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Abstract

We show that every continuous self-adjoint functional on the noncommutative Schwartz space can be
decomposed into a difference of two positive functionals. Moreover, this decomposition is minimal in the
natural sense.
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1. Introduction

The aim of this paper is to investigate one concrete object, the so-called
noncommutative Schwartz space—denoted by §. We describe this Fréchet *-algebra
in the next section. This object has been studied in several contexts and received
reasonable attention, so far. It appears, for instance, in K-theory (see [3, 9]) and in
cyclic cohomology for crossed products [6, 12]. Investigation of this object continues.
Recently, Cia$ and the present author have obtained several further results. Cia$, using
purely Fréchet space tools, showed in [2] that the noncommutative Schwartz space
admits a functional calculus and characterised closed, commutative *-subalgebras
of 8. In [11], the present author showed that every positive linear functional on S
as well as every derivation from S into any S-bimodule is automatically continuous.
This paper deals also with amenability properties of the noncommutative Schwartz
space. Although S is not amenable (see [10, Theorem 9.7] and [11, Proposition 2]),
it turns out that it is approximately amenable [11, Theorem 21]. The present paper
is a continuation of this research. The aim is to provide a way of decomposing a
continuous and self-adjoint functional on the noncommutative Schwartz space into a
difference of two positive functionals.

The paper is divided into four parts. In Section 2, we recall the definition of the
noncommutative Schwartz space and give basic notation. Section 3 deals with the
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2] Jordan decomposition 323

dual of the noncommutative Schwartz space. Section 4 provides a construction of the
above-mentioned decomposition.

For unexplained details we refer the reader to [8] for the structure theory of Fréchet
spaces and to [4] for the ‘algebraic-in-flavour’ aspects of the paper.

2. Preliminaries

Throughout the paper we denote N :={1,2,3,...} and Ny := N U {0}. Next we
recall that
+00
s={€= @ O 1l 1= D1 < oo forall k e o)
j=1
and its topological dual

+00
s = {;7 = (1)) jen C cN . |77|,’€2 = Z |;7j|2j‘2k < +o0 for some k € No}
J=1

are the so-called spaces of rapidly decreasing and slowly increasing sequences,
respectively. We consider the space S := L(s’, s) of linear and continuous operators
from the dual of s into s with the topology of uniform convergence on bounded sets.
It is possible to turn this space into a locally multiplicatively convex (LMC for short)
Fréchet x-algebra by the use of the isomorphism

8= % 1= {x= (e IR = Y I P < +oo forall m € M.
i,j=1

The algebra S will be called the noncommutative Schwartz space and we refer the
reader to [11] for more information on the properties of this algebra.

3. Dual of the noncommutative Schwartz space

The topological dual of S has several natural representations. Observe first that by
[8, Proposition 28.16], s is nuclear and so by [7, 21.2.2] it has the approximation
property. Consequently, finite-rank operators are dense in L(s’, s). Therefore, by
[7, 15.3.4 and 16.1.4] the map

x®y (X - (x,x)y)
extends to a topological isomorphism
X:s®s—S.
Now, applying [7, 16.1.7], we can observe that

S =L(,s) =(®s) =5 ®s =L(s,s).
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We can also view &’ as the space of matrices. Recall that S ~ K™ consists of the
so-called rapidly decreasing matrices, that is an infinite matrix x = (x;;); jen belongs
to S if and only if sup{IxijI(ij)k : i, j € N} is finite for every k € Ny. Since, by
[8, definition on page 326], S is a Kothe sequence space, we can use [8, Lemma
27.11] to observe that S’ is again a space of matrices, the so-called slowly increasing
ones. More precisely,

S = {¢ = (¢i))ijenr | suplepiI(ij)™ : i, j € N} < +o0 for some k € Np}.

The duality in the matrix language is given by the trace, that is, if x€ S, ¢ € &,
then

+00
6(x) 1= (%, ) = ) Xy
i,j=1
Analogously to the continuous inclusion s < s’, also for matrices we easily observe
that S < &’ continuously. This shows in particular that every rapidly decreasing
matrix is a functional on S.
Observe now that the order in § is inherited from B({,). This is a consequence of
a continuous inclusion S < B(¢,) and [1, Proposition A.2.8] (see [5, Corollary 2.5]).
Therefore, we can use this order to define positive functionals on the noncommutative
Schwartz space. To this end, let ¢ € §’. We say that it is positive if it maps positive
elements into nonnegative numbers, that is, ¢(x) > 0 for every x >0 in S. By &,
we denote the cone of positive functionals on the noncommutative Schwartz space.
We can also define self-adjoint functionals in the usual manner. First we define

¢*(xX) = p(x*), x€8

and we say that ¢ is self adjoint if ¢ = ¢*. As in the C*-algebra case, we can easily
show that ¢ is self adjoint if and only if ¢(x) is real for any self-adjoint x € S. If
we represent ¢ € 8’ as a matrix, then ¢* is represented by the transposed complex-
conjugate matrix. Self adjointness of ¢ € S’ means that the representing matrix is self
adjoint.

