
Y. Kakuda
Nagoya Math. J.
Vol. 48 (1972), 159-168

SATURATED IDEALS IN BOOLEAN EXTENSIONS

YUZURU KAKUDA

0. Introduction. Let tc be an uncountable cardinal, and let 2 be a

regular cardinal less than tc. Let / be a ^-saturated non-trivial ideal on

tc. Prikry, in his thesis, showed that, in certain Boolean extensions, tc

has a ^-saturated non-trivial ideal on tc. More precisely,

THEOREM (Prikry [8]). Let tc,λ and I be as above. Let & be a λ-

saturated complete Bollean algebra. Let J e V{33) such that, with probability

1, J is the ideal on tc generated by I. Then, it is &-valid that J is a λ-

saturated non-trivial ideal on K.

The following questions naturally arise; 1) If / is ^-saturated (Λ;+-

saturated), does / remain yc-saturated (/^-saturated)? 2) If sat (JO = tc,

what is the saturatedness of /?

For 1), we obtain the following theorem.

THEOREM 1. Let tc and λ be as above. Let γ be a regular cardinal

such that λ < γ < tc+, and let I be a γ-saturated non-trivial ideal on tc.

Let & be a λ-saturated complete Boolean algebra. Then, it is &-valid

that J is γ-saturated.

For 2), we get the following theorems.

THEOREM 2. Let tc be an uncountable cardinal, and I be a tc-saturated

non-trivial ideal on tc. Let ^ be a homogeneous complete Boolean algebra

such that sat {0) = tc. Then, it is &-valid that J is not tc-saturated.

THEOREM 3. Let tc be a measurable cardinal, and I be a non-trivial

prime ideal on K. Let & be a homogeneous complete Boolean algebra such

tnat sat (0) = tc. Then, it is 38-valid that J is not tcΛ-saturated.

We will prove the above theorems as applications of a certain useful

lemma, which will be proved in § 4.
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We assume that the reader is familiar with the Scott-Solovay Boolean-

valued models for set theory.

1. Saturated ideals.

1.1. Let 2 be a cardinal. Let £8 be a Boolean algebra. We say

that 3$ is ^-saturated if, for any pairwise disjoint family {ba}a<λ of J*,

there exists some a < λ such that ba = 0. Clearly, if λ < γ and US is λ-

saturated, then Si is ^-saturated, sat iβ) denotes the least cardinal λ such

that SS is ^-saturated.

The following lemma is well-known.

LEMMA. // s a t ( ^ ) > ^ 0 then sat(J*) is an uncountable regular

cardinal.

1.2. Let K be an uncountable cardinal. Let / be an ideal on K. I

is called non-trivial if;

1) / is non-principal, that is, {a} e I for all a < K.

2) / is yc-complete, that is, if whenever η < κ9 and {Aa> a <ή) is a

family such that Aa e / for each a < η, then IJ α < ? Aa e L

Let / be an non-trivial ideal on K. We can form the quotient algebra

si = P(κ)/I. If s/ is ^-saturated, we say that / is ^-saturated.

Solovay proved the following theorem.

THEOREM (Solovay [5]). Suppose that K has tc-saturated non-trivial

ideal on K. Then, tc is the κ-th weakly inaccessible.

For more informations about saturated ideals, the reader may refer

to Kunen [1], Kunen-Paris [2] and Solovay [5].

2 The ultrapowers inside

In this section, we restate the necessary results from Solovay [5].

From 2.1 to 2.3, we fix a transitive model M of ZFC, and an ordinal

p in M.

2.1. Let f be a subset of P(p) Π M. We say that °U is an M-

ultrafilter on p if:

(1) °U contains no singletons.

(2) If A € * , B e P(p) Π M, and AQB, then B € φ.

(3) If A e P(p) Π My then either Ae® or p - A e l
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(4) Let η < p. Let <Af,f < τ?> be a sequence such that Aξe<% for

each ξ < η and <A f: ξ < η) e AT Then, (~}ξ<v Aξ e <%.

The concept of M-ultrafilter is due to Kunen [1]. The reader should

note that this definition somewhat differs from that of Kunen.

2.2. Let °U be an M-ultrafilter on p. We define an equivalence

relation ~ on M Π Mp as follows for f,geMΓ\Mp let

f~g iff {a <p;f(a) = flr(α)} 6 * .

