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Abstract

In this note we show that the members of a certain class of local similarity groups are
l2-invisible, i.e. the (non-reduced) group homology of the regular unitary representation
vanishes in all degrees. This class contains groups of type F∞, e.g. Thompson’s group V
and Nekrashevych–Röver groups. They yield counterexamples to a generalized zero-in-
the-spectrum conjecture for groups of type F∞.

1. Introduction

The zero-in-the-spectrum conjecture (or question) appears for the first time in Gromov’s
article [Gro86]. It states that for an aspherical closed Riemannian manifold M there always
exists p > 0 such that the spectrum of the Laplacian ∆p acting on the square integrable p-forms
on the universal covering of M contains zero. The latter is equivalent (see [Lot96]) to the
group-homological statement

∃p>0 Hp

(
Γ,N (Γ)

)
6= 0, (1)

where Γ = π1(M) and N (Γ) is the group von Neumann algebra of Γ. The zero-in-the-spectrum
conjecture is motivated and implied by the strong Novikov conjecture (see [Gro86, 4.B.] and
[Lüc02, Theorem 12.7, p. 443]). We call a group Γ l2-invisible if

∀p>0, Hp

(
Γ,N (Γ)

)
= 0.

By [Lüc02, Lemma 6.98, p. 286 and Lemma 12.3, p. 438] a group Γ of type F∞ is l2-invisible if
and only if

∀p>0, Hp

(
Γ, l2(Γ)

)
= 0.

Note that l2-invisibility of a group is a much stronger property than the vanishing of its l2-Betti
numbers, which is equivalent to the vanishing of the reduced homology.

A more general zero-in-the-spectrum question by Lott [Lot96], where one drops the
asphericity condition, was answered in the negative by Farber and Weinberger [FW01]. This
note is concerned with an algebraic generalization of the zero-in-the-spectrum question, which
was raised, in different terminology, by Lück (see [Lüc09, Remark 12.16] and [Lüc02, Remark 12.4,
p. 440])

Are there groups of type F or F∞ that are l2-invisible? (2)

Recall that a group G is of type F if and only if there is a model of the classifying space BG
with finitely many cells and of type F∞ if and only if there is a model of BG with finitely many
cells in each dimension. Without any finiteness condition on the group, l2-invisible groups are
easily constructed by taking suitable infinite products (see [Lüc09, Remark 12.16] and [Lüc02,
Remark 12.4, p. 440]). In the spirit of the zero-in-the-spectrum conjecture one might expect the
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l2-invisibility and a class of local similarity groups

answer to (2) to be negative, but, in fact, we provide here many examples of F∞-groups that are
l2-invisible.

Hughes [Hug09] introduced a certain class of groups acting on compact ultrametric spaces
which we call local similarity groups for short (see § 2 for details). Assuming there are only
finitely many Sim-equivalence classes of balls and the similarity structure satisfies a condition
called rich in ball contractions, these groups satisfy property F∞ (see [FH12]). In § 3 we will
introduce another property for similarity structures, called dually contracting, which is implied
by rich in ball contractions and enables us to prove the following theorem in § 4.

Theorem 1.1. Let X be a compact ultrametric space with similarity structure Sim. If Sim is
dually contracting, then the local similarity group Γ = Γ(Sim) is l2-invisible.

The well-known Thompson group V can be realized as a local similarity group which is
contained in this class, as well as the Nekrashevych–Röver groups Vd(H) (Example 2.2). They
are also of type F∞ by the results in [FH12]. Already Brown showed in [Bro87, Theorem 4.17]
that V is of type F∞. Unfortunately, we cannot say anything about the F -part of question
(2) since the groups we consider here are easily seen to have infinite cohomological dimension.
Indeed, as a byproduct of our argument, we obtain the following statement which implies infinite
cohomological dimension [Bro82, Proposition 6.1, p. 199 and Proposition 6.7, p. 202].

Theorem 1.2. Let X be a compact ultrametric space with similarity structure Sim. If there are
only finitely many Sim-equivalence classes of balls and Sim is rich in ball contractions, then the
local similarity group Γ = Γ(Sim) satisfies H∗(Γ,Z[Γ]) = 0 in all degrees.

Note that the case Γ = V has already been treated in [Bro87, Theorem 4.21].

1.1 Related work
In [Ogu07] Oguni defines an algorithm which takes a finitely presented non-amenable group G
as input and gives a finitely presented group GΨ with Hp(GΨ,N (GΨ)) = 0 for all p. But it is
not known when GΨ is of type F∞. In fact, GΨ is not even F3 if G is a free group.

2. Local similarity groups

In this section we review the definition and fix the terminology for Hughes’ class of local similarity
groups.

Recall that an ultrametric space is a metric space (X, d) such that

d(x, y) 6 max{d(x, z), d(z, y)} for all x, y, z ∈ X.

