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Abstract

We investigate the asymptotics and zero distribution of solutions of w" + Aw = 0 where A is an entire
function of very slow growth. The results parallel the classical case when A is assumed to be a polynomial.

1991 Mathematics subject classification (Amer. Math. Soc): 30D35, 34A20.

1. Introduction

The second-order differential equation

(1.1) w" + A(z)w = 0,

where A is a polynomial, has been studied extensively. A summary of some classical
results regarding the asymptotics and zero distribution of solutions to (1.1) is contained
in the following theorem (see [2] or [3, Chap.7]).

THEOREM A Let A(z) = anz" + • • • + a0 be a polynomial, an ^ Oandan = arg#n.
For given e > 0 define 6k = ( -«„ + 2kn)/{n + 2), k = 0 , . . . , n + 1, Sk

+(€) = {z :
0k+€ < argz < 6k+1], Sk~(€) = jz : 9k < argz < 9M -e}, Sk(e) = Sk+(€)nSk-(e)
and Sk = Sk

+(€) U Sk~(e). Then there exist n + 2 solutions gk, k = 0 , . . . , « + 1, of
(1.1) analytic in S*_i + (e) U 5* U Sk+]~(e) with gk-\ and gk linearly independent and
for all z e S*_,+(e) L)SkU 5,+r(e)

o(l))(anz
n nr]/4

as \z\ —> oo.
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256 Jiuyi Cheng and John Rossi [2]

For transcendental A not much is known about asymptotic representations of solu-
tions of (1.1) even when the order of A is less than one.

In this note, we consider the equation (1.1) with a transcendental entire function
A(z) which grows only slightly faster than a polynomial, namely it satisfies

,. - -—log log M(r, A)
(1.3) hm — = p<2,

r̂ oo log log r

where M(r, A) = sup|z|=r |A(z)|. We describe the solution of (1.1) in a union of
a sequence of annuli which is quite large in the sense that the set of moduli of the
points in its complement has logarithmic density (see the definition below) zero in
(1, oo). Specifically we obtain a local result similar to (1.2) in Theorem A in the
intersections of certain sectors and annuli. The idea can be stated as follows. Under
the condition (1.3), a result (see Lemma 2) in Wiman-Valiron theory implies that the
entire function A (z) = Y17=oa"z" is equal to (l+o(l))aNzN as \z\ -* oo in the above
union of annuli, where N = N(r) is the central index of A(z). Then by use of the
Liouville transform (3.5) in each annulus we can use the method of Hille locally on
the corresponding equation

(1.4) W" + (l- F(Z))W = 0,

where

(1 5) ^ ^ ^

and
(1.6) W(Z) = A(zY/4w(z).

Finally, we transfer the result concerning the solution of (1.4) to that of (1.1), again
via the Liouville transform.

To state our theorem, let

(1.7) A(z) =

a n d l e t otn = a r g a n , n = 0 , 1 , . . . . N o w f o r a n y n d e f i n e f o r £ = 0 , 1 , . . . , « + 1

f ~an + 2(k - 1)TT -an + 2(k + 2)n
Sn,k(e) = \ z : — h e < argz < —

[ n+2 n+2

where e > 0.
We recall the definition of logarithmic density of a set E C [0, oo):

log dens £ = lim ' — -
log A-
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provided that the limit exists. Herel.m.(£) = / dr/r is the logarithmic measure
of£.

Throughout the remainder of this paper, we will use the letter C to denote a constant
which depends on A(z) (or on a function F(z) which will ultimately depend on A{z)).

