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THE DESIGN AND SIGNIFICANCE OF SYNERGIC
ACTION TESTS

BY K. MATHER

John Innes Horticultural Institution, Merton, London

(With 6 Figures in the Text)

1. THE DATA

IN a recent paper, published in this Journal, Henderson & Gorer (1940) have
described experiments designed to test the possibility of synergic action of
certain forms of treatment of Vibrion septique infection in mice. Bach test
mouse was injected intradermally with a suspension of the spores, the dose
being constant and known to be sufficient to cause death. Actually, out of
more than three hundred control mice infected in this way, one did survive,
but there is a definite suspicion that it had inadvertently escaped injection.
The infected mice were then treated in various ways. Some were given sul-
phapyridine, others an antitoxin and still others an antibacterial serum. Each
of these treatments, if given in suitable dose and at a suitable time, was able
to save the lives of some mice. The precise rate of survival could be adjusted
by varying the dosage and time of treatment. In addition to these single
treatments, other mice were given combinations of the treatments, taken two
at a time. Thus some mice were given sulphapyridine together with antitoxin,
some sulphapyridine and antibacterial serum and finally a third group were
injected with both antitoxin and antibacterial serum. The results of the
experiments are shown in Table 1 (which is a copy of Henderson & Gorer's
Table V). Six experiments were performed in all. Not all the treatments and
combinations of treatments were given in each experiment, but the whole
plan was designed to equalize the numbers of mice subjected to each treatment
or pair of treatments.

There are certain fairly obvious features of this table. In the first place
Exp. 2 seems to be giving subnormal survival rates in all the treatments it
contains. This particular group of mice may have been genetically of higher
susceptibility to the attack of V. septique than were the mice of the other
experiments. Secondly sulphapyridine seems to show strong synergic inter-
action with both of the serological treatments, whereas the last two seem to be
.without interaction. We can, however, only be sure of the heterogeneity
between the mice of the different experiments, and of the different inter-
actions between the treatments, if a suitable statistical analysis confirms these
apparent properties of the data. Furthermore, a statistical analysis should
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K. MATHER 515

provide information as to the best way of designing such experiments, i.e.
how to lay out the experiment in order to obtain the maximum of useful in-
formation per mouse used.

2. HETEROGENEITY OF THE EXPERIMENTS

Each of the six experiments comprised a different set of treatments, and in
consequence the number of mice surviving in the experiments will be different,
as the treatments and combinations of treatments appear to have very
different effects on the survival rate. This means that a direct test of hetero-
geneity of the six experimental totals is useless, as they will merely reflect
the treatment differences. The simplest way out of the difficulty would be to
test each of the eighteen double entries in the body of the table separately,
but this is unfortunately impossible as the expectations are often so small that
X2 cannot be used. An adaptation of this method may, however, be used. The
survival and death rates expected for each of the eighteen treatment tests are
obtained. The expectations for the experiment totals are then found by
summing the relevant values, and these may then be used as the basis of a %2

test.
Thus 90 mice in all were tested with sulphapyridine by itself. Of these 90,

7 survived. Then by simple proportion we expect = 2-3 mice to have
yu

survived in each of the three groups of 30, of which the total is composed.
These expectations are entered below the corresponding observed numbers
in Table 1. Where antitoxin was used 7 survived out of 89, and so in Exp. 1,

7 x 29
which included 29 of the 89, we should expect —™— or 2-2809 mice to survive.

In Exps. 3 and 5, which each included 30 out of the 89, —^— or 2-3596

survivors would be expected. Where sulphapyridine and antitoxin were given
together a total of 89 mice showed 79 survivors. These would be expected to

u J - i. -u * A • ix. x- 79x30 79x29 ,79x30 _, , ,
be distributed in the proportions - ^ — , — ^ — and — ^ — among Jixps. 1, 4
and 5. Thus 26-6292, 25-7416 and 26-6292 would be expected to live, re-
spectively. So the three treatments of Exp. 1 should give 2-3, 2-2809 and
26-6292 survivors respectively, i.e. out of the 89 mice in this experiment
31-2434 are expected to live and 57-7566 to die. The expectations for the
remaining five experimental totals are arrived at in the same way. Having
obtained these expectations, a x2 for agreement of the observed values may be
calculated, using the formula

where a is the number observed in any class, m the corresponding expectation,
S indicates summation over both classes in each experiment, one of living and
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516 Synergic action tests

one of dead mice, and n is the total number of mice tested. The a2jm — r values
are shown in the bottom line of the table. Summing these values, we find

x
2 = 18-1365.

