ON THE NUMBER OF COMPLETE SUBGRAPHS OF A GRAPH

J. W. Moon

A graph G_{n} consists of n nodes some pairs of which are joined by a single edge. A complete k-graph has k nodes and $\binom{k}{2}$ edges. Erdös [1] proved that if a graph G_{n} has $\left[\frac{1}{4} n^{2}\right]+h$ edges, then it contains at least $\left[\frac{1}{2} n\right]+h-1$ complete 3 -graphs if it contains any at all. The main object of this note is to extend this result to complete k-graphs.

If n and k are integers such that $n=t(k-1): r$, where t is a non-negative integer and $1 \leq r \leq k-1$, let

$$
d_{k}(n)=\frac{1}{2} \frac{k-2}{k-1}\left(n^{2}-r^{2}\right)+\left(\frac{r}{2}\right)
$$

and

$$
f_{k}(n)=\frac{n(k-2)+r}{k-1}-(k-1)
$$

These expressions satisfy the identity
(1) $\quad d_{k}(n)-d_{k}(n-k)=f_{k}(n)+\left(\frac{k}{2}\right)+(k-2)(n-k)-1$,
if $n \geq k$. (We adopt the convention that $d_{k}(0)=0$.)
THEOREM 1. Let n and k be integers such that $3 \leq k \leq n$. If the graph G_{n} has $d_{k}(n)+h$ edges, when h is any integer, then it contains at least $f_{k}(n)+h$ complete k-graphs if it contains any at all.

Proof. The proof is by induction on h. The theorem is trivially true if $f_{k}(n)+h \leq 1$. Consider a graph G_{n} with
$d_{k}(n)+h$ edges, where $h>1-f_{k}(n)$. We may assume that G_{n} contains at least one complete k-graph.

If G_{n} contains exactly one complete k-graph K, then any node not belonging to K can be joined to at most $k-2$ nodes of K. Hence, the graph obtained from G by removing the k nodes of K and all edges incident with the ${ }^{n} \mathrm{e}$ nodes has at least

$$
\begin{aligned}
d_{k}(n)+h-\left(\frac{k}{2}\right)-(k-2)(n-k) & >d_{k}(n)+1-f_{k}(n)-\left(\frac{k}{2}\right)-(k-2)(n-k) \\
& =d_{k}(n-k)
\end{aligned}
$$

edges, by (1). But, a theorem due to Turán [4] states that any graph with $n-k$ nodes and more than $d_{k}(n-k)$ edges contains at least one complete k-graph. Therefore it is impossible for G_{n} to contain exactly one complete k-graph.

We may now assume that G_{n} contains more than one complete k -graph. It is not difficult to see that there must exist an edge of G_{n} that belongs to at least one, but not to all, of the complete $k-g r a p h s$ of G_{n}. Then the graph G_{n}^{\prime} obtained from G_{n} by removing this edge has $f_{k}(n)+h-1$ edges and it still contains at least one complete k-graph. Hence G_{n}^{\prime} contains at least $f_{k}(n)+(h-1)$ complete k-graphs, by the induction hypothesis. It follows therefore that G_{n} contains at least $f_{k}(n)+(h-1)+1=f_{k}(n)+h$ complete k-graphs. This suffices to complete the proof of the theorem.

Let $\alpha(k)$ denote the number of complete k-graphs contained in the graph G_{n} and, for convenience, let $e=\alpha(2)$. If $e \leq d_{k}(n-1)+(k-1)+(n-r) /(k-1)$. Then simple examples can be given to show that the lower bound for $\alpha(k)$ given by Theorem 1 is best possible; for larger values of e the bound is undoubtedly not best possible.

Nordhaus and Stewart [3] proved that

$$
\alpha(3) \geq \frac{4}{3} \frac{e}{n}\left(e-\frac{1}{4} n^{2}\right)
$$

for any graph G_{n}. Moon and Moser [2] proved that if $e \geq \frac{1}{2} \frac{k-2}{k-1} n^{2}$, where $3 \leq k \leq n$, then

$$
k(k-2) \alpha(k) / \alpha(k-1) \geq(k-1)^{2} \alpha(k-1) / \alpha(k-2)-n
$$

for any graph G_{n}. This can be iterated to yield the inequality

$$
\alpha(k) / \alpha(k-1) \geq \frac{k-1}{k} \cdot \frac{2}{n}\left(e-\frac{1}{2} \frac{k-2}{k-1} n^{2}\right) .
$$

This also can be iterated to yield the following result, which for large values of e is stronger than Theorem 1.

THEOREM 2. If $e \geq \frac{1}{2} \frac{k-2}{k-1} n^{2}$, where $3 \leq k \leq n^{2}$, then

$$
\alpha(k) \geq \frac{2}{k}\left(\frac{2}{n}\right)^{k-2} e\left(e-\frac{1}{4} n^{2}\right)\left(e-\frac{1}{3} n^{2}\right) \ldots\left(e-\frac{1}{2} \frac{k-2}{k-1} n^{2}\right)
$$

for any graph G_{n}.

In closing, we remark that it can be shown that the distribution of the random variable $\alpha(k)$ over the class of all graphs G_{n} is asymptotically normal with mean

$$
\mu^{\prime}=\left(\frac{n}{k}\right) 2^{\left(\frac{k}{2}\right)}
$$

and variance

$$
\sigma^{2}=2^{k(1-k)}\left(\begin{array}{l}
n \\
k
\end{array} \sum_{i=2}^{k}\binom{k}{i}\left(\begin{array}{l}
n-i_{i}
\end{array}\right)\left(2^{\binom{i}{2}}-1\right)\right.
$$

for each fixed value of k.

REFERENCES

1. P. Erdös, On the number of triangles contained in certain graphs, Canad. Math. Bull. 7 (1964) 53-56.
2. J. W. Moon and L. Moser, On a problem of Turán, Publ. Math. Inst. Hung. Acad. Sci. 7 (1962) 283-286.
3. E.A. Nordhaus and B. M. Stewart, Triangles in an ordinary graph, Canad. J. Math. 15 (1963) 33-41.
4. P. Turán, On the theory of graphs, Colloq. Math. 3 (1954) 19-30.

University of Alberta, Edmonton