In this paper, X always denotes a compact ultrametric space. The endspace of a rooted proper
R-tree is a compact ultrametric space and, conversely, every compact ultrametric space of
diameter less than or equal to one is the endspace of a rooted proper R-tree. See [Hug04] for
more information in this direction. By a ball in X, we always mean a subset of the form

B(x, r) = {y ∈ X | d(x, y) 6 r}

with x ∈X and r > 0. Two balls are always either disjoint or one contains the other. A non-empty
subset is open and closed if and only if it is a union of finitely many balls. Let X,Y be compact
ultrametric spaces. A homeomorphism γ : X → Y is called
• an isometry if and only if d(γ(x1), γ(x2)) = d(x1, x2) for all x1, x2 ∈ X;
• a similarity if and only if there is a λ > 0 with d(γ(x1), γ(x2)) = λd(x1, x2) for all x1, x2 ∈X;

1743

https://doi.org/10.1112/S0010437X14007313 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007313


R. Sauer and W. Thumann

• a local similarity if and only if for every x ∈ X there are balls A ⊂ X and B ⊂ Y with
x ∈ A, γ(x) ∈ B and γ|A : A → B is a similarity.

The set of all local similarities on X forms a group and is denoted by LS(X).

Definition 2.1 [Hug09, Definition 3.1]. Let X be a compact ultrametric space. A similarity
structure Sim on X (called finite similarity structure in [FH12, Hug09]) consists of a finite
set Sim(B1, B2) of similarities B1 → B2 for every ordered pair of balls (B1, B2) such that the
following axioms are satisfied.
• Identities. Each Sim(B,B) contains the identity.
• Inverses. If γ ∈ Sim(B1, B2), then also γ−1 ∈ Sim(B2, B1).
• Compositions. If γ1 ∈ Sim(B1, B2) and γ2 ∈ Sim(B2, B3), then also γ2 ◦ γ1 ∈ Sim(B1, B3).
• Restrictions. If γ ∈ Sim(B1, B2) and B3 ⊂ B1 is a subball, then also γ|B3 ∈ Sim(B3, γ(B3)).

A local similarity γ : X → X is locally determined by Sim if and only if for every x ∈ X
there is a ball x ∈ B ⊂ X such that γ(B) is a ball and γ|B ∈ Sim(B, γ(B)). The set of all local
similarities locally determined by Sim forms a group, denoted by Γ(Sim), and is called the local
similarity group associated to (X,Sim). A group arising this way is called a local similarity group.

Example 2.2 (cf. [Hug09, § 4]). We recall the alphabet terminology of the rooted d-ary tree. Let
A = {a1, . . . , ad} be a set of d letters. A word in A is just an element of An for some n > 1 or the
empty word. An infinite word is an element in the countable product Aω =

∏
NA. The simplicial

tree associated to A has words as vertices and an edge between to words v, w if and only if there
is an x ∈ A with vx = w or v = wx. The root is the empty word. The endspace of this tree can
be identified with the set of infinite words. It comes with a natural ultrametric defined by

d(x, y) :=

{
0 if x = y,

exp(1− n) if n = min{k | xk 6= yk},

where x = x1x2 . . . and y = y1y2 . . . are infinite words. Since the tree is locally finite, the endspace
with this metric is compact. Call it X.

Now let H be a subgroup of the symmetric group Σd of A. Define a similarity structure Sim
on X as follows. If B1 and B2 are balls of X, then there are unique words w1 and w2 such that
B1 = w1A

ω and B2 = w2A
ω. If σ ∈ H, then

γσ : w1A
ω

→ w2A
ω, w1x1x2 . . . 7→ w2σ(x1)σ(x2) . . .

defines a similarity B1 → B2. Set Sim(B1, B2) := {γσ | σ ∈H}. This defines a similarity structure
Sim on X. The corresponding local similarity group is the Nekrashevych–Röver group Vd(H)
considered in [Nek04] and [Röv99]. In the case H = 1, this specializes to the Higman–Thompson
groups Vd and, in particular, to the well-known Thompson group V for d = 1.

If A and B are balls in X, we say that A and B are Sim-equivalent if and only if there
exists a similarity A → B in Sim. Denote by [A] the corresponding equivalence class of A. More
generally, if Y and Z are non-empty closed open subspaces of X, we say that Y and Z are locally
Sim-equivalent if and only if there exists a local similarity g : Y → Z locally determined by Sim.
This means that for each y ∈ Y there is a ball B of X with y ∈ B and B ⊂ Y such that g(B) is a
ball of X with g(B) ⊂ Z and g|B ∈ Sim(B, g(B)). Denote by 〈Y 〉 the corresponding equivalence
class of Y . Of course, two balls are locally Sim-equivalent if they are Sim-equivalent.