This x2 has five degrees of freedom, as of the six, one from each experiment,
one is taken up by the necessity of the experiments adding up to the grand
total.

Now a x2 of 18-1365 for five degrees of freedom has a probability of less
than 1 %, so we may consider that heterogeneity of the experiments is signifi-
cantly demonstrated.

A closer inspection of the data shows that the main contribution to x2 is
made by Exp. 2. Now we can test the heterogeneity of the remaining five
experiments (1 and 3-6) in the same way as we tested all six, except, of
course, that the table of values will have Exp. 2 omitted. This is done in
Table 2. The expectations are derived and x2 calculated just as before. We find
X2 = 2-3980, for four degrees of freedom, and the probability lies between 70
and 50%. Thus there is no sign of heterogeneity when Exp. 2 is omitted. We
must suppose that the mice used in this experiment were in some way,
genetically perhaps, different in their reactions to Vibrion septique from those
of the other five experiments. We must treat the results of Exp. 2 separately
from those of the other five. If they were not separated the test of significance
as developed below would be rendered invalid, since such heterogeneous data,
when summed, give variances larger than those expected from the binomial
distribution. Exp. 2 is, however, not to be wholly rejected. It can and does
provide useful information when considered apart from the others. The
remaining five may be treated together, and so in what follows below the
values in the rightmost margin of Table 2 will be taken as true estimates of
the effects of the six different treatments.

3. THE TEST OF SIGNIFICANCE FOR SYNERGIC ACTION

If we consider the joint action of two treatments, such as sulphapyridine
and antitoxin, we may set out their effects in a 2 x 2 table. Let sulphapyridine
itself fail to savej>s of the mice to which it is given. There will then be 1 — ps

survivors. Similarly, antitoxin will save 1 — pA mice and fail to save pA of
mice. Then clearly if both treatments are given together and provided that
their action is independent, the first, sulphapyridine, will save 1 — ps mice,
and of the remaining ps which would normally die, \—pA would be saved by
the antitoxin. Thus a proportionpspA would be expected to die, and l—pspj
to live (see Table 3).

Our problem is then to find out whether the survival rate after the joint
application of two drugs conforms with this expectation. In order to derive
the necessary test, consider the general case of three trials, in the first of
which the mice received treatment S, in the second treatment A and in the
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518 Synergic action tests

third both treatments combined, denoted by C. Let the numbers of mice
tested by Ns, NA and Nc respectively, the proportions surviving be qs, qA

and qc and the proportions dying ps, pA and pG. Then

The number of living and dead mice expected in the first trial will be fe^s
and psNs and so on. Let the numbers observed in these classes be Ys,Xs,etc.,
as set out in Table 4.

Table 4
Treatment • A 8 +A

Dying Obs. Xg XA XQ
Exp. Nsps NAPA

Surviving Obs. Yg YA Yc
Exp. Nsqs NAqA No
Total Ns NA Nc

Now let us suppose that the two treatments may interact when given
jointly, i.e. pc may not be equal to pspA. We may measure their interaction
by the use of a coefficient r, such that PC^^PSPA • On t n e simple hypothesis
of no interaction, which it is desired to test, this quantity r has the value 1.
Then if we can find the deviation of r from 1 (i.e. 1 - r) and its expected variance

(̂ r)> 17 will be distributed as a %" for one degree of freedom and will be
' r

a test of the hypothesis that the treatments do not interact. A significant
value of x2 will indicate synergic action.

For this purpose it is necessary to estimate ps, pA and r. The log likelihood
expression will be

L=XS logps+ Ys log (1 -ps) + XA logpA+ YA log (1 -pA)
+ XC log rpspA + Yc log (1 -rpspA).

Partial differentiation with respect to ps, pA and r gives
dL_Xs Ys ]XcrpA YcrpA _ Q
dPs Ps l-Ps TPSPA 1-rPsPA
dL_XA YA ^Xcrps Yrps _n

SPA PA 1~PA TPSPA 1~'>

dL=XopAps YopspA =Q

dr TPAPS 1~TPSPA '

from which the maximum likelihood estimates are

PS=Y _L V = W> '

~XA+YA~NA>
Xc =XCNSNA ( = _Pg_

PAPS

These results are not surprising as they give ̂  perfect fit.
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Then
1 »• 1 Pc l XQNSNA 1 /N Y Y y »/ AT \

PSPA ^C-X-S^A ^C-^S-^A

In order to obtain the expected variance of r, (Fr) we note that

r =

Then log r = log p c - log ̂ s - log pA.
Now in the two-class classification Np : N (1 —p)

and W ^

and similarly for the rest.
But on our hypothesis of no interaction PG—PSPA' Hence

Now these quantities pG, ps &nd'pA are estimated from independent sets of
data and so

Flog r = Plog pB + Flog Vg + Flog pA

PNPAPSNO PSNS PANA

I 3>̂  (1 -Pa) . Pa (2 ~

(
But r is 1 on our hypothesis, and so

FF

Substituting the observed values for ps and pA in this expression we get

r~NsNANcXsXA

(NSNA-XSXA)+NCNAXAY8+NCNSXSYA].

34-2
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520 Synergic action tests

Then

v . -
Vr

(NCXSXA-XCNSNA)* XSXANCNSNA

NJXJXJ [NSNA (NSNA -XSXA)+NCNAXA Ys + NCNSXS YA]

(NoXBXA-XoNaNA)*NBNA

XSXANC [N8NA (NSNA-XSXA) + NCNAXA YS+NCNSXS YA]"

This formula has been arrived at by a method dependent on estimation of r.
It is, however, of general validity as it could have been obtained from any
assumption as to how r should be measured. We might have denned rt as
PC~PSPA- The same formula for x2 would have been obtained by putting
Xa = r1

a/Vri, the expected value of rx being 0. The formula is not dependent
upon any assumption as to the type of interaction. It tests the hypothesis of
no interaction.

The formula may be applied to the data of Table 2. The data concerning
sulphapyridine and antitoxin are set out in Table 5 in a way which shows how
this formula may be used.

Table 5
Treatment
Dying
Surviving

Total

S
53

7
60

A •

82
. 7
89

S + A
10
79
89

r=

We then find that •
(89 x 53 x 82-10 x 89 x60)2 60x89

53 x 82 x 89 [60 x 89 (60 x 89 - 53 x 82) + 89 x 89 x 82 x 7+89 x 60 x 53 x 7]
= 129-623.

This x2 n a s one degree of freedom and so its probability is extremely small.
We may consider that our hypothesis of no interaction is disproved. Synergic
action of sulphapyridine and antitoxin is clearly shown.

In Table 6 the data for the interaction of sulphapyridine and antibacterial
serum are shown.

Table 6
Treatment
Dying
Surviving

Total

8
53

7
60

B
54

6
60

S + B
7

53
60

X2 = 87 • 181 for 1 degree of freedom, P is very small; so there is clear evidence
of synergic action of the two treatments.

Table 7 completes the series by giving the joint data on antitoxin-and anti-
bacterial serum.

Table 7
Treatment
Dying
Surviving

Total

A
82

7
89

B
54

6
60

A+B
76
14
90

X2 = 0-0662 for 1 degree of freedom, P is about 80%. Hence there is no
evidence of interaction between the antitoxin and antibacterial serum.
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4. PLANNING EXPERIMENTS FOR DETECTION OF SYNERGIC ACTION

Having derived the appropriate method of testing for synergic action, it is
possible to reach certain conclusions as to how the experimental procedure
may be designed so as to give the best chance of detecting such interaction.

Let us first consider the question of how many mice to give to each test.
Every such experiment consists of three tests, one for each of the single treat-
ments and one for their joint action. It seems not unreasonable to expect
that, where a limited number of mice are available, more can profitably be
assigned to the joint test than to either of the single ones. That this is in fact
true can be shown by a consideration of the x2 formula. We can indeed go
further and calculate the ratio of Nc to Ns and NA, which will give the best
results.

For this purpose, however, a more convenient form of the x2 expression is
necessary. Instead of expressing the formula solely in terms of the observed
quantities it may be written as

X2 = I1

L
PA% I PS1A

No

This form is easily derived from the intermediate stages of the working in the
previous section, if qs is written for 1 — ps, etc.

Now the totals Ns, NA and NG occur only in the denominator of the
fraction and so the problem of the most efficient distribution of mice among
the three tests resolves itself into that of finding how Ns, NA and Nc should
be related in order to make the denominator a minimum.

Let us write
NA = 1ANS, NC=1ONS.

Then the ratio Nc/Ns = lc and NA/Ns = lA. The total number of mice used is
Ns (1 + lA + lc) = NT. The denominator of the x2 fraction then becomes

NT[~
PA9B flp + k + 1) , Pali.

fa L lA J
and this is to be minimized by adjustment of lc and lA. Partial differentiation
gives

= 0 -

Then by subtraction, (l)-(2)

1 11-PSPA

LIPSPA-PMA
Oi TO — l a

j i l / \" PsiA IT. 1 7 1 7 \ l _ o
lA J
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522 Synergic action tests

Substituting in equation (2)

i.e.

and 1~PSPA_V -JPBU

ana , 2 —PAIS ; 2 »

PAIS

vrhea.ps=pA, lA reduces to 1 and NA=NS. We may note that these optimum
values are not dependent on any assumptions about the nature of r.

The effect of varying lo round its optimum value of / —™±d is shown in

Fig. 1. We may call _.- the amount of information concerning r and write it

Ir (cf. Fisher, 1938). Then, in the present case,

L = PAPS

PA1S .PSIAT
N + N JNc Ns ' NAJ

To make the representation simpler, put J>A=Ps—P an<i let NA take its
optimum value of Ns. Then

1— n2

^ + 2p(l-p)
I

We may write ir = ̂  =

ir may then be plotted against lo when p is fixed. This relation is shown in
Fig. 1 for j» = 0-9 and p = 0-95. The choice of these two values of p for repre-
sentation will become clear from what follows. It will be seen that the amount
of information ir is maximized at lc = 1-4530 when ^ = 0-90 and at lc= 1-4340

when j? = 0-95, as our formula lc = x,'—/-i \~\f— would lead us to

expect. Thus for a good experiment, with these values of pA and ps, Nc will
be almost half as large again as Ns and NA.

The next point in the planning of such experiments is that of the choice
of the most suitable values of pA and ps. Since the doses of sulphapyridine,
etc., may be varied, pA and ps can be controlled by the conditions of experi-
ment. It is unfortunately not possible to give an explicit answer to this
question. Putting Nc and NA at their optimum values,

PAPS
if=
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This expression becomes infinitely large when ps=l. Clearly, however, in
such a case the experiment cannot be carried out as all the mice would die.
We may, however, note that for ir to be large ps and pA should be kept as
large as is compatible with the experimental technique. The effect of doing

1-6Z

1-61

1-60

159

1-58

1S7

1-56
10 12S TSO 7 7S 20

0 76

O7S

O-7*

O-73

O-72
1-0 125 JS

L
7-75

Fig. 1.

this is shown in Fig. 2 for which purpose pA has been made equal to ps.
ir then becomes

t.

and is plotted against p over the range p = 0 to p — \. The value of keeping
pA and ps high is well shown by the sharp rise in the amount of information
ir as ps (~pj) approaches 1 (Fig. 2). Taking into account the necessity for
having a sufficiently large number of mice in all the classes in the experiment,
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524 Synergic action tests

so that a xa test may legitimately be used, it would appear that ps and pA

should be kept somewhere about 0-95 and in any case not allowed to drop
below 0-90. Henderson and Gorer's experiments fulfil this condition very
well, as the death rate after single treatments was about 93 % in all cases.

It should be noted, however, that whereas both the test of significance of
the previous section, and the optimum values of lc and lA can be arrived at
without making any assumptions as to how the treatments interact, i.e. as

1-8

1-6

t-4-

t-2

1O

08

0-6

0-4

0-2

O2 0-4 O-6 O8

Fig. 2.

to the nature of r, the above determination of the desirable values of pA and
ps is dependent on the assumption that PC = TPAPS- ^ f°r example pc is
defined as {pspA — r), i.e. the interaction is of an intrinsically different kind, the
optimum values of ps and pA would not be as above. They would in fact be
low values below 0*1, rather than high values above O9. This is because with
such an interaction ir has a different formula, viz.