We now state our main result:

THEOREM. Let A{z) be an entire function satisfying (1.3) and of the form (1.7)
and letO<r)<2 — p. Then there exists an infinite sequence of positive integers <S
and two sequences [rn}n€y and {sn}ne& satisfying 0 < rn < sn < rm < sm, whenever
n < m; n,m e &, such that the logarithmic density of [J,,eV(sn, rn+1) in (1, oo) is
zero. Furthermore for any € > 0 and n e <£, the equation (1.1) has n +2 pairwise
linearly independent solutions un ,*, k = 0, 1 , . . . , n + 1, analytic in

«„.*(«) = {

such that for all z e fin,^(e)

rn < \z\ <

(1.8) un,k{z) = (

Moreover, ifu is a solution o / ( l . l ) , then

W(z) = ankUnk(z) + Pn,kUn+l,k(z)

and either ank^nk = 0 and u has no zeros in Q.nk{e) D £ln,k+\ (e) or antkf}nk ^ 0 and
the set of all zeros ofu in Q.nJi(e) n Qnk+1(e) has the form

-i2/(«+2) "I

.9) \ \ P ""n/z((71 + Uir + iynk + > k!) : l e l \ ,

w/zere ynJt = log<*„.*/#,,* (arganik/pn,k e [0, 27r])

(1-10) |Sn,t,;l •

(1.11) | A . n * / | < — — T = (r«)"("+2)/2 ^ 0, n - • oo.

The theorem gives very good asymptotics for solutions to (1.1) in the spirit of Theorem
A. We emphasize however that our results are purely local. This can be seen best in
the result pertaining to the distribution of zeros. Indeed the theorem produces a family
of Stake's rays in each annulus similar to those of Theorem A. The main difference
is that the constant ynk may grow quite rapidly as n —>• oo. (This problem does
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not occur in Theorem A, since there is but one annulus!) Thus closeness to the rays
depends unfortunately but at least explicitly on the particular solution. It is fairly
certain that any better result would depend on continuing the asymptotics of the unk

into neighboring annuli. With virtually no information on A(z) in the exceptional
set of logarithmic density zero, this strikes the authors as a formidable task. It will
become clear in the proof that the sequence $ is merely the range of the central index
N(r) of A for r sufficiently large.

It is fairly easy to construct examples satisfying the conditions of our Theorem
for any p between 1 and 2. Specifically let 1 < k < oo and define A(z) =
127=o z" / exP nk• I* *s a ' s o e a sy t 0 s n o w using the relationship between the max-
imum modulus of an entire function and the maximum term of its series expansion
(see [1]) that A satisfies (1.3) with p = 1 + \/{k - 1).

We mention in passing that a similar result even with p = 2 in (1.3) would be much
more difficult since the power series in this case is dominated by a polynomial and not
a monomial in each annulus and the degree and leading coefficient of this polynomial
cannot be precisely determined. However our method does indeed apply to an A of
any order provided that its series expansion is sufficiently 'gapped.' Specifically if
A is dominated by its maximum term in a sequence of annuli centered at the origin,
the ratio of whose outer and inner radii approaches infinity, a version of our theorem
still holds. A function with Hadamard gaps provides such an example. We leave the
details to the reader.

This paper is part of the first author's PhD dissertation written under the direction of
the second author and submitted to Virginia Polytechnic Institute and State University.

2. Lemmas

The following lemma summarizes some aspects of the Wiman-Valiron theory which
we will need in the sequel. It can be found in [1, Theorem 12].

LEMMA 1. Suppose that f(z) is an entire function and N(r) is the central index
°f f(z)- Let j be a fixed non-negative integer. Then there exists a set E of finite
logarithmic measure such that if r = \z\ £ E and r —*• oo we have

M(r, /<'">) = (1 + o(l)) ( ^ V M(r, f).

An easy modification of the proof of [1, Lemma 4, p.329] gives the following
lemma.

LEMMA 2. Suppose that A(z) is an entire function satisfying (1.3) and of the form
(1.7) with central index N(r). Then denoting by <£ the range of N(r) there exist two
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sequences {<}„<=<* and {s'n}ney satisfying 0 < r'n < s'n < r'm < s'm, whenever n < m;
n,m £& and 0 < r) < 2 — p, such that the logarithmic density of[Jne^(s'n, r'n+x) is
zero. Furthermore ifr = \z\ e [Jn€y[r'n, s'n] we have

rN^exp{-(logr)"}

where N(r) = n < (logr)*"1 ifr e [r'n, s'n] whenever n e& and p < q < 2 — r\.