We denote by [/] the Scott equivalence class of / with respect to ~.

Next, we put N = {[/] / e l ί l M9}. We define a binary relation Z?

on N as follows Let f,geMC)Mp.

[f]E[g] iff {α < p /(«) e flr(α)} 6 Φ .

It is clear that the definition of E does not depend on the choice of

/ and g. The relational structure <N,Ey is denoted by Ult(M, <%).

2.3. LEMMA 1 (Los). Let φ(vQ, '9vn^) be a set-theoretical formula,

and let fQ, •,/„__! δe elements of M Π M p . ΓAew,

Λ̂  N ^([/0], , ίfn-J) iff {a<p;M^ φ(fQ(a), ,fn_λ(a))} e Φ .

Let a? be in M. We define cx e M Π Mp by c^(α:) = x for all a < p,

and define c:M -^ N by c(x) = [ e j .

LEMMA 2. c is an elementary embedding.

In the remainder of this section, K will be uncountable cardinal, and

/ a £+-saturated non-trivial ideal on K.

2.4. We form the quotient algebra sf = P(κ)/I. Let AeP(κ). We

denote by [A] the element of s/ represented by A.

LEMMA 3.υ si is complete.

Let V(<*° be the Scott-Solovay ^-valued model. We assume that VU)

is separated.

2.5. We define an element <% of F u ) as follows;

| |A e %\\ = [A] for each A e PU) .

See Sikorski, Boolean algebras, Springer-Verlag, Berlin, 1960 p.65, 21.3.
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LEMMA 4. With probability 1. % is a Ϋ-ultrafilter on K.

By Lemma 4, we can form Ult(y, °tt) inside F U ) .

LEMMA 5. Let f0, ,/n_i € Vκ. Let φ(v0, , ι;n-1) 6e α set-theoretical

formula. Then,

| | U l t ( F , ^ ) N 0([/o], . , [ / n . J ) | | = [{a <*c;φ(fo(*), ,Λ-i(α)l .

The lemma is easily proved by using Lemma 1 and the following

sublemma.

SUBLEMMA. Let x0, , xn_λ e y. Lei 0(i;o, , i>TO_x) be a set-theoreti-

cal formula. Then,

IIV |= ̂ (i0, , ί»_i) 11 = 1 i# ^ o , , »ft-i)

LEMMA 6. Let xeV^. Suppose that | |a?eUlt(^,Φ)| | = 1. Then,

for some feV% \\x = [f]\\ = 1.

LEMMA 7. With probability 1, U l t ( F , ^ ) is well-founded.

2.6. By Lemma 7, there exists a transitive class of V^\N, and an

isomorphism ψ: Ult (F, ̂ ) -* 2V inside 7 ( j / ). Let feVω. Let ψ(/) be

the element of V™ such that | |^(/) = ψ([/])|| = 1. We put #* =

LEMMA 8. (1) With probability 19N is a transitive class contain-

ing all ordinals.

(2) Let /o, ,/n_i € V. Let φ(v0, , ̂ x ) 6e α set-theoretical

formula. Then,

\\N N φ(ψ(f0), ,ψ(Λ-i))|| - [{« <κ;φ(fo(f*), ,/»-i(α))] .

(3) Lei ||a e iV|| = 1. Then, x = ψ(f) for some f e V*.

(4) If a K it, a* = a.

(5) ||**>f|| = l.

LEMMA 9. With probability 1, N contains all ^-sequences of N in V{jί).

Proof. Let s e VU) be such that ||s £ -> JV|| = 1. For each a < K,

we can choose fae Vκ such that \\s(a) = ψ(/β)| | = 1. Let ψ(#) = Λ. We

define fe V< by /(α) = </i3(a): ]8 < g(a)>.

Clearly, \\N μ ψ(/) is a ̂ -sequence|| = 1. We claim that ||ψ(/) = s|| =

1. Now, choose haeVκ so that ||(ψ(/))(#) = ψ(Λβ)|| = 1 for each a < K.
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Then, \\N\=ψ(ha) is the value of a by ψ(/)| | = 1. By Lemma 8, for

almost all β < tc, h£β) is the value of a by f(β). Then, ||ψ(/U = ψ(/«)|| =

1. We have just proven that | |(vα < ί)((ψ(/))(α) = s(a))\\ = 1. Since

and s are ^-sequences, ||ψ(/) = s|| = 1.