If Y ⊂ X is a non-empty closed open subspace, then one can restrict the similarity structure
Sim to one on Y by defining

Sim|Y := {γ ∈ Sim | dom(γ) ∪ codom(γ) ⊂ Y } ∪ {idB | B a ball of Y },
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where dom(γ) is the domain of γ and codom(γ) is the codomain of γ. Note that a ball of Y need
not be a ball of X, so we have to add the identity maps in the definition of Sim|Y . The group
Γ(Sim|Y ) is a subgroup of Γ(Sim). More precisely, Γ(Sim|Y ) is isomorphic to the subgroup of
Γ(Sim) consisting of the elements α : X → X with α(x) = x for x ∈ X\Y . The proof of the next
lemma is easy and left to the reader.

Lemma 2.3. Let X be a compact ultrametric space and Sim a similarity structure on X. Let
Y,Z ⊂ X be two non-empty closed open subspaces with 〈Y 〉 = 〈Z〉. Then the groups Γ(Sim|Y )
and Γ(Sim|Z) are isomorphic.

Let X be a compact ultrametric space. There is a rooted locally finite simplicial tree
associated to X, called the ball hierarchy. It has balls of X as vertices and an edge between
the balls A and B whenever A is a proper maximal subball of B or vice versa. Take the ball X as
a root. It is locally finite because X is compact. Now define the depth of a ball B in X, denoted
by depth(B), to be the distance between the vertex B and the root X in the ball hierarchy tree.
We will need the following lemma in § 3.

Lemma 2.4. Let X be a compact ultrametric space and P a partition of X into non-empty
closed open subspaces, i.e. P is a finite set of pairwise disjoint non-empty closed open subspaces
of X so that the union of the elements of P is all of X. Then there exists N ∈ N such that every
ball with depth at least N is contained in some P ∈ P.

Proof. Since every non-empty closed open subspace in a compact ultrametric space is a finite
union of balls, we can assume without loss of generality that each P ∈ P is a ball. Set

N := max{depth(P ) | P ∈ P}.

We claim that every ball with depth at least N is contained in some P ∈ P. Assume the
contradiction. Then there exists a ball B such that depth(B) > depth(P ) for all P ∈ P but
B 6⊂ P for all P ∈ P. The latter means that for each P ∈ P either B ∩ P = ∅ or P ( B. But
P ∈ P cannot be a proper subball of B because of the depth condition. So we have B ∩ P = ∅

for all P ∈ P which contradicts X =
⋃
P∈P P . 2

Definition 2.5. We call γ : A → B in a similarity structure Sim:
• contracting if and only if A ( B or B ( A;
• separating if and only if A ∩B = ∅;
• equalizing if and only if A = B.

In general, the precise relationship between the similarity structure and the corresponding
local similarity group is not yet understood very well. The following two propositions are easy
results in this direction.

Proposition 2.6. Let X be a compact ultrametric space and Sim a similarity structure on X.
Then the following are equivalent:

(i) Γ(Sim) is finite;

(ii) there are only finitely many separating elements in Sim;

(iii) there are only finitely many non-identity elements in Sim.

In this case, Sim contains no contracting elements and Γ(Sim) fixes all points of X except a
finite subset of isolated points. It permutes these isolated points in a way such that Γ(Sim) ∼=
Σd1 × · · · × Σdn is a finite product of finite symmetric groups.
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Proof. First we make a series of observations.

Observation 1. If γ : A → B is a separating element in Sim, then we can construct an element
α ∈ Γ(Sim) by defining α|A = γ and α|B = γ−1 and α(x) = x for all other elements x ∈ X. If
γi : Ai → Bi with i = 1, 2 are two separating elements and γ1 6= γ2, then the corresponding αi
also satisfy α1 6= α2. In particular, if there are infinitely many distinct such γi, then Γ(Sim) is
infinite.

Observation 2. Assume there is a contracting element γ : A → B in Sim. Assume without loss of
generality B ( A. Then there are infinitely many distinct separating elements in Sim which can
be constructed as follows. Let C be a ball in A\B and define Ci = γi(C) for i ∈ {0, 1, 2, . . .}. Fix
some i. Observe γi+k(C) ⊂ γi(B) for all k > 1 and γi(C) ∩ γi(B) = ∅. It follows Ci ∩ Ci+k = ∅

for all k > 1. Therefore, we can define γi := γ|Ci : Ci → γ(Ci) for i ∈ {0, 1, 2, . . .} and obtain an
infinite sequence of distinct separating elements in Sim.

Observation 3. Assume there is a separating element γ : A → B in Sim with A being an infinite
set. Then A has infinitely many subballs and we see at once that there are infinitely many distinct
separating elements in Sim.