The following lemma is a local version of Hille's method (see [3, Chap.7]). It is
basically due to Langley [4, Lemma 1]. Since our regions differ somewhat from his,
we offer a detailed proof.

LEMMA 3. Let 0 < e < 1/4 and let F(Z) be an analytic function in Q'k satisfying
\F(Z)\ < C/\Z\2forallZ € £l'k, where

Q'k = {Z : max{l, IOC} < R < \Z\ < S < oo, (k-l+e)n < argZ <

is a closed region on the Riemann surface of log Z with S > /?(sin7re)~'. Then the
equation (1.4) has a solution Uk(Z) in

Qk = {Z : R(sinn€)-1 < \Z\ < S] D Q'k

such that
(2.1) Uk(Z) = (1 + ek(Z)) exp{(-iy7Z}

in Qk, where ek(Z) satisfies \ek(Z)\ < C/e\Z\ in Qk, k e Z.

PROOF. It suffices to prove the lemma when k = 0 and k = 1. The general case
follows similarly. We first assume that k = 0. Choose a solution u of the equation

u" + 2iu' - Fu = 0

such that u(X) = 1 and u'(X) = 0 where X = Se7"12. Now set

(2.2) w(Z) = u(Z) - 1 + 1 I (e2'('"Z) - 1) F(t)u{t)dt,
Li Jx

where the integral is independent of path in the closed region Q'o on the Riemann
surface of log Z, since F is defined and analytic there. Differentiation of (2.2) gives

z
w'{Z) = u'(Z) - f e2H'-Z)F(t)u(t)dt

Jx

and w"(Z) = -2iw'(Z), so that since w(X) = w'(X) = 0, w vanishes identically
on £2Q. NOW let Z e fi0- Let ( -1 + €)n < argZ < —n/2. Then noting that
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S > Risinne)'1, we choose the path T of integration in Q'o to be the vertical
line-segment from X to X' — (—|Z| sin(arg Z))^ ' 7 2 , followed by the half circle
|? | = - |Z|sin(argZ)fromX'toX" = ( - | Z | sin(argZ))e-jr'/2 in the right half-plane,
and then followed by the horizontal line-segment from X" to Z. Since Im(r - Z) > 0
for t e T, if dx denotes the arc-length on T, (2.2) and the fact that w is identically 0,
give

(2.3) | « ( Z ) - 1 | < / \F(t)u(t)\dx.
Jx

Set

\F(t)u(t)\dr

dW
where £ e r . Then by (2.3), < |F(f) | . So

r
~ Jx

fx' fx" fz

= / \F(t)\dx + I \F(t)\dx +
Jx Jx' Jx"

< y2 |Z|2sin2(argZ)
-|Z|sin(argZ)

-|Z|cos(argZ)

c
+ / -, . .„.-, . , , —dx

/

<C -

o
1 1\ nC Ccos(argZ)

|Z|sin(argZ) Sj |Z|sin(argZ) |Z|sin(argZ)

C/\Z\ si

Since 0 < e < 1/4, we have sin7re > ne/2, and hence

W(Z) < C/€\Z\.

Thus (2.3) implies that

\u(Z) - 1| < exp(C/e|Z|) - 1 < C/e\Z\.

Now set (/0(Z) = eiZu(Z); then (/0(Z) solves (1.4), and (2.1) (when k = 0) follows
at once. If 37r/2 < arg Z < (2 — €)n, we choose a similar path of integration in Q'Q,
but now the half circle is in the left half-plane. If — n/2 < arg Z < 37r/2, we just
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choose the path of integration in £20 to be the vertical line-segment from X to | Z | eT'/2,
followed by the arc of the circle \t\ = \Z\ from \Z\e*il2 to Z. Then

W(Z)< / \F(t)\dr+ / \F(t)\dz
J\Z\e

fZ
/

J\Z\e"'2

( 2

\z\ y2

and (2.1) (when k = 0) follows at once.