3. Boolean algebras in Boolean extensions.

Let J 1 be a complete Boolean algebra. Let 3d e Vw such that \\@ is

a Boolean algebra|| — 1. We put %*-, = {x e Vm : \\x e 2\\ = 1}. We can

make ^ M into a Boolean algebra, by defining Boolean operations as

follows

Let x,ye@m. Then, there exist uniquely zx and z2 such that the

followings are J'-valid respectively.

1) zxe@ and a? + 9y = zx

2) z2 e & and — 2x = ^2

Put «χ = α + ^M?/ and z2 = —awx.

The following lemma is due to Solovay-Tennenbaum [7]

LEMMA 1. ^ [ Λ ] is complete iff it is &-valίd that Q) is complete.

The proof of the following lemma is similar to Lemma 5.2.6 of

Solovay-Tennenbaum [7]. So we omit the proof.

LEMMA 2. Let λ bea regular cardinal. Then the following are

equivalent:

1) Si is λ-saturated, and it is &-valid that 3d is λ-saturated

2) £&ίίfl is λ-saturated.

LEMMA 3.υ // there is a surjection Φ form & to S M such that

\\φ(jb) = 1 J = b and \\Φ(b) = 0β | | = -b for all δ e f , then 9 = 2 in Vw.

4. The basic lemma and proof of Theorem l

4.1. Let κ,I and st/ be as in §2. Let 39 be a complete Boolean

algebra. Let / e Vw such that J is the ideal on £ generated by I in

V<*>. Clearly || A e J\\ = ΣBZI IIA c β| |.

LEMMA 1. // J* is /c-saturated, then it is &-valid that J is non-

trivial.

cf. Solovay-Tennenbaum [7], p.214.
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Proof. Trivially, / is non-principal. The fact that / is /̂ -complete
is easily proved by using the following sublemma.

SUBLEMMA. // ύt is fc-saumted, then \\AeJ\\ = \\Ac:B\\ for some
Bel.

4.2. Let 9 e Vw such that \\9 = P(κ)/J\\w = 1.

BASIC LEMMA. // SS is κ-saturated9 then @w is ίsomorphic to 8t^

Proof. Let x e 9ίΛl. Then, there exists A e Vw such that \\x = [A]| |w

= 1 and || A c £ ||<*> = 1. We define fΛ;κ-+βby fjoc) = || ά € A ||<*>. Then,
IIΨ(Λ) e a*\\™ = 1. Put Φ(a?) = ψ(/J. We must show that the definition
of Φ(x) does not depent on the choice of A. So let, A,B ePw(κ) such
that ||[A] = [J?]|Γ = 1. Then, | |AJBe/ | | w = 1. {AΔB denotes the
symmetric difference of A and B.) By the sublemma of Lemma 1, for
some Nel, \\AJB <^N\\W = 1. It follows that if a&N, then | |ά6A | | w

= \\a e J5| |w. Since iV e /, for almost all a < /c, fA(a) = /B(α). By Lemma
8 of §2, we have \\Ή/Λ) = Ψ(Λ)||(J0 = 1. Since F w is sepatate

Φ is surjective: Let p ^ ] t By Lemma 8 of §2, for some f e V%
= j/. We may suppose that f;κ->&. We define A e Vw by \\& e A | | w

= /(α) for or < tc. Clearly, || A c ί p = 1. Let ||α; - [A]\\w = 1. Then,
α e ̂ O T . By the definition of Φ, Φ(x) = T/.

Φ is injective: Let a?,y e ^ w such that Φ(x) = Φ(i/). Let A , S G F W

be such that ||a? = [A]\\™ = \\y = [B]\\™ = 1. Then, ψ(fA) = Φ(x) = Φ(y)
= Ψ(/B) Thus, /^(α) = /BGZ) for almost all a < κ9 that is, {α < K p e A||
= | |άeβ| |}6/. By the definition of /, we have | | A J β e / | | w = 1. It
follows that || a; = y\\™ = 1.