Let us now give several ‘easy-to-obtain’ consequences of the above definition. In
what follows, u, stands for the infinite matrix (1(; 8) with I, being the n X n identity
map. Consequently, u,¢u, (being the matrix multiplication) is the nth truncation of ¢.

ProrosiTioN 3.1. Let ¢ be a functional on the noncommutative Schwartz space.

(1)  If ¢ is a rapidly decreasing matrix, then ¢ > 0in S’ if and only if ¢ > 0in S.
(i) ¢ = 0ifand only if u,¢u, > 0 for every n € N.

Proor. (i) Suppose that ¢ > 0 in S and take a positive y € S. By [11, Proposition 3(ii)],
y = xx* for some x € S. Since xx* = (3 ; Xk X jt)i,j»

Plxx") = i i) i XX = f<§k,¢§k>,
i,j=1 k=1

+
k=1
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where & = (xji)jen € s’. By [11, Proposition 3(viii)], (£, ¢£) > 0 for every & € s’ and,
finally, ¢ > 0in &'.
Let now ¢ > 0 in 8’ and take an arbitrary £ € s’. Then

(96.8) = i (pué, uné).
Now, for every n € N, define the infinite matrix x,, € S by

& ... & 0 0
0 0 0 0 0

X, 1=

By assumption, ¢ > 0in S’ and therefore ¢(x] x,) > 0 for every n € N. Since ¢(xx,) =
(Pué, u,&), we obtain (¢&, &) > 0. Consequently, by [11, Proposition 3(viii)], ¢ >0
in S.

(ii) Suppose that ¢ > 0. Then, for any n € N, u,¢u, and arbitrary x > 0 in S,

<<un¢una X» = <<¢a unxun»-

By [11, Proposition 3(viii)], x > 0 if and only if wu,xu, >0 for all n € N and,

consequently, u,du, >0 in S’. Suppose now that the converse holds. Then for any
x € S we have

(@) = lim (b, ).
Applying this to x > 0, we get the conclusion. O
Recall that an infinite matrix ¢ € S’ if and only if
Ipll; := sup{igI(if)™ : i, j € N} < +oo
for some k € Ny. Repeating the proof of [11, Lemma 5], we get the following result.

Proposition  3.2. Suppose that ¢ = (¢ij)ijen Iis a positive functional on the
noncommutative Schwartz space. Then

llgll; = Sup{¢jjj_2k : jEN}L

4. Construction

In this final section we provide a way of decomposing a self-adjoint functional
on the noncommutative Schwartz space into a difference of two positive functionals.
We will also show that it is minimal in the following, natural sense. Suppose that
¢ = ¢, — ¢_ is such a decomposition. We will say that it is minimal if any other
decomposition ¢ = ¢; — ¢, of a self-adjoint ¢ € 8’ into a difference of two positive
functionals ¢1, ¢, € S’ with the additional property ¢; < ¢, ¢, < ¢_ implies that ¢; =
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¢+, ¢2 = ¢_. For the purpose of this construction, we denote by 0,,,,, 1 < m,n < oo, the
m X n matrix of zeros. An element ¢ € §’ of the form

0141 | 01,0
e a1t ki
Oco -1 | Ekr1k ,

& 0co.c0

where nonzero elements run east and south of the (k, k)th entry, will be called a corner
matrix.

Step 1. Particular case. We start our construction with a self-adjoint corner matrix

& & &
e
& 0co o

for some £ € s'. Now we define

max{1, &} & &
I -
ViEWE =l @ e

Obviously, ¢ € &, since
Il < max{lél, €17}

and ¢ € s'. Let now ¥ € S be the nth truncation of ¢ and take an arbitrary n € s’. Then
n
2
W'n.my 2 |Z l!’lj’]j| > 0.
=1
Therefore, ¥" = u,yu, > 0 for every n € N (as an element of S). Consequently, by
Proposition 3.1, ¢ > 0. Similarly, we can show that ¢ — ¢ > 0. Finally,
p=y - -9
is a decomposition of a corner matrix into a difference of two positive functionals.

Step 2. General case. Letnow ¢ = (¢;;); jen be an arbitrary self-adjoint functional on
the noncommutative Schwartz space and denote by (e;;); jen the sequence of matrix
units. That is, ¢;; is an infinite matrix with one in the (i, j)th entry and zeros elsewhere.
We now represent ¢ as an infinite sum of self-adjoint corner matrices. More precisely,

o= +Zoo(¢kk€kk + i’ (Prjen; + ¢jkejk)) = i" o~
k=1 k=1

Jj=k+1
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where each ¢* is a corner matrix. We now apply to those corner matrices the procedure

from Step 1. This leads to

011 04— 1.0
max({1, ¢} Prk+1 Diks2
¢ = Ooop-i Pre+1k
P2k (Pirdij)i,j>k
and
0141 01,00
max{l, ¢,%k} — Pk 0 0
¢]i = Ooo,k—l 0 ,
0 (DixPrj)i,j>k

where, for all k € N, we have ¢, ¢* > 0 and ¢* = ¢* — ¢* . Finally, we define

N :=i¢’; and ¢ :=i¢’i.
k=1 k=1

Obviously, ¢, and ¢_ are positive, as sums of positive functionals. If we show
that these two matrices are slowly increasing, then we will obtain a decomposition
¢ = ¢, — ¢_ into a difference of two positive functionals. To this end, we rewrite
¢+ = (Yij)i jen in the following form:

¢1j ifi = 1,
?il if j=1,
Jj-1
vy = {max(1, g3} + > leul ifi=j>1,
minf{i,j}—-1 =
¢ij + ¢ik¢kj if i,j> 1, i+ ]
k=1

Since ¢ € &', there is an m € N such that

ll#ll, = supilgl(i)™} < +oo.
ijeN

Equivalently, there exist m € N and a constant C > 1 such that, for all i, j € N,
lpijl < C@j™.
We divide the calculations into three cases:

i i=lorj=1:

Wil =il <CJ", Wil = lgul < Ci™;
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() i=j>1:
j-1
W5l < max(1, @3} + C* ) (k" < CP(* + ) <27 s
k=1
Gii) i#j i j>1:
min{i, j}
Wil < lgil + C* > " (k)™ < CO ()" + i ) < 207G
k=1
In all cases we get [i;;| < 2C2(ij)*™*!. Therefore, ||¢.||% ., < +oco and, consequently,
getyij J 2m+1 quently
¢+ € 8'. Finally, ¢_ = ¢, — ¢ € S’ and we get the desired decomposition.

Step 3. Minimality. Let ¢ € &’ be a self-adjoint functional on the noncommutative
Schwartz space and define

Zy:={(¢1,42) : ¢1,$2 € S\, b= ¢1 — ¢}

By Step 2 of the above construction, Z4 is nonempty for every ¢ € §’. We define in Z,
a partial order relation as follows:

(01,02) S W1,¥2) © d1 <Y1 Ay < .

Let now (4, ¥o)o be a chain in Z,. For every x € S, the net (¢,(x)), is nonincreasing
and bounded from below (by zero). Consequently, lim, ¢, (x) exists for every positive
element x in the noncommutative Schwartz space. By [11, Proposition 3(v)], positive
elements span the whole of S and therefore we may define

¢+() :=limge(y), y€S.

Similarly,

¢-() :=limyo(y), yeS.

Obviously, ¢ = ¢, — ¢_ and ¢, ¢_ > 0. It is also not difficult to see that (¢, $_) € Z,
is an upper bound for the chain (¥, ¥,),. Now an application of the Kuratowski—Zorn
lemma gives us a minimal element in Z.

We may now state the main result of this section.

TueorREM 4.1. Every continuous, linear and self-adjoint functional on the non-
commutative Schwartz space admits a minimal decomposition into a difference of two
positive functionals.

Remark. The above construction can by no means be thought of as unique. For, if we
take an n X n matrix

01 1 .1
10 0 .0
¢:= ... ’
10 0 .0
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then Step 2 of our construction leads to

1 .1 1 0 0 ... 0
01 1 1

¢: * ° h DY
L. o1 1 ... 1

This decomposition is not minimal, since we also have

1 1 1 1
1 N (2 "2 72 -3
S0 1

¢ = 72 2 2 2
i L U 1
2 2 2 2

Some easy (but tedious) calculations show that this last decomposition is minimal.
However, the spectral decomposition (which is also minimal) gives us

(1

[2]
[3]

(4]

(3]
(6]

Vi =1 1 1 1
2 2 2 2
1 1 1 1
p=| 2 2Vn—1 2vVn—-1 = 2vVn-1
1 1 1 1
2 2Vn—1 2Vn—-1  2vn-1
V-1 1 1 1
2 2 2 2
1 1 1 1
- 2 2vn—1 2Vn—-1 = 2vn-1
1 1 1 1
2 2vVn—-1 2Vn—-1 = 2+n-1
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