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COMPACT SETS IN CP(X) AND CALIBERS 

N. D. KALAMIDAS AND G. D. SPILIOPOULOS 

ABSTRACT. This presentation concerns the relation of chain conditions on a space 
X, with the weights of compact sets in Cp(X), generalizing up to the class of Jcr-bounded 
spaces, or stable spaces. In the last case, stronger results are obtained for Corson com­
pact subsets of CP(X). 

1. Introduction. All the spaces under consideration are assumed to be Tychonoff. 
Notations, terminology and cardinal inequalities left unexplained, could be found in [1] 
and [6]. If X is a space, then CP(X) is the space of all continuous real-valued functions 
with the topology of pointwise convergence and C*(X) = {/ G CP(X) : / i s bounded}. It 
is clear, that the family of sets V(x; G) = {f G CP(X) : f(x) G G} where G is open in IR, 
is an open subbase of CP(X). 

For any cardinal function ip we put hip = sup{(p(Y) : Y is a subspace of X} and hip 
is called the hereditary version of (p. 

Let A be an index set and RA the usual product of \A\ real lines. We set 2*(|A|) = {/ G 

RA : {aeA: \f(a)\ > s} is finite for every e > 0} and Z(|A|) = {/ G RA : \{a G A : 
f(a)?0}\<u}. 

A compact space X is Eberlein (Corson) compact if and only if X is homeomorphic 
to a compact subspace of Z*(|A|) (Z(|A|)). It is apparent, that every Eberlein compact 
space is Corson compact. 

A supersequence is the one-point compactification of any infinite discrete space. We 
put a(X) = sup{r : there is a supersequence Y in X, such that \Y\ = r}. It is known 
(see [5]) that Z*(r) is homeomorphic to CP(A) for every supersequence A, \A\ = r, where 
Z*(r) - I*(|A|). 

The cardinal min{r : r+ is a caliber of X} is denoted by sh(X) and the point finite 
cellularity of X, by p(X). 

A space X is a-pseudocompact (cr-bounded), if X is the union of countably many 
pseudocompact (bounded) subsets. • 

It is well known the fact proved by Arkhangel'skii (see [3]), that the Suslin number 
of any compact space X is the least upper bound of the weights of compact sets lying in 
CP(X). But when F is a compact subset of CP(X), where X is pseudocompact, F can be 
considered, using arguments of [3], as a subset of CP((3X) where c(X) = c(/3X), obtaining 
this way the following: 
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PROPOSITION 1. For every pseudocompact space X, c(X) = sup{w(F) : F is com­
pact set in CP(X)}. m 

REMARK 1. Let X be a non-metrizable Eberlein compact space. Then, after Propo­
sition 7.1 of [3], CP(X) contains a dense and obviously with countable cellularity a-
compact subspace Y. Since X embeds in CP(Y), if the above proposition was valid for 
cr-compact spaces, the space X would be metrizable contradicting the hypothesis. Be­
low, other "stronger" cardinal functions appear as upper bounds for the weights of com­
pact sets in CP(X), when X is da-pseudocompact (da-bounded), i.e. contains a dense 
cr-pseudocompact (^-bounded) subspace. • 

REMARK 2. We cannot extend Proposition 1 to pseudocompact subsets of CP(X). 
Indeed, let X be a Sakhmatov space (X is infinite), i.e. a pseudocompact space where 
all countable subspaces are closed and C*-embedded. Then CP(X,I) is pseudocompact, 
where / is the closed unit interval of the real line, has a countable cellularity and does 
not have a G$ diagonal ([8]). In view of the fact that X is embedded in CpCp(X,l), if 
w(X) < c(Cp{X,I)\ then X would be compact and metrizable. But, if X is (infinite) 
compact and metrizable, then X cannot be a Sakhmatov space. • 

COROLLARY 1.1. For every pseudocompact space X, p(X) — c(X). 

PROOF. It is known ([2]) that for every space X, p(X) = a{Cp{X)). Let now p{X) = 
T. It is immediate from Proposition 1, that c(X) > r. The reverse inequality is obvious. • 

COROLLARY 1.2. Consider the pseudocompact spaces X, Y and a continuous, 1-1, 
function 9 from CP(X) into Cp(Y).lfY satisfies r. c. c, where r > u, then so does X. m 

We may return now, to the promise given in Remark 1. Let s(Y) = sup{|Z| : Z is a 
discrete subspace of 7}, the "spread" of the space Y. It is known (see [7]), that for every 
space Y,c(Y) < s(Y). Then, the following is valid. 

PROPOSITION 2. Let X be a do-pseudocompact space. Then, s(X) > sup{w(F) : F is 
a compact subset ofCp(X)}. 