Φ is an isomorphism: Let x,ye 9ίa2 be such that x <̂  y. Let A,
£ e Pw(«) such that ||OJ = [A]\\w = ||a = [B]| |w = 1. Since a? ̂  i/, we have
(IA — BeJ\\w = 1. By the sublemma of Lemma 1, for some iVe/,
||A - B c #||<*> = 1. Thus, if α 6 N, then \\a e Ap> ^ ||ά e B | | w . That is,
for almost all a < *c, fΛ(a) ^ fB(ά). It follows that ψ(/J ^ ψ(Λ). So,

Φ(y).

4.3. Now, we prove Theorem 1. Let ^ be a regular cardinal less
than K, and γ be a regular cardinal λ<^γ<Ltc+. Suppose that / is ̂ -saturated
and 49 is ^-saturated. Since 81 is ^-saturated and λ < K, we have ||N N @*
is 7-saturated||(^ = 1. Since si is ^-saturated, ||f is a cardinal||(j/) = 1.
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By Lemma 9 of § 2 and the fact that λ <̂  γ, we have \\39* is /-saturated!!0*0

= 1. By Lemma 2 of § 3, we have 3/9*^ is /-saturated. By the basic

lemma, ^ M is /-saturated.

Again, by Lemma 2 of §3, \3f is /-saturated| |w = 1. That is, \\J is

/-saturated | | w = 1.

Remark. In the case when K is measurable and / is a non-trivial

prime ideal on κ,srf = P(κ)/I = 2. So we may consider N as a transitive

class in the real world.

The following theorem can be proved by using the basic lemma.

THEOREM (Levy-Solovay [3]). Let K be a measurable cardinal and I

be a non-trivial prime ideal on K. Let 3$ be a complete Boolean algebra

such that card (JO < K. Then, it is 39-valid that J is a non-trivial prime

ideal on K.

Proof. By the basic lemma, @ίΛl is isomorphic to 39*. Let Φ be an

isomorphism from @ίal to 39*. Define Ψ 39 -> J** by ψ(6) — 6*. Trivially

Ψ is injective. Let ψ(f)e39*. We may suppose that f;κ-+39. Since

card (39) < £, there is the unique b e 39 such that f(a) = 6 for almost all

or < K. Thus, ψ(/) = Ψ(b). It follows that ?Γ is bijective. Let i^Φ~ιo ψ.

Let 5 e f . By easy computations, we have \\(Φ~ιoψ)(b) = 1^|| = & and

||(φ-1o?Π(&) = O β | |= - 6 . By Lemma 3 of §3, we have | | 0 = 2|| = 1.

That is, || / is pr ime | | w = 1.

5. Proofs of Theorem 2 and 3.

5.1. Let 39 a complete Boolean algebra, and π be an automorphism

of 39. Then, π induces the automorphism π* of Vw.

LEMMA 1. Let φ(v0, , vn_^ be a set-theoretical formula, and let

%09-">%n-i ΐ>e elements of V{m. Then,,

Proof. The lemma is easily proved by induction on the length of φ.

An element x of 7 W is called π-invariant if x = τr*(#). a? is called

invariant if # is τr-invariant for all automorphisms π of ^ . For example,

# is invariant for each x eV.

By using Lemma 1, the following lemma is trivial.
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LEMMA 2. Let φ(v0, , vn_^ be a set-theoretical formula, and let

> χn-ι be invariant elements of Vw. Then, \\φ(xQ, , #TO-i)|| =

5.2. Let ^ be a Boolean algebra. We consider the following con-

dition (*).

(*) 0 and 1 are the only invariant elements of Si.

We say that a Boolean algebra £8 is homogeneous if: for every 0 < 6,

c < 1, there exists an automorphism π such that τr(δ) = c. Clearly, if

J* is homogeneous, then Si satisfies the condition (*).

LEMMA 3. Let φ(v0, - , vn_J be a set-theoretical formula, and & be

a complete Boolean algebra satisfying the condition (*). Let x0, , xn_λ

be invariant elements of V{m. Then, Wφix^, - '9xn-i)\\ = 0 or 1.

Proof. Suppose not. P u t \\φ(x0, •>,xn_d\\ = 6. Then, 0 < b < 1.

Since ^ satisfies the condition (*), there exists an automorphism π such

t h a t π(jb) Φ b. Then,

, , aj»-i) ||) ^ IÎ (»o, , xn-i) II

This contradicts to Lemma 2.