1

where PS=PA- Tn e above calculation was given, however, as it seems much
more likely that r has the nature of a coefficient rather than a constant dif-
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ference. This point could be tested by measuring r over a range of values of

ps and pA. If r is as assumed in the above calculations, -J-S- will be constant.

If this is not found to be the case a new consideration of the ps and pA optima
would become necessary.

Finally we may consider the question of how many mice should be used
in experiments of this kind, in order «to obtain a reasonably sure test of
synergic aotion. Let PS=PA~P f°r simplicity.

Now

where lA and lc have taken their optimum values. Then the problem is to find
out what value of NT, the total number of mice, will detect with reasonable
certainty a given difference between pc and p2. For a given value of p this
is the same as asking what value of NT will detect a given value of r — 1 with
reasonable certainty. The simple difference of pc and p2 is preferable as it is
more easily determined for the data in a graphical test of significance, as
shown below. In order to solve this problem we must determine the relation
between d(=pc—p2) and NT. Let us first consider detection of deviations
significant at the 5 % level of probability. For one degree of freedom the 5 %
value of x2 is 3-841. Therefore the minimum value of d which can be found as
significant at this level is given by

3-841 =

or _

As the 1 % x2 is 6-635 we get the corresponding expression

/6-635 p2 (1 -p) (2p + ViP (1+P)]) (2 +

The relation between d and NT can then be calculated for any given value of p.
Thus when p = 0-90

;-841 x 0-81 x 0-1 x 3-108 x 3-453 1-8272

6-635 x 0-81 x 0-1 x 3-108 x 3-453 2-3615
a n d *%

These relations are plotted in Figs. 3 and 4 for the three cases of p = 0-95, 0-90
and 0-80. It will be seen that when p increases, smaller values of d become
significant; as would be expected from some of the foregoing calculations.
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Such diagrams as Figs. 3 and 4 can be usefully employed in graphical tests
of significance of actual experimental data. Thus, if an experiment is performed

Nwith PS=PA = ®'9
 a nd Ns = NA = y?j the minimum deviations significant at

the 5% and 1% levels will be shown sufficiently well by the p = 0-9 lines of
Figs. 3 and 4. Then if with a total NT of 200 mice pc is found to be 0-50,
d = 0-81— 0-50 = 0-31 and this is highly significant as it lies above the d\°/o line
of Fig. 4. A d value of 0-2 with 60 mice is not significant as it lies below the
5 % line of Fig. 3, but it is clear, that with twice as many mice this deviation
would be significant.

Fig. 5 shows similar sets of curves for the cases of Henderson and Gorer's
combination of sulphapyridine (S) with antibacterial serum (B) (Table 6).
In this case, however, the 1 % and 5 % lines are shown on the same graph.

The relation of d to NT for this experiment is calculated quite simply:

2_ (3-841J
i 6 - 6 3 5 i

In the case of sulphapyridine and antibacterial serum (Table 6)

(We may note that though ps and pA were fixed at useful values, the number
of mice allocated to testing the joint treatment could have been increased with
profit.)

2 = (3-841) (po- 0-7950) NT
X (6-635) 0-7950 (0-2050 + 0-1050 + 0-0883) x 3-0

, -, /3-841x 0-7950x0-3993x3-0 1-9126
and dffit =

i-635 x 0-7950 x 0-3993 x 3 2-5137
NT ~ y/NT '

The curves relating to d and NT, as derived from these formulae, are given
in Fig. 5. In actual practice when NT = 180, po was found to be 0-111 and so

(PBPS~PC) = (0-7450 -0-1167) = 0-6283,

which on reference to Fig. 5 is clearly very significant.
Turning to the case of antitoxin (A) and antibacterial serum (B) (Table 7)

m 82 n.Q9i^p; m 54 n.Qn w

Then ^ = 1 ^ 1 = ( ^ - 0 - 8 2 9 2 2 ) ' ^
x (6-6351 239x0-82922 (0-001898+ 0-000795+ 0-001536)

, , AOOOO /917-999 x 0-8292 x 0-004229 1-79419
andso 4 0 8 2 9 2 /

=^-0-8292 = / 1 ^ 7 7 X ° ' 8 2 9 2 X °
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The curves are given in Fig. 6. The actual data gave iVr = 239, and

Pc=U=0-84444.