Observation 4. Assuming we only have finitely many separating elements in Sim, then we claim
that there are only finitely many non-identity equalizing elements in Sim. This follows if we show
that each γ : C → C in Sim (which is an isometry) is itself locally determined by identities and
separating elements. This means that for each x ∈ C we find a ball D ⊂ C with x ∈ D and either
γ|D = idD or D ∩ γ(D) = ∅. We start by noting that for any isometry α : Y → Y of a compact
ultrametric space Y , if α 6= idY , then there must be a ball D ⊂ Y such that α(D)∩D = ∅. Now
consider the maximal proper subballs of C. Either γ is the identity on such a ball B or γ maps
B to another such ball or γ maps B to itself and is not the identity. Only in the last case do we
have to go a step deeper and consider the maximal proper subballs of B. Since γ|B 6= idB, we
know that there must be a subball E ⊂ B such that γ(E) ∩E = ∅. Since there are only finitely
many separating elements in Sim, we see that this process has to stop at some point. This proves
the claim.

(i) ⇒ (ii): This is clear from the first observation.

(ii) ⇒ (iii): Sim cannot contain any contracting elements because of the second observation.
Because of the fourth observation, there are also only finitely many non-identity equalizing
elements. So Sim has only finitely many non-identity elements.

(iii) ⇒ (i): This is clear from the definition of Γ(Sim).

Now we turn to the last statements. The first of these follows from the second observation.
From the fourth observation we know that each element in Γ(Sim) is locally determined by
identities and separating elements in Sim. We know that there are only finitely many elements of
the latter type in Sim. From the third observation we deduce that these separating elements can
only be defined on finite subballs (which consist of finitely many isolated points). This proves
that Γ(Sim) fixes all points of X except possibly a finite subset Y ⊂ X of isolated points. Since
Γ(Sim|Y ) ∼= Γ(Sim), we can assume without loss of generality that X itself contains only finitely
many points. In this case, by the restriction property of a similarity structure, each element
in Γ(Sim) is locally determined by similarities in Sim of the form A → B where A and B are
singleton balls. The definition

x ∼ y :⇐⇒ Sim
(
{x}, {y}

)
6= ∅
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gives an equivalence relation on X. Let X1, . . . , Xn be the corresponding equivalence classes. We
have

Γ(Sim) ∼= Γ(Sim|X1)× · · · × Γ(Sim|Xn)

and Γ(Sim|Xi) ∼= Σdi where di is the number of elements in Xi. This proves the last claim of the
proposition. 2

Proposition 2.7. Let X be a compact ultrametric space and Sim a similarity structure on X
such that Sim(B1, B2) = ∅ whenever depth(B1) 6= depth(B2). Then the local similarity group
Γ = Γ(Sim) is locally finite.

Proof. First let α be an arbitrary element in Γ. For each x ∈ X, let Ax be the maximal ball
with x ∈ Ax such that there is an element αx ∈ Sim(Ax, α(Ax)) and α|Ax = αx. The set of balls
{Ax | x ∈ X} is a partition of X called the partition into maximum regions for α. Define

depth(α) := max{depth(Ax) | x ∈ X}.

Note that from the assumption on Sim, each similarity in Sim preserves the depth of balls. Let
α, β ∈ Γ and let P and Q be the corresponding partitions into maximum regions. Observe the
composition β ◦α. It is locally determined by Sim on a partition R of X into balls such that for
every R ∈ R either R = P for some P ∈ P or R = (α|P )−1(Q) for some P ∈ P and some Q ∈ Q
with Q ⊂ α(P ). It follows

depth(β ◦ α) 6 max{depth(R) | R ∈ R} 6 max{depth(α),depth(β)}.

So if α1, . . . , αk ∈ Γ, we also have

depth(α1 ◦ · · · ◦ αk) 6 max{depth(α1), . . . ,depth(αk)}. (3)

Now let Λ be a subgroup of Γ with finite generating set γ1, . . . , γn. From (3) we deduce that

depth(λ) 6 max{depth(γi) | i = 1, . . . , n} =: N

for each λ ∈ Λ. We claim that there are only finitely many local similarities γ locally determined
by Sim such that depth(γ) 6 N . This follows because there are only finitely many balls B with
depth(B) 6 N and each Sim(B1, B2) is finite by definition. 2

3. A condition on the similarity structure

Here we introduce a condition on similarity structures used for the proof of Theorems 1.1 and 1.2.

Definition 3.1. Let X be a compact ultrametric space and Sim a similarity structure on X. We
say Sim is dually contracting or has a dual contraction if there are two disjoint proper subballs
B1 and B2 of X together with similarities X → B1 and X → B2 in Sim.

Remark 3.2. The property in Definition 3.1 is rather a property of the similarity structure than
of the local similarity group Γ(Sim). To illustrate the precise meaning of this statement, consider
the following. Let X be a compact ultrametric space and Sim a similarity structure on it. Remove
all elements in Sim of the form A → B where either A = X 6= B or A 6= X = B. Denote the
remaining set of similarities by Sim−. It is easy to see that Sim− still forms a similarity structure
on X. Furthermore, since no similarity in Sim\Sim− can be used to form a local similarity on X,
the groups Γ(Sim) and Γ(Sim−) are the same as sets of local similarities on X. However, even
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if Sim is dually contracting, the similarity structure Sim− never is. But it can be extended to
a dually contracting one. We therefore call a similarity structure potentially dually contracting
if it can be extended in such a way that the corresponding local similarity groups are the same
(as sets of local similarities) and the extension is dually contracting.

Example 3.3. The similarity structures presented in Example 2.2 are dually contracting. So
Theorem 1.1 applies to the Nekrashevych–Röver groups Vd(H) and, in particular, to the
Thompson group V .

Example 3.4. If X is a compact ultrametric space and Sim a similarity structure on X such that
the local similarity group Γ(Sim) is finite, then, by Proposition 2.6, Sim cannot be potentially
dually contracting.

Example 3.5. Let X be the end space of the rooted binary tree with the usual order. Let B1 and
B2 be the two maximal proper subballs of X. Let Sim be the similarity structure generated by
the unique order-preserving similarity γ : B1 → B2, i.e. the smallest similarity structure on X
containing γ. More precisely, the non-trivial similarities in Sim are the unique order-preserving
similarities xAω → x̄Aω where x̄ is obtained from x by changing the first letter of x, e.g. x̄ = 101
if x = 001. It follows from Proposition 2.6 that Γ = Γ(Sim) is infinite and from Proposition 2.7
that Γ is locally finite. It is therefore not finitely generated. Since it is locally finite, it is also
elementary amenable and consequently H0(Γ,N (Γ)) 6= 0. This shows that we cannot drop the
condition dually contracting in Theorem 1.1.

However, this similarity structure is not potentially dually contracting. Otherwise there would
be a similarity δ : X → A with A a proper subball of X. Let C be another proper subball of X
with A∩C = ∅. We have C ∩ δ(C) = ∅. The restriction δ̂ = δ|C : C → δ(C) =: D fits into a local
similarity on X. Just define α : X → X by

α|C := δ̂, α|D := δ̂−1, α|X\(C∪D) := id.

This local similarity α is not in Γ(Sim) because neither δ̂ nor any of its restrictions is an element
of Sim.

Remark 3.6. In [FH12], Farley and Hughes introduced a condition on a similarity structure Sim,
called rich in ball contractions, which is defined as follows. There exists a constant c > 0 such
that for every k > c and (B1, . . . , Bk) a k-tuple of balls, there is a ball B with at least two
maximal proper subballs and an injection

σ : {A | A maximal proper subball of B}→ {(Bi, i) | 1 6 i 6 k}

with [A] = [Bi] whenever σ(A) = (Bi, i). In [FH12] it is shown that local similarity groups arising
from similarity structures having this property and with only finitely many Sim-equivalence
classes of balls are of type F∞. It is quite clear that rich in ball contractions implies dually
contracting, just take (X, . . . ,X) as a k-tuple of balls.

In the next lemma, we extract the key features of the property dually contracting. Apart
from Proposition 3.8, these are the only ones we will need in the proof of the main theorem.
So we could have stated them as a definition, but Definition 3.1 is much easier to state and to
verify.

Lemma 3.7. Let X be a compact ultrametric space with dually contracting similarity structure
Sim. Then there exists a sequence (Si)i∈N where each Si is a set {B1

i , . . . , B
ni
i } of pairwise disjoint

balls in X satisfying the following properties.
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(i) For each i, k there exists a similarity X → Bk
i in Sim.

(ii) We have |Si|
i→∞−−−→∞.

(iii) For every i0 ∈ N and every partition P of X into non-empty closed open subspaces there is
an i > i0 such that for every B ∈ Si there exists P ∈ P with B ⊂ P .

Proof. Let B1
1 and B2

1 be two disjoint proper subballs of X and γi : X → Bi
1 similarities in

Sim for i = 1, 2. We will define the Si inductively. First set S1 = {B1
1 , B

2
1}. Now assume Si =

{B1
i , . . . , B

ni
i } has been constructed. Then define

Si+1 := {γ1(Bk
i ), γ2(Bk

i ) | 1 6 k 6 ni}.

It is clear that |Si| = 2i so that (ii) holds. Using that Sim is closed under restriction and
composition, it is easy to show property (i). It is also quite clear that the balls in each Si
are pairwise disjoint. For (iii), first define

depth(S) = min{depth(B) | B ∈ S}

for any finite set S of balls in X. Then the claim follows from Lemma 2.4 if we show

lim
i→∞

depth(Si) =∞.

Note that an application of the contractions γ1 or γ2 to a ball increases its depth by at least
one. It follows that depth(Si) increases by at least one if i increases by one and therefore goes
to infinity if i tends to infinity. 2

Proposition 3.8. If Sim is a dually contracting similarity structure, then the local similarity
group Γ = Γ(Sim) contains a non-abelian free subgroup and is therefore non-amenable.