To prove the lemma in the case k = 1, choose a solution v of

v" -2iv' -Fv = 0

such that v(Y) = 1 and v'(Y) = 0 where Y = Se3"i/2. The integral equation for u is

i rz

v(Z) - 1 = - / (e-
2'('-z) - 1) F{t)v(t)dt

and we choose a path of integration on which lm(t — Z) < 0. Finally we set

LEMMA 4. LetC,€, F, Q't, Qk and Uk satisfy all the conditions in Lemma 3 and
let R > As/in C. Suppose that U = akUk + fikUk+i is a solution of (1.4) in

Q = \Z : Risinney1 < \Z\ < S < oo, - o o < argZ < oo},

a closed region on the Riemann surface of log Z. Then either akfik = 0 and U has
no zeros in Qk n Qk+\ or akfik ^ 0 and the set of all zeros of U in Qk P\ Qk+] is of the
form
(2.4) {(-D*[(2/ + 1)TT + iyk + h,i]/2 : / € Z},

where yk = log(ak/f5k) (aTg(ak/pk) e [0, 2n]) and kkJ € C satisfies

(2.5) \ku\ < C/R.

PROOF. By Lemma 3, the equation (1.4) has two linearly independent solutions Uk

and Uk+\ in Slk n Qk+i such that

Uj(Z) = (1 + ey(Z))exp{(-iy/Z}

and \€j(Z)\ < C/e\Z\, j = k, k + 1 and by virtue of the range of |Z|, this is no
greater than 1/4. Now there exist ak, fik e C such that for Z e £2* n S2t+]
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If akfik = 0, it is easily seen that U has no zeros in Qk D £2k+\. If akj3k ^ 0 and U has
a zero Zo in Qk D J2*+i» then since

we have

Zn =

l+€t(Z0))exp{2(-l)*iZ0} + j8t(l

(-1)* [ ak

2 L ' ° 8 A ' °8

= 0,

where / e Z and the arguments of ak/j3k and (1 + et(Z0))/(l + ek+i(Z0)) are in
[0, 2TT]. Letting y* = log(a*/A) and A*,, = / log ((1 + Q ( Z 0 ) ) / ( 1 + et+,(Z0))), we
obtain (2.4). Moreover, by Lemma 3, and the fact that R > 4-j2nC, we have

(2.6)

and

log
1+€*(ZO) 4C

< — • = — <

- 1
4TTC 1

l+€ t + I (Z 0 )
Denoting arg ((1 + e*(Zo))/(l + €k+i(Z0))) byO, we consequently have that | sin6>| <
AnC/R, \6\ < TT/4, and | sin6>| > \0\/2. Hence

arg (i
l+6*(Z0) \

2|sin6»| < %nC/R.

This and (2.6) imply (2.5).

3. Proof of Theorem

Since the exceptional set in Lemma 1 has finite logarithmic measure, applying
Lemma 1 and Lemma 2 to the entire function A(z), we see easily that there exists a
sequence { [r'n, s'n] }ne^ of closed intervals satisfying all the conclusions of Lemma 2
such that whenever r — \z\ e [Jney[r'n, s'n] and r - > o o w e have

(3.1)

(3.2)

and

(3.3)

M(r, = (1+ o ); M(r, A),

r€[r'n,s'n],N(r) = n,

where <5)(z) satisfies

|5,(z)| <exp{-(log|z|)"}, 0 < /j < 2-/7.
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[9] Solutions of second-order differential equations 263

Moreover, without loss of generality, we can assume that

(3.4) lim s'Jr'n = oo.
«->oo

Now for sufficiently large n e <£, we consider the following transform in each

K = {z : r'n < \z\ < s'n, -oo < argZ < oo},

a closed region on the Riemann surface of log z. For convenience, we write

s/ = \z : s < \z\ < s', — oo < argz < oo}

for any s/n above. Noting (3.3), consider the transform

(3.5) Z = f A(t)l/2dt + 2/(n + 2)a]
n

l2s(n+2)l2, z e

where the integral is evidently independent of the path, which remains in sf. As in
[3, Chap.7], we define W as in (1.6). Then if w is a solution of (1.1), W solves (1.4),
and F{Z) is given by (1.5). Moreover, (3.1) and (3.3) imply that

(3.6) Z = _l_a>/2zc+2)/2 + a 1/2 f t»/2S2{t)dt,
n -\- Z Js

z e

where S2(z) satisfies \S2(z)\ < exp{-( log \z\)n] in &/. So, if —3n < argz < 3TT,
choose the path of integration in (3.6) to be the straight line segment from s to |z|,
followed by the arc of \t\ = \z\ from \z\ to z in s/. Letting dx denote arc-length on
the path, we have

Z--—a1 / 2z ( n + 2 ) / 2

2 "
<\an\"2 f |fr/

z\r}dt
j(n+2)/2j

(3.7) < ( l + 37r)K|1/2|z|(n+2)/2exp{-(log^)"}.

According to Lemma 2,
(3.8) N(r) = n< (log r)"-1

if s < r < s', where p < q < 2 — r). Thus (3.7) implies that

(i.y) £ = [i+d3(z)\——-a 2
' n + 2

https://doi.org/10.1017/S1446788700038659 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038659


264 Jiuyi Cheng and John Rossi [10]

where <53(z) satisfies
(3.10) |S3(z)|<exp{-(log*)72}

for all z e &/ with —3n < argz < 3n. Therefore the transform (3.5) maps

{z : i < \z\ < s', -3n < arg2 < 3n }

one-to-one onto a set containing

where 5 = 3^/\a7\s{n+2>/2/(n + 2), 5' = J\a^\s'{"+2)/2/{n + 2) and «„ = argan. A
routine calculation involving (3.1), (3.2), (3.3), (1.5) and (3.9), gives for Z e 3$ that

\F(Z)\ <C/\Z\2.

Certainly Lemma 2 implies that A(z) has no zeros in &/ so that F(Z) is analytic in 3&.
By (3.4) we can assume that S' > ^(sinTre)"1. Then F(Z) satisfies the conditions of
Lemma 3. Hence (1.4) has a solution Uk(Z) in

% = &n{Z iStsinTre)-1 < \Z\ < S',(k- \+€)n <argZ <

such that
(3.11) Uk(Z) = (1 +6t(Z))exp{(-l)*iZ}

and
MZ)| < c/€\z\

in %, where k e Z. We can also assume that n e <$ is sufficiently large so that
5 > C2e"2. Then we have
(3.12) 1/2

Further let n e $ be large enough so that e"+2 > (sin ne)~x and let

S> = {z : 3e2s < \z\ < s'/3e2, -In < argz < In).

Then from (3.9) we know that the transform (3.5) maps 3 one-to-one onto a subset
of £8 fl | Z : S(sin7re) ' < \Z\ < S'}. Hence the equation (1.1) has a solution uk in
the intersection of Qi and the preimage of ^ which contains

n + ( + )
<argz < e

n+2
+ e argz

n+2 n+2
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where an = argan and e > 0. By (3.1), (3.3), (1.6), (3.9), (3.10), (3.11) and (3.12),
forze<?t(O,

Since si denotes any sin with sufficiently large n e <£, if we let

(3.13) rn=3e2r'n, sn = s'J3e2

for sufficiently large n e &, we have actually proved (1.8) in Qn k(e) (provided we
redefine ^ to contain only sufficiently large n). Moreover, noting (3.13) and (3.8) and
using the definition of the logarithmic density, we can easily see that the logarithmic
density of LL*[(r»> rn) U (sn, s'n)] is zero.

Finally, if u is a solution of (1.1), then by Lemma 4 and (3.9) for n e& either u has
no zeros in S2n,i(e) D Qn,t+i(e) or the zeros of u satisfy (1.9). We obtain (1.10) from
(3.10) and (1.11) from (2.5), Lemma 2 and the fact that aNr% increases to infinity with
n[l,p.318].
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