Then ^=0-0152 and on entering on the diagram it is clearly not significant.
Furthermore, a deviation as small as this would not become significant unless
NT were so large as to be unobtainable by ordinary experimental methods.

4. SUMMARY

The question of testing for synergic action of treatments of Vibrion
septique infection in mice is considered. Henderson and Gorer's data are used
as the basis of the analysis.

Their six experiments are tested for heterogeneity and one experiment is
found to be discrepant. This is then removed and only the remaining five used
in the later working.

A x2 formula is derived for testing the significance of the evidence for
synergic action. Sulphapyridine shows such interaction in effect with both
antitoxin and antibacterial serum. These last two show no interaction.

The most efficient design of such experiments is then considered, and it is
shown that the death rate in the single treatment tests should be kept at least
as high as 90 %, and that whereas the numbers of mice assigned to the single
treatment tests should be equal, that assigned to the joint treatment should
be 1-5 times as great.

A graphical method for testing the significance of the results is described.
These graphs also allow of an opinion being formed as to the number of mice
which would be necessary to detect an interaction of given magnitude.

I am indebted to Prof. J. B. S. Haldane for suggesting the problem and to
Drs Henderson and Gorer for giving me access to their data before publication.

APPENDIX

The following alternative approach to the problem of detecting synergic
interaction has been developed by Prof. R. A. Fisher, at whose request I
append its outline to the account of my own analysis. It differs from my
method in the stage at which large sample theory is introduced.

In the absence of synergic interaction, the expected numbers of mice
dying after treatment A is pANA, after treatment B is pBNB, and after the
joint treatment A and B is pApsNo, where the notation is as before. The
observed frequencies are XA, XB, Xc. The joint log likelihood expression is
then

L=XA log pA + YA log (1 -pA)+XB log ps + Ys log (l-pB)

+Xc log pApB + Yc log (1 -pApB),
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and the best estimates of pA and pB are obtained by solving the equations, j

dL _XA YA | XcpB YcpB ^ Q
SPA PA 1~PA PAPB ^~

PB 1~PB PAPB 1~PAPB

It can be shown from these equations that

a n d
X j -\~ A X R- \- A

= JX to- X
where A is calculated from the equation

(NA+X) (NB+X) (Xc-\) = (XA+\) (XB+X) {Nc-X).

Having estimated pA and pB in this way their values may be used to formulate
expectations for the numbers of mice surviving and dying in the three tests.
Then the %2 testing the agreement of the observed numbers of mice in each
class with the expected numbers has one degree of freedom and is the required
test of synergic action.

The expected numbers are

Treatment

Surviving

Total

NA

A
<{XA

NYA

+A

[+A)
A

B

NB+X
NBYB

NB

Joint

Nc-X

Nc-X

Nc

Then in experiment A the deviation of observation from expectation in
each class is

NA (XA +A) - XA (NA +A) _ YAX
NA+X NA+X'

The contribution of this experiment to x2 wiU be

YJX* r NA+X NA+X
(NA+X)*[NA(XA+X) + NAYA

which reduces to
NA(xA+xy

and so, summing over all three experiments

Y Y
= / * TIT / V , \v"T Iff / V I V\ ' ~(XA+A) ^ NB (XB+X)T Nc (Xc - ;

Calculations of x2 m t n i s w a y from Henderson and Gorer's data give for
S and A 74-84, for £ and B 30-56 and for y4 and B 0-069. These values should
be compared with 129-65, 87-18 and 0-066 found by my method. The agree-
ment between the two x2>s is good, as it should be, when there is no evidence of
synergic action; but when there is strong interaction of the treatments the
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two x2>s give divergent results. This is to be expected, as in this case the original
hypothesis is proven wrong and so all calculations which relate to one another
through the hypothesis will become discrepant. The discrepancy has no serious
implications. The two methods agree in showing the initial hypothesis, of no
interaction, to be wrong. As they were developed purely to give tests of
significance, they have thus both fulfilled their purpose.

Prof. Fisher's approach has a certain theoretical advantage over my own
in that large sample theory is not so extensively involved. It is, however, a
more laborious method to apply, as every determination of x2 involves the
calculation of A from a quadratic equation. In the case of experiments such
as those of Henderson and Gorer, where the number of mice is reasonably
large, the difference in treatment makes practically no difference to the
results and so the easier arithmetic gives my method some practical advantage.
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