PROOF. The statement in question, trivially reduces to the case when X = ®{Dn : 
n e LJ} with each Dn pseudocompact. As CP(X) — U{Cp(Dn) : n G UJ} it is immediate 
that sup{w(F) : F C Cp(X) and F is compact} = supn<Ct; sup{w(F) : F C Cp(Dn) and F 
is compact} and this finishes the proof. • 

NOTE. We wish to thank the referee who suggested the above proof. 

Let F be a subset of CP{X). Obviously the induced function eF from X to CP(F), such 
that for every x in X and/ in F, eF(x)(f) = f(x), is continuous. If F separates the points 
of X, then eF is also 1-1. 

The next lemma is easy to prove. The basic idea comes from [9]. 
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LEMMA 3. Let X be a space. If A C CP(X) separates points in X then the algebra 
generated by A is dense in CP(X). m 

PROPOSITION 3.1. Let X be a space such that there exists a set F C CP(X) with 
t(Cp{F)} = UJ and d(Cp(PJ} = r where cfr > u. Then X has no cfr caliber. 

PROOF. Consider {/i,• : j < r}, a dense subset of CP(F). Lemma 3 implies that for 
every / < r, there are/ , gt G F,f ^ gu such that p,j(fi) = //,(#;) for ally < /. Thus, for 
every i < r there exist r/ G Q, <5, > 0, such that 

frl(-oo,ri)ng^\ri+6i,+oo) ^ 0, or 

ft-1(-oo.'"«-)nyr1(',,-+«,-,+oo) ^ 0. 

Since cfr > CJ, we may suppose without loss of generality, that there are A C r, |A| = r, 
and r G 2, ^ > 0 such that 

V/ = ,/;_1(-oo, r) H g ^ O + 6, +oo) ^ 0, for every i G A. 

Let {/n : n < cfr} C A where /„ < /„/, if n < n' < cfr and supw<cfr in = r. 

Suppose that X has cfr caliber. Then, there is a cofinal set B C {/n : n < cfr} with 
\B\ = cfr, such that Pl{Vt : / G 5} ^ 0. Let JC G fl{Vi : / G £}. Since t(Cp(F)) = a; 
there exist *o £ # such that eF(x) G {/// : i < /o}- Choose *i < /o such that [/^(JC) — 
/i/,(/i0)| < 5/4 and |g/0(x) - fih(gio)\ < 8/4. We have fih(fio) = VhigO ^d therefore 
\fi0(x) — gi0(x)\ < 8/2 contradicting the fact that /o € B- • 

COROLLARY 3.2 ([2]). Let X.be a compact space and w(X) = r. If X = cfr > UJ, 
then À is not a caliber of CP(X). m 

COROLLARY 3.3 ([2]). Suppose that 2Wl = UJ2- Then the following are valid: 

(a) IfX has UJ\ and UJ2 calibers, then every compact subset ofCp(X) is metrizable. 

(b) Every compact space X such that UJ\ and UJ2 are calibers ofCp(X) is metrizable. 

COROLLARY 3.4 (GCH). If B is a Banach space such that (B,w) has UJ\ and UJ2 

calibers, then B is separable. 

PROOF. It is well known that (SB*, w*), the unit ball of B* with the w*-topology, 
is contained homeomorphically into Cp(B,w). Since B is contained isometrically into 
C(SB* , w*), the proof is completed using Corollary 3.3. • 

Recall that a space X is r-monolithic if nw(A) < r for every A C X with \A\ < r. X is 
called monolithic when it is r-monolithic, for every cardinal r. 

We can avoid the set theoretic assumptions in Corollary 3.3 enriching X or F properly. 
Indeed if X is stable, meaning that iw(Y) = nw(Y) for each continuous image Y of X, 
keeping also in mind that this happens if and only if CP(X) is monolithic ([1]), we obtain 
the following results. 
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PROPOSITION 4. For every space X, sh(X) > sup{w(F) : F is a monolithic compact 

subset of CPX)}. • 

PROOF. Let F be a compact subset of CP(X). If d(F) > r, where r = sh(X) then 
there is a left separated subset A of F, such that \A\ = r+. But w(A) = d(Cp(A)) — r+ 

contradicting the hypothesis since Proposition 3.1 is valid. Hence d(F) = w(F) < r. • 

COROLLARY 4.1. Let X be a da-bounded space. Then, sh(X) > sup{w(F) : F is a 
compact subset ofCp(X)}. 

PROOF. Let F be a compact subset of CP(X). Then, according to Theorem 9.23 of 
[3], F is Eberlein compact and the proof is completed. • 

PROPOSITION 4.2. For every stable space X, sh(Z) > sup{w(F) : F is a compact 
subset of CP(X)}. m 

LEMMA 4.3. