) ^ exp 2po£l2pQ£ as £ -> oo .

Appendix

Let

i (xeR,t>0).

Then the Fourier-Laplace transform of gt is given by

Our objective here will be to establish the following estimate.

LEMMA. Let &Ό be a strip in the complex plane parallel and centered

with respect to the x-axίs. Let k and £ be non-negative integers—then there

exists a positive integer N = N(k, £) and a positive constant C = C(k, £)

such that
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sup < C r» (0 < * < 1) .

The proof is spelled out in the following lines. We begin with a series

of reductions.

The operational calculus for Fourier transforms tells us that

is equal to

Δ being, of course, d2jdx2. Use Leibnitz's rule to write

as a finite sum of terms of the form

( dq \ Λ

Then it will be enough to estimate

The argument now falls into two parts, according to whether q is even

or odd. We shall deal explicitly with the first possibility, the discussion

of the second being similar. So suppose that q is even, say q = 2n. Since

gt is the fundamental solution to the heat equation on the line, one has

d2

dx2

Consequently,

dx** 8t dr g t

which implies that we need only estimate

( /In \

"•if*)
For this purpose, note that
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dn

dtn t = Pn(X, t)gt

where Pn is a rational function of x and t, determined recursively by the
scheme

pn = p'n_x + PJ>n_x ,

Pj being given by

2 L 2ί2 ί J '

It then follows readily that

w - l

p n = y ί̂-Pn-ci+i)
4-0

We can therefore say that there exist an integer N(ή) > n and a poly-
nomial Qn in JC and ί such that

Restricting ί to the interval ]0,1], we are thus reduced to estimating

The factor l/tNlr) will only play a role in the end, so it may be set aside
for the moment. At this point, let us recall that z0 lies in the strip S^o.
Thanks to the maximum principle, we can freeze the imaginary part of
z0 and perform our calculations along a horizontal line. In other words,
the following result serves to complete our discussion.

LEMMA. Let z0 = xQ + V — ly0 (x0 variable, y0 fixed). Let r be a non-

negative integer—then there exists a positive constant C = C(r, zQ) such that

_ sup \(xrgt)
A(z0)\ <C (te ]0,1]) .

Proof. We have

Γ
J
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1 ΓΓ°° Γ°° Ίx I I ^r^-x^/it^-yox^y. I I >)rrc,-x'2 /itoyQX/Jy.\
— . II Λ, e cί U/Λf ~~γ~ I Λ c C Ct/Λ |

V4ττί LJo Jo J

= ~^il(t) + J(t)] (say) .

In the integrals defining I{t) and J(t), make the change of variable x2 =
Atu—then

t) = 2 r / 2 Γ / 2 + 1 / 2 Γ ur/2-
Jo

J(t) = 2r/2tr/2+1/2 P° ur/2

Jo

As functions of the parameter t, I and J are certainly continuous. Can-
celling the *J~ΐ, our assertion follows immediately. []
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