Proof. We will identify two elements in Γ, a1 and a2, with ord(a1) = 3 and ord(a2) = 2. We will
also construct disjoint subsets X1 and X2 of X such that

a1X2 ⊂X1,

a2
1X2 ⊂X1,

a2X1 ⊂X2.

Thus, the ping-pong lemma will tell us that the subgroups H1 := 〈a1〉 ∼= Z3 and H2 := 〈a2〉 ∼= Z2

together generate a free product in Γ, i.e. 〈H1, H2〉 ∼= H1 ∗H2
∼= Z3 ∗Z2 is a subgroup of Γ, which

itself contains a non-abelian free subgroup. Let us turn to the construction (see Figure 1 below).
Let A1 and A2 be two disjoint proper subballs of X and γi : X → Ai for i = 1, 2 two similarities
in Sim. Set

B1 := γ1(A1),

B2 := γ1(A2),

B3 := γ2(A1),

B4 := γ2(A2).

These are pairwise disjoint balls in X. The similarities γ1 and γ2 induce similarities between any
pair of the balls Ai and Bi. For example,

δ2 := γ2|A1 ◦ γ1 ◦ γ−1
2 ◦ γ−1

1 |B2 : B2 → B3,

δ3 := γ2|A2 ◦ γ2 ◦ γ−1
1 ◦ γ−1

2 |B3 : B3 → B4,

δ4 := γ1|A2 ◦ γ−1
2 |B4 : B4 → B2.
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B1 B2 B3 B4

X

A1 A2

γ1 γ2

Figure 1. Figure for the proof of Proposition 3.8. The ellipses below are copies of the ellipses
above and represent the various balls appearing in the proof. The vertical wires represent the
similarities γi or restrictions of them.

Now define a1 to be the identity except on the balls B2, B3 and B4 where

a1|B2 := δ2 : B2 → B3,

a1|B3 := δ3 : B3 → B4,

a1|B4 := δ4 : B4 → B2.

It is straightforward to verify

δ4 ◦ δ3 ◦ δ2 = idB2 ,

δ2 ◦ δ4 ◦ δ3 = idB3 ,

δ3 ◦ δ2 ◦ δ4 = idB4 ,

so that a1 has order three. Define a2 to be the identity except on the balls B2 and A2 where

a2|B2 := γ−1
1 |B2 : B2 → A2,

a2|A2 := γ1|A2 : A2 → B2.

It is trivial to check a2
2 = idX . Last but not least define X1 := A2 and X2 := B2. It is easy to see

from the definitions that the relations at the beginning of the proof hold, so it is completed. 2

4. Proof of the main theorem

The proof relies on a common feature of relatives of Thompson’s groups: they contain products
of arbitrarily many copies of themselves as subgroups. This feature was utilized in homological
vanishing results before [Mon10, BFS12].

4.1 A spectral sequence
Our main tool will be a spectral sequence explained in Brown’s book [Bro82, ch. VII.7] which
we will summarize now. Let Γ be a group and Z a simplicial complex with a simplicial Γ-action.
Let M be a Z[Γ]-module. For σ a simplex in Z, denote by Γσ the isotropy group of σ, i.e. all
of the elements in Γ which fix σ as a set of vertices. Let Mσ be the orientation Z[Γσ]-module,
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i.e. Mσ = M as an abelian group together with the action

Γσ ×M → M (g,m) 7→

{
gm if g is an even permutation of the vertices of σ,

−gm if g is an odd permutation of the vertices of σ.

Furthermore, let Σp be a set of p-cells representing the Γ-orbits of Z. Then there is a spectral
sequence Ekpq with first term

E1
pq =

⊕
σ∈Σp

Hq(Γσ,Mσ)⇒ HΓ
p+q(Z,M)

converging to the Γ-equivariant homology of Z with coefficients in M . In our case, Z will be
acyclic, so that HΓ

p+q(Z,M) = Hp+q(Γ,M). Furthermore, Γσ will fix σ vertex-wise, so that

Mσ = M as Z[Γσ]-modules. We therefore have a spectral sequence Ekpq with

E1
pq =

⊕
σ∈Σp

Hq(Γσ,M)⇒ Hp+q(Γ,M).

4.2 The poset of partitions into closed open sets
Now let Γ = Γ(Sim) be a local similarity group coming from a dually contracting similarity
structure Sim on the compact ultrametric space X. Next we define, for each n ∈ N, a simplicial
Γ-complex Zn associated to a poset (Pn,6). Unlike the simplicial complex in [FH12], used for
proving finiteness properties, it has large isotropy groups. By definition, an element in Pn is a
set (partition) P = {P1, . . . , Pk} of pairwise disjoint non-empty closed open subspaces of X with
X = P1∪· · ·∪Pk satisfying the following extra condition: There are at least n elements contained
in P which are locally Sim-equivalent to X.