Let SP be a partially ordered set. We make ^ into a topological

space by taking sets of the form

as a basis for the open sets. Let SS9 be the complete Boolean algebra

of regular open sets of ^ . Let π be an automorphism of &. Then, π

induces the automorphism π of St9 by π(U) = {ττ(p) p e C7}.

LEMMA 4. Let & be a partially ordered set satisfying the condition

(**).

(**) Let p and q be elements of SP. Then, there is an automorphism

π of ^ such that π(p) and q are compatible.

Then, &#, satisfies the condition (*).

Proof. Suppose not. Then, there exists an element 0 < U < 1 of

such that π(U) = U for all automorphisms π of Si,. Let p and q be

elements of & such that peU and geinterior(-Z7). Since 3P satisfies

the condition (**) there exists an automorphism π of & such that π{p)

and q are compatible. Then, there exists an element r of 9* such that
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r < π(p) and r < q. Since τt(U) = U, π(p) e U. By the fact that U is

open, r e t / . Since q e interior (—C7), re—U. This is a contradiction.

5.3. Let Λ: be an uncountable cardinal, and let / be a non-trivial

ideal on K. Let J e Vw be the ideal generated by I inside Vw.

LEMMA 5. J is invariant.

Proof. Let π be an automorphism of Si. By Lemma 1, \\π*(J) is

the ideal on π^Qc) generated by 7r*(/)|| = 1. Since K and / are invariant,

\\π*(J) is the ideal on K generated by /|| = 1. Hence, \\π*(J) = / | | = 1.

Since Vw is separate, TΓ^CJ) = /.

5.4. Let Λ: and / be as in 5.3. Suppose that / is /^-saturated.

LEMMA 6. Let ^ be a complete Boolean algebra satisfying the con-

dition (*). Suppose that sat {β) = K. Then, it is 3s-valid that J is not

fC'Saturated.

Proof. Suppose not. Since 38 satisfies the condition (*), \\J is K-

saturated| | w = 1 by Lemma 3 and Lemma 5. Let ^ e F ( J ) such that

| | 0 = P(κ)/J\\w = 1. By Lemma 2 of §3, ®w is /^-saturated. By the

basic lemma, SSf^ is /c-saturated. Then, || J '* is A>saturated||(j/) = 1.

Clearly, ||2V t= ̂ * is yc-saturated||U) = 1. Choose / e F ' so that ψ(f) = L

We may suppose that f\κ-+κ. The, for almost all a < tc, & is f(a)-

saturated. Thus, sat(«^)<Λ:. This contradicts to the assumption of J*.

Now Theorem 2 is a corollary of Lemma 6.

5.5. Let K be a measurable cardinal, and / be a non-trivial prime

ideal on K.

LEMMA 7. 2K < ιc*.

Proof. Since P(κ) = P(/c) ί l N , 2K < 2κ(N). On the other hand Λ;* is

measurable in N9 so /c* is strongly inaccessible in N. Hence, 2κ{N) < K*.

Thus, 2K < Λ*.

Theorem 3 is a corollary of the following lemma.

LEMMA 8. Let & be a complete Boolean algebra satisfying the con-

dition (*). Assume that sat(^) = jc. Let J e V{m be the ideal on /c

generated by I inside V{m. Then, it is &-valid that J is not κ+-saturated.

Proof. By using Lemma 7, the proof can be carried out analogously
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to the proof of Lemma 6. (Note that κ+ < Λ:* by Lemma 7.).

5.6. We give an application of Lemma 8. Let K and / be as in 5.5.

We consider the following partially ordered set ^ p e ^ if

1) p is a function

2) the domain of p is a finite subset of tc x ω

3) the range of p c tc

4) p((a, Ύi}) < a whenever (a, ri) e domain (p).

The ordering of 9 is c . Clearly, 9 satisfies the condition (**).

LEMMA 9.υ S a t ( j y = K. \\K = fc^'MI = *•

By the theorem of § 2 and Lemma 9, \\κ has no ^-saturated non-trivial

ideal on κ\\ = 1. On the other hand, by Lemma 8 we have | | / is not an

^^-saturated ideal on ϊ — ^ ^ || = 1, where / is the ideal on K gener-

ated by / inside Via^\
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