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Abstract 

AM-meso structures offer a high potential for adapted properties combined with lightweight design. To 

utilize the potential a purposeful design of the meso structures is required. Therefore, this contribution 

presents an approach for modelling their properties depending on design parameters by scaling relationships. 

The relationships are investigated based on grey box and axiomatic models of elementary cells. Exemplary 

the pressure stiffness is determined using FEM in comparison to an analytical approximation. The 

comparison reveals effects and influences occurring within the elementary cell. 

Keywords: additive manufacturing, characteristics and properties, meso structures, scaling, modelling 

1. Introduction 
Products satisfy manifold requirements cross-application. One possibility for realising required 

functions is the use of inner structures within volumetric components like in the crash helmet or foot 

prosthesis shown in Figure 1, while the outer cover is customised for the user and the outer conditions. 

The design of the inner structure enables the realisation of required properties like a defined stiffness 

and damping with low weight and material expenses at the same time. The inner structure is 

characterised by the periodicity of elementary structures, which are locally adapted to the particular 

requirements. The structural size is on the meso scale between 0.1 and 10 mm (Nguyen et al., 2013), 

which gives them the name meso structure. The design freedom of additive manufacturing enables to 

realise determinate, regular structures with a defined topology, elementary structure size, thickness 

and orientation. Purposefully grading the structures creates local properties (Steffan et al., 2021; 

Steffan et al., 2020). The potentials of meso structures used for the examples are the separation of the 

outer shape and the inner properties combined with the full surface support of the outer shell. 

 
Figure 1. Exemplary applications of additively manufactured meso structures: inner shell of a 

crash helmet (a) (Steffan et al., 2020) part of a foot-prosthesis (b) (Steffan et al., 2021) 

To purposefully design the meso structures, in this contribution the identification of design parameters, 

effects influencing their properties and a mathematical model for scaling the properties depending on the 
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design parameters are aspired. To achieve the mathematical model, simulation results of the pressure 

stiffness of meso structures are fitted using different mathematical functions. Furthermore, an analytical 

model of two common elementary cells is derived to identify underlying effects of the elementary cell's 

geometry on the stiffness, to improve the mathematical model by considering the effects. 

2. Fundamentals 
Additively manufactured meso structures are examined in different applications to achieve lightweight 

design in combination with properties like vibration damping or thermal conductivity in literature 

(Maconachie et al., 2019; Hao et al., 2011). In Finite Element simulations or experiments the 

properties of selected meso structures are investigated in comparison rather than an overview over 

different meso structures and their properties is given. (Ge et al., 2018; Vega-Moreno et al., 2020). 

2.1. Additively manufactured meso structures 

Meso structures are defined by the size of the elementary structure in the meso scale (Nguyen et al., 2013). 

The additively manufactured meso structures are furthermore characterised by the repeated arrangement of 

identical elementary cells, which are the smallest repeated indivisible structure unit. The meso structures 

comprise strut, plate and shell lattice structures differentiated by their basic geometric elements. The 

elementary cell types can be arranged in e.g. face or body centred cubic structures as shown for strut 

lattices in Figure 2 (Maconachie et al., 2019). The variety of elementary cells allows to choose and adapt 

the cells for a broad range of properties and therefore possibilities of application. 

 
Figure 2. Face centred cubic (FCC) strut lattice cell with geometrical design parameters of a 

meso structure elementary cell (a) and body centred cubic (BCC) strut lattice cell (b)  

2.2. Influencing parameters on additively manufactured meso structures 

Schulte et al. (2021) identified influencing parameters based on the consideration of two dimensional 

frameworks and strut cells they consist of. The influencing parameters are classified into material, 

geometry and topology. The meso structure's material influences its properties with the Young's modulus 

and Poisson's ratio. The geometrical influences are length, width and height of the enveloping cuboid of the 

elementary cell and the structural thickness, which e.g. is the strut diameter for strut lattices. The design 

parameters are exemplary depicted for a face centred cubic (FCC) strut lattice in Figure 2. The relations of 

the design parameters influence the properties through asymmetry effects of length to width, width to 

height and height to length ratio and the structural thickness to the characteristic length of the envelope. 

The topology describes the distribution of the material in the elementary cell volume, i.e. shape and 

placement of e.g. the struts (Schulte et al., 2021; Lachmayer and Lippert, 2020). 

The mechanical properties of meso structured components are frequently designated as equivalent 

continuum properties, mainly the equivalent Young's modulus 𝐸∗ and relative density 𝜌∗. The impact of 

the influencing parameters on the equivalent properties depends on the load case, which means they have to 

be defined load-case-specific. The properties of asymmetric elementary cells are anisotropic and need to be 

described by a tensor (Schulte et al., 2021; Becker and Gross, 2002; Gibson and Ashby, 2010). 

Within the compound of cells, additionally the cell's orientation in relation to the component and the 

segmentation have an impact. The segmentation describes the subdivision of a component into areas filled 

with different types or dimensions of elementary cells. The division into areas of different meso cells 

moreover necessitates transitions between the areas, where either the variation of cells has to adhere to 
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transition conditions or a transition structure has to be developed connecting the areas to ensure 

maintaining the compound. In case of the similar elementary cell topologies, transition conditions can e.g. 

be taken from analytical beam theory like the condition of even cross section that is prerequisite for the 

Bernoulli beam theory. Under these transition conditions, necessary relations of the dimensions for 

maintaining the cell bond can be deduced for neighbouring elementary cells (Schulte et al., 2021). 

2.3. Equivalent continuum properties for the Finite Element Method calculation  

For the calculation of meso structure properties and the properties of meso-structured components, 

currently the Finite Element Method (FEM) is usually used. To streamline the FE-calculation single 

elementary meso cells are simulated and equivalent continuum properties are determined. The equivalent 

properties are assigned to the meso-structured volume of a component that is afterwards calculated as a 

continuum. The calculated properties of the equivalent continuum component allow drawing conclusions to 

the behaviour of the meso structure (Cheng et al., 2018; Wang et al., 2020). 

The comparison of different elementary cells or cell dimensions necessitates the repeated determination of 

the equivalent continuum properties and conduction of the FE-calculation of the meso structure using the 

equivalent properties. Purposeful dimensioning requires iteration, consequently. 

Within literature different approaches of Finite Element modelling the elementary cells for regular 

meso structures exist. The investigations in this paper focus on strut lattices which can be modelled as 

beam or 3D-volume elements. The beam elements solve the load-deformation relationship for the 

representative volume element (RVE) as the solution of a bending beam and are advantageous in 

terms of the calculation time. However, their application is restricted to strut lattices and the exact 

modelling of the strut conjunction is not possible, as the overlapping volume is not considered. 

Therefore, 3D-volume elements provide higher accuracy of the calculation, in which the load-

deformation relationship is solved for simple RVE, like tetrahedral, with known initial functions, 

accepting a significantly higher calculation time (Dong et al., 2017). 

3. Research question 
Additively manufactured meso structures offer potentials like locally adapted, defined and combinable 

properties, e.g. stiffness, damping and low weight, used for the crash helmet and foot prosthesis. To 

utilise these potentials and make them available for different applications purposeful design of the 

meso structures is required. Currently the meso structures are modelled in CAD by duplicating similar 

elementary cells and examined using the homogenisation method for FEM. Using this FEM approach 

requires orthogonal cell properties and is limited to a (at least zonally) homogeneous meso structure. 

Furthermore, the usage of FEM requires iterations for the choice of elementary cell type and 

dimensions, because the FEM does not enable direct access to the underlying influencing design 

parameters. Hence, dimensioning the parameters for the aspired properties partly bases on trial and 

error. Thus, a model for dimensioning meso structures omitting iterations is aspired. 

Utilising cells with anisotropic properties and an inhomogeneous distribution within the volumetric 

component enables a further improvement of meso-structured components. The grading of component 

properties allows adapting to inhomogeneous load distributions and smoothening leaps in stiffness 

between the meso structure and e.g. solid body parts of a component like an outer shell. The additional 

modelling expenses are considered as acceptable if the cells can be scaled. However, scaling models 

for different elementary cells with anisotropic properties are not available, yet. Scaling of anisotropic 

cells can be investigated based on grey box and axiomatic models of elementary cells. Thereby scaling 

models understandable and easily applicable for the developer are favourable. 

A mathematical description based on physical relations of the relationships between meso structure 

properties and the influencing design parameters would allow an easier and meaningful calculation of the 

properties and a direct conclusion from the aspired property value to the necessary design parameter values. 

This enables a purposeful selection of the elementary cell type, dimensions or structural thickness. To 

achieve the aspired model this contribution investigates the following research questions: 

Which influences and effects determine the properties of meso structure elementary cells? 