By Lemma 3.7, Pn 6= ∅. Let P,Q ∈ Pn. We say P 6 Q if and only if Q refines P, that is, for
all Q ∈ Q there exists P ∈ P such that Q ⊂ P . Then (Pn,6) is a poset. Explicitly, a simplex in
the associated simplicial complex Zn is a finite set of vertices which can be totally ordered using
the partial order on Pn. We write {P1 < · · · < Pk} for such a (k − 1)-simplex.

Next we will show that (Pn,6) is directed, which implies that Zn is contractible. So let
P,Q ∈ Pn. First, it is easy to see that there is a partition R into open and closed sets which
refines both P and Q. But we have to refine it even more so that it satisfies the extra condition.
From Lemma 3.7 parts (ii) and (iii) we obtain that there are at least n disjoint balls B1, . . . , Bs
such that every ball Bi is contained in some element of R and from part (i) we know that every
ball Bi is Sim-equivalent to X. So we can take these balls as elements of a refinement of R.

We endow Zn with the simplicial Γ-action

g{P1, . . . , Pk} = {g(P1), . . . , g(Pk)}

for a vertex P = {P1, . . . , Pk} and g ∈ Γ. We have gP 6 gQ whenever P 6 Q. It follows that
the action is indeed simplicial and that whenever g ∈ Γ fixes a simplex as a set of vertices, then
it fixes it vertex-wise.

We want to take a closer look at the isotropy groups Γσ for σ = {P1 < · · · < Pk} a simplex.
First consider the case k = 1. Write P = P1. If g ∈ Γσ, then gP = P and, consequently, there is
a permutation π of the set P such that g(P ) = π(P ) for every P ∈ P. Write ΣP for the group
of permutations of the set P. We therefore have

Γσ =
{
g ∈ Γ | ∃π∈ΣP∀P∈P , g(P ) = π(P )

}
.

Now let k > 1 be arbitrary. In this case, we have gPi = Pi for each i = 1, . . . , k. First we start
with a preliminary remark. Let P 6Q be two vertices. Then there is a unique function f :Q→ P
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such that Q ⊂ f(Q) for all Q ∈ Q. Let π ∈ ΣQ. Then π is called P-admissible if and only if
there is a ρ ∈ ΣP such that for all P ∈ P and all Q ∈ f−1(P ) we have f(π(Q)) = ρ(P ). In other
words, π is a permutation of Q which gives a permutation of P when we write each element in
P as a disjoint union of elements in Q. The set of all P-admissible elements forms a subgroup of
ΣQ, denoted by ΣP6Q. More generally, if we have an ascending chain Q1 6 · · · 6 Ql of vertices,
then we can define the subgroup ΣQ16···6Ql of ΣQl consisting of all elements in ΣQl which are
Qi-admissible for all i = 1, . . . , l − 1. In particular, we have defined a subgroup Σσ of ΣPk for
the simplex σ = {P1 < · · · < Pk} from above. This group is defined exactly in a way such that

Γσ =
{
g ∈ Γ | ∃π∈Σσ∀P∈Pk g(P ) = π(P )

}
.

The group

Λσ =
{
g ∈ Γ | ∀P∈Pk g(P ) = P

} ∼= ∏
P∈Pk

Γ(Sim|P )

is a normal subgroup of Γσ. It is also of finite index in Γσ because the quotient Γσ/Λσ injects
into the finite group Σσ.

4.3 Künneth theorems
The following Künneth vanishing result was proved in the context of Farber’s extended l2-
homology in [FW01, 3. Appendix]. For the proof of the exact formulation below see [Lüc02,
Lemma 12.11, p. 448].

Proposition 4.1. Let G=G1×G2 be a product of two groups. Assume that Hp(G1,N (G1)) = 0
for p 6 n1 and Hp(G2,N (G2)) = 0 for p 6 n2. Then we have Hp(G,N (G)) = 0 for p 6 n1+n2+1.
Note that the case ni = −1 is allowed and gives a non-trivial statement.

Corollary 4.2. Let m > n > 2 and G = G1×· · ·×Gm be a product of m groups. Assume that
H0(•,N (•)) vanishes for at least n of the groups Gi. Then H∗(G,N (G)) vanishes up to degree
n− 1.

We also need cohomological versions of these results with coefficients in the group ring.

Proposition 4.3. Let G = G1 × G2 be a product of two groups of type FP∞. Assume that
Hp(G1,Z[G1]) = 0 for p 6 n1 and Hp(G2,Z[G2]) = 0 for p 6 n2. Then we have Hp(G,Z[G]) = 0
for p 6 n1 + n2 + 1.

Proof. Let P∗ be a Z[G1]-resolution of Z such that each Pi is a finitely generated free Z[G1]-
module. Let Q∗ be a similar resolution for G2. Then

C∗ = homZ[G1](P∗,Z[G1]) and D∗ = homZ[G2](Q∗,Z[G2])

are cochain complexes of free abelian groups which compute H∗(G1,Z[G1]) and H∗(G2,Z[G2])
respectively. For Z[Gi]-modules Mi, i ∈ {1, 2}, the cochain cross product [Bro82, ch. V.2]

homZ[G1](P∗,M1)⊗Z homZ[G2](Q∗,M2) → homZ[G](P∗ ⊗Z Q∗,M1 ⊗Z M2) (4)

is an isomorphism of cochain complexes since all Pi and Qj are finitely generated free. If
Mi = Z[Gi], then M1 ⊗Z M2

∼= Z[G] as Z[G]-modules and the right-hand side of (4) computes
H∗(G,Z[G]) (see [Bro82, Proposition 1.1, p. 107]). By a suitable Künneth theorem [Dol95,
Theorem 9.13, p. 164] and the fact that C∗, D∗ are free as Z-modules, the homology of
C∗⊗ZD

∗ vanishes in degrees 6 n1 + n2 + 1. 2

The following corollary follows from H0(G,Z[G]) ∼= Z[G]G = 0 for infinite G.

Corollary 4.4. Let G=G1×· · ·×Gn be a product of n infinite FP∞ groups. Then H∗(G,Z[G])
vanishes up to degree n− 1.

1752

https://doi.org/10.1112/S0010437X14007313 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007313


l2-invisibility and a class of local similarity groups

4.4 Proof of Theorem 1.1
Let n > 2 be arbitrary. Consider the simplicial Γ-complex Zn from above. From the discussion
it follows that we have a spectral sequence Ekpq with

E1
pq =

⊕
σ∈Σp

Hq(Γσ,N (Γ))⇒ Hp+q(Γ,N (Γ)). (5)

Fix a simplex σ = {P1 < · · · < Pp}. First observe the group Λσ ∼=
∏
P∈Pp Γ(Sim|P ) defined

above. From the extra condition on the vertices we know that at least n elements of Pp are locally
Sim-equivalent to X and therefore, by Lemma 2.3, at least n of the groups Γ(Sim|P ) with P ∈ Pp
are isomorphic to Γ. Γ is infinite by Proposition 2.6 and non-amenable by Proposition 3.8. Going
back to a result by Kesten [Lüc02, Lemma 6.36, p. 258], this is equivalent to H0(Γ,N (Γ)) = 0.
By Corollary 4.2 we therefore have Hq(Λσ,N (Λσ)) = 0 for q = 0, . . . , n− 1. Since Λσ is normal
in Γσ we have Hq(Γσ,N (Γσ)) = 0 for q = 0, . . . , n − 1 by [Lüc02, Lemma 12.11]. Since N (Γ) is
a flat ring extension of N (Γσ) (see [Lüc02, Theorem 6.29]), it follows that

Hq(Γσ,N (Γ)) = 0 for q ∈ {0, . . . , n− 1}.

Consequently, the spectral sequence (5) collapses except possibly in the region p > 0, q > n and
therefore

Hi(Γ,N (Γ)) = 0 for i 6 n− 1.

Because n is arbitrary, Theorem 1.1 follows.

4.5 Proof of Theorem 1.2
The proof is similar to the one above and we only describe the necessary modifications. Hughes
and Farley proved that Γ is of type F∞ (which implies type FP∞) under the assumptions on
Sim (see [FH12, Theorem 1.1]) and it is infinite because of Proposition 2.6. Instead of (5), we
use the cohomological version of Brown’s spectral sequence with coefficients in the group ring:

Epq1 =
∏
σ∈Σp

Hq(Γσ,Z[Γ])⇒ Hp+q(Γ,Z[Γ]).

Write Pp = {P1, . . . , Pk} such that the first n elements are locally Sim-equivalent to X. Observe
the normal subgroup

Λ′σ =
n∏
i=1

Γ(Sim|Pi) C Λσ =
k∏
i=1

Γ(Sim|Pi).

By Corollary 4.4 we obtain Hq(Λ′σ,Z[Λ′σ]) = 0 for q ∈ {0, . . . , n − 1}. Since Z[Γ] is a free
Z[Λ′σ]-module and group cohomology of FP∞-groups commutes with direct limits in the
coefficients [Bro82, Theorem 4.8, p. 196], we obtain Hq

(
Λ′σ,Z[Γ]

)
= 0 for q ∈ {0, . . . , n − 1}.

Now an application of the cohomological Hochschild–Lyndon–Serre spectral sequence to the
group extension

1 → Λ′σ → Λσ → Λσ/Λ
′
σ → 1

and the coefficient module Z[Γ] yields Hq(Λσ,Z[Γ]) = 0 for q ∈ {0, . . . , n−1}. Apply this spectral
sequence once more to the group extension

1 → Λσ → Γσ → Γσ/Λσ → 1

to obtain
Hq(Γσ,Z[Γ]) = 0 for q ∈ {0, . . . , n− 1}.

Now proceed as above.
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