How do the influences and effects enable scaling of (stiffness) properties originating from a physically 

motivated analytical model of the relation between design parameters and cell properties? 
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4. Model for scaling of meso structures properties 
The mathematical description for scaling the meso structure properties is determined by fitting the 

results of a FE-simulation depending on the influencing parameters. To identify underlying effects the 

FCC and BCC strut lattice cell are approximated by an analytical calculation, whereby the impact of 

the influencing parameters and further underlying effects are identified. 

4.1. Determination of meso structure properties using FEM 

The FEM analysis is applicable as a form of grey box model for examining the meso structure properties. 

Therefore, the theoretical properties of the meso structure elementary cells are simulated using a FE-Model 

as a data basis for the development of the mathematical scaling model. To approach the desired 

mathematical description the investigations initially focus on symmetric cubic strut lattice cells inside 

uniform compounds of equal elementary cells. As the properties are load dependent, the load case of 

pressure and the property stiffness are chosen. The FE-Model representing a compression test is build with 

one elementary cell of 10 mm edge length between two rigid plates, as illustrated in Figure 3 (a). The FEM 

simulations are performed using the Abaqus/Standard software package (Dessault Systèmes, 2020) and the 

elementary cell is meshed with 10-node quadratic tetrahedron elements with a mesh size of 0.2 mm after a 

mesh-sensitivity study that ensures convergence of the results. The contact properties between the plates 

and the elementary cell are set to frictionless in tangential and hard in normal direction. To determine the 

pressure stiffness, a reference point at the centre of the upper plate is impinged with a displacement, while 

the lower plate is fixed. Meanwhile the reaction force and the displacement are tracked at the upper 

reference point and the stiffness of the cell is calculated from the force-displacement diagram using the 

cell's dimensions. The influence of the neighbouring cells on the considered single cell is regarded by 

periodic boundary conditions (PBC) that assign opposite nodes to one another and impinge the same node 

displacement for both sides. The underlying material properties are 𝐸 = 71 000 MPa and 𝜈 = 0.3 based 

on AlSi10Mg. Smith et al. (2013) have already created a similar model. To evaluate the periodic boundary 

conditions the tension curve of the single cell and a centred cell in a cell compound as shown in Figure 3 

(b), are squared and show close agreement. 

 
Figure 3. Depiction of the FE-Model (a) comparison of PBCs and a cell compound (b) 

4.2. Fitting the results of the FEM 

The results of the pressure stiffness are determined depending on the influencing parameters structural 

thickness 𝑑 and cell size. Due to the chosen cubic cells the cell size parameters are reduced to the edge 

length 𝑙. The simulation and analytical results are calculated with an edge length of 𝑙 = 10 mm and 

thickness varied within 0.9 mm ≤ 𝑑 ≤ 3.5 mm. For the mathematical description, different types of 

mathematical fits are compared considering their suitability for the simulated curves as well as for the 

physical interrelations of comparable solid materials. The following types, which have already been 

considered in literature, are looked at and exemplary shown for the FCC strut lattice in comparison in 

Figure 4 (Cheng et al., 2018; Cheng et al., 2017; Vega-Moreno et al., 2020; Xu et al., 2016; Nguyen  

et al., 2021; Crupi et al., 2017; Ruiz de Galarreta et al., 2020): 

Polynomial fit: 𝑦(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎n𝑥𝑛 of first to fourth order 

Power fit: 𝑦(𝑥) = 𝑎𝑥𝑏 

Displacement 
of the plate

Fixed plate

Frictionless 
contact

Periodic 
boundary 
conditions
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Figure 4. Exemplary comparison of different mathematical fits for FCC strut lattice cell 

Further types like exponential fits are omitted in Figure 4 because they are far from suitable for 

approximating the interrelation of the pressure stiffness (Shi et al., 2021). Out of the polynomial fits 

the fourth degree shows the best agreement with simulated results for the pressure stiffness judged by 

the coefficient of determination 𝑅2, which is calculated using equation (1) (Hradetzky, 1978) 

𝑅2 = 1 −
∑(𝑦𝑖 − 𝑦̂𝑖)

2

∑(𝑦𝑖 − 𝑦̅)2
 (1) 

𝑦𝑖 : 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒  

𝑦̂𝑖: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  

𝑦̅: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑎𝑙𝑢𝑒  

 

The coefficient of determination is 𝑅2 = 1 for polynom of fourth order, while the power fit has a slightly 

lower coefficient of 𝑅2 = 0.99. The power fit though offers an advantage regarding the physical 

backgrounds because different from the polynomial fit the power function is invertible like stiffness and 

yieldingness or if 𝑑/𝑙 is reversed to 𝑙/𝑑. Another advantage is the possibility to utilise the power fit for 

scaling applying similarity relations. Therefore, the power fit is looked at in the following. 

Figure 5 shows the simulation results and power fits for variations of BCC and FCC strut lattice cells and 

their combination the BFCC strut lattice depending on 𝑑/𝑙. The graphs show that the power fit is 

applicable for different strut lattices but depending on the elementary cell topology, the accuracy of the 

approximation varies. Furthermore, the pressure stiffness of each cell type follows an individual function. 

 
Figure 5. Power fit of pressure stiffness of different strut lattice cells as a function of 𝒅/𝒍 ratio 

4.3. Analytical calculation of FCC and BCC elementary strut lattice cell 

The relationships and growth exponents derived from the FEM analysis do not provide physically 

comprehensible and valid scaling laws even for orthotropic elementary cells. Hence, solely 

considering the FEM analysis' results provides no clear scaling relations. The zonally differing 

behaviour though indicates the superposition of several effects within the elementary cell. Aim of the 
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analytical analysis of the BCC and FCC strut lattice cells is to identify relevant influences and effects 

and to quantify them for the aspired scaling model. In comparison to the simulated compressive 

stiffness results, the FCC and the BCC strut lattice elementary cell are therefore approximated using 

analytical calculation approaches. The FCC and BCC cell are initially chosen because of their 

manageable topology. For the analytical calculation of the FCC and BCC cells, several assumption are 

made, which are transferred from known similar structures and load and boundary conditions where 

the assumptions have proven to be valid: 

Originating from the symmetry of the cell one eighth of the cell composed of two spatially 

orthogonal, symmetrically loaded frameworks is analysed regarding appropriate boundary 

conditions and half the force on each of the frameworks (Figure 6 (a)) 

Full cross sections are used to calculate inner struts, half the cross sections for side struts  

The flow of force is separated into two independent parallel paths for the FCC cell like shown 

in Figure 6 (b) and (c) (equation (2), (7)), which comprise the assumptions of bending and 

additional significant deformation due to shear of a Timoshenko beam and are applicable for 

different length to diameter ratios:  

a framework, which transfers the part of the force via tension and pressure (equation (3), (5)) 

a statically overdetermined bending beam, which transfers part of the force via bending, shear 

and a normal compression (equation (4), (6)) 

The horizontal displacement of both force paths is identical to ensure cohesion of the struts  

The BCC cell is calculated as only the statically overdetermined bending beam clamped on 

both sides additionally considering shear and pressure by a normal force like in Figure 6 (c) 

 
Figure 6. FCC strut lattice elementary cell (a) first force path calculated as a framework (b) 

second force path calculated as bending beam clamped on both sides (c) 

The diagonal strut of the FCC cell in the x-y-plane is projected to the x-z-plane with the 

respective fictive projected force 

Knots with several struts are assumed to behave similar to a soft clamping  

Knots are assumed to be significantly stiffer than free strut areas, and therefore reduce the 

effective length of the force paths 

Based on AlSi10Mg material properties are set to 𝐸 = 71 000 MPa and 𝜈 = 0.3 

The given assumptions are described by the following equations for the calculation of the pressure 

stiffness. 𝐹1 is the force acting on the framework and 𝐹2 the force acting on the bending beam. 𝐾F1 and 

𝐾F2 are the corresponding pressure stiffnesses of the two force paths and the overall pressure stiffness 

𝐾pressure is the sum of the partial stiffnesses. Table 1 shows the results of the analytical calculation. 

𝐹 = 𝐹1 + 𝐹2 (2) 

𝑤framework = 𝑤T/P (3) 

𝑤B,total = 𝑤B + 𝑤S + 𝑤φ + 𝑤N (4) 

𝑤N: lowering in consequence of normal force deformation  

𝑤B: deflection in consequence of beam bending 

𝑤S: shear deformation 

 

(a) (b) (c)
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𝑤φ: deflection in consequence of soft clamping at the knot 
 

𝐾F1 =
𝐹1

𝑤T/P

 (5) 

𝐾F2 =
𝐹2

𝑤B,total

 
(6) 

𝐾pressure = 𝐾F1 + 𝐾F2 (7) 

Table 1. Results of analytical and simulative pressure stiffness calculation and their relation 

relative 

density 

d/l 

FCC 

𝐾pressure,analy 

in MPa FCC 

𝐾pressure,sim 

in MPa FCC 
𝐾analy

𝐾sim
 FCC 

d/l 

BCC 

𝐾pressure,analy 

in MPa BCC 

𝐾pressure,sim 

in MPa BCC 
𝐾analy

𝐾sim
 BCC 

0.05 0.09 535.34 499 1.07 0.10 25.87 26 1.01 

0.1 0.13 1199.50 1152 1.04 0.15 127.58 127 1.00 

0.15 0.16 1993.97 1974 1.01 0.18 340.41 340 1.00 

0.2 0.19 2939.84 2994 0.98 0.21 704.58 704 1.00 

0.25 0.22 4057.81 4247 0.95 0.24 1264.19 1267 1.00 

0.3 0.25 5384.32 5770 0.93 0.27 2077.62 2078 1.00 

0.35 0.27 6962.82 7602 0.92 0.30 3205.22 3199 1.00 

0.4 0.29 8853.59 9788 0.90 0.32 4721.55 4692 1.01 

0.45 0.32 11134.91 12360 0.90 0.35 6623.97 6630 1.00 

0.5 0.34 13903.33 15363 0.90 0.37 9307.09 9086 1.02 

 

As visible in Table 1, the analytical calculations provide suitable results with a deviation of up to 10%. The 

calculation of the BCC cell proves the assumption of the bending beam clamped on both sides with the 

additional consideration of shear deformation and compression through a normal force to be an appropriate 

approximation for the analytical description of diagonal struts in meso cells. Furthermore, the influence of 

the soft clamping the knot represents compared to the fixed clamping within the bending curve has to be 

considered by impinging the knot area with a bending deformation, hence contortion. The results of the 

calculation of the FCC cell show that an analytical calculation by addition and superposition of the partial 

stiffnesses of single struts or substructures is possible and the approach to project struts within the x-y-

plane as well as their displacements and forces to the x-z-plane or y-z-plane is valid. This means that 

dividing the flow of force into two independent paths to determine the partial forces and stiffnesses is 

applicable while the overall force is the superposition of the partial forces and the stiffness is the sum of the 

partial stiffnesses. To figure out the relation of the forces and consequently stiffnesses a matching condition 

is applicable, which, in this case, is the identical horizontal displacement for both paths. 

5. Discussion 
The results of the analytical calculation and the FE-simulation of the pressure stiffness of the strut 

lattice cells agree with less than or equal to 10% deviation. The close agreement of the analytical 

calculation and the simulation allows conclusions about underlying effects automatically represented 

in the FEM but overlaying in a way they cannot separately be examined. Based on the identified 

effects the mathematical description using power fits is adjusted. 

5.1. Influences and effects of elementary cells on the pressure stiffness  

Comparing the simulation results and the analytical calculation provides overlaying effects and influences 

within the strut lattice cells and allows a deeper understanding of influencing parameters and their effects 

on the elementary cell's properties. As deducible from the separation of force paths within the quaver FCC 

cell, tension and pressure as well as bending and shear act within the struts. Shear has to be taken into 

account because especially the thicker struts are stocky and therefore shear deformation has a significant 

impact on the overall deformation. In Figure 7 the simulated results, the overall analytical pressure stiffness 
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and the partial pressure stiffnesses of the framework 𝐾F1 and the bending beam 𝐾F2 are plotted. The 

comparison shows that the FE-simulation and the analytical calculation are in accordance. Furthermore, for 

small ratios 𝑑/𝑙 the framework stiffness 𝐾F1, which is based on tensile and pressure stiffness, outweighs 

while the bending and shear stiffness of the bending beam are close to zero. The dominant tensile/pressure 

stiffness is effective till a 𝑑/𝑙 ratio of 0.16, which for FCC strut lattices corresponds to 15% relative 

density. For 0.16 ≤ 𝑑/𝑙 ≤ 0.26, 15 − 35% relative density, respectively, the tensile/pressure stiffness 

and the bending/shear stiffness increase with similar slope and overlay. Above 𝑑/𝑙 of 0.26, hence 35% 

relative density, the bending stiffness overly increases and dominates the slope of the stiffness curve, 

though tensile/pressure stiffness still contributes significantly. 

 
Figure 7. Comparison of partial compression stiffnesses, analytical and simulated stiffnesses 

and identification of areas of different dominating effects impacting the stiffness 

Further effects become relevant in the strut compound in the FCC and the BCC cell. The agglomerate 

effect describes the mass accumulation in the areas of knots, which leads to a significantly higher local 

stiffness compared to the free strut length. The increased stiffness stems from the larger cross section 

and the isostatic pressure conditions that causes a restriction of deformation. Thus, the knot areas 

contribute to the overall stiffness on one hand by their significantly higher structural stiffness and on 

the other hand through the deformation hindrance of the attached struts. Examining the BCC cell 

reveals that the deformation hindrance does not correspond to a rigid structure like the bending curve 

of the double-sided clamped beam describes, but provides only part of the self-aligning torque, which 

would hold the clamped beam end in its exact starting angle. Therefore the knot area acts like a soft 

clamping. The area of the strut influenced by the knot is about 4% of the bending beam length, which 

is impinged with the shear contortion. The stiffer knot areas furthermore cause a reduction of the 

effective length for the tension and pressure as well as for the bending and shear deformation. The 

reduction amounts about the strut diameter per knot for tension and shear and 1.5 times the strut 

diameter for bending. Considering this amount of reduction, the presented calculation results are 

achieved. The interaction of neighbouring elementary cells that is represented by the PBC in the FEM 

partly manifests within the agglomerate effect because struts of neighbouring cells contribute to the 

local mass accumulation and the isostatic pressure condition in the knot areas. Furthermore, 

interaction effects go into the half thickness of edge and face struts. The knowledge of these effects 

allows a purposeful design or adaption of elementary cells according to requirements for stiffness by 

utilising the impact of the effects. E.g. increasing the amount of material in the knot area instead of the 

whole struts increases the stiffness of a cell with less material expense. 

5.2. Choice of mathematical description for pressure stiffness scaling 

Considering the physical background, the power fit has been chosen as the most promising 

mathematical description of the scaling relation between 𝑑/𝑙 ratio and the pressure stiffness. The 

power fit suits the BCC cell's stiffness with 𝑅2 = 0.99. However, it does not match the simulation 
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results in the boundary areas of the 𝑑/𝑙 ratio for the FCC cell, which is traced back to the overlaying 

stress conditions within the cell. Based on the conclusions from the comparison of simulation and 

analytical calculation in Figure 7 that show the different dominating effects, the fit is separated into 

three areas with different power fits according to these effects as shown in Figure 8. For the 

applicability of the mathematical description for the design of meso structures, it is necessary to 

consider manufacturing influences like material and build direction. So far, the mathematical 

description provides the possibility to identify the required strut thickness for a certain stiffness 

coming from the simulation of the used cell with the used material inputs. To match the practical 

stiffness results at the best the material parameters have to be taken from printed parts with the applied 

build direction. Hence, for meso structures oriented transversely to the build direction the transverse 

material stiffness and Poisson's ratio should be used within the simulation. 

 
Figure 8. Partial fit of pressure stiffness simulation results 

6. Conclusion and Outlook 
Based on a FE-simulation of the pressure stiffness of strut-based meso structures a power fit has been 

identified as a mathematical description to scale the meso structures' stiffness depending on the influencing 

parameter of structural thickness and elementary cell size. This scaling model serves as an alternative to 

iteratively determining the influencing parameters for a required stiffness using FEM. Based on an 

analytical calculation of FCC and BCC lattice structures underlying effects to the pressure behaviour of 

strut lattices are identified. Considering these effects the mathematical description is revised accordingly by 

subdividing the fit into three fits that show improved agreement to the simulation. 

For further research, this approach shall be transferred to other load cases like shear, bending or torsion and 

other meso structure types. Furthermore, the mathematical model shall be extended for asymmetric cells 

which requires the inclusion of further influencing parameters like the ratios of the cell edge lengths. 

Moreover, meso structures can be graded between neighbouring cells but also in its structural thickness 

which requires a description depending on a variable structural thickness. For dimensioning a meso 

structure, a calculation model for the strength and buckling resistance is required additionally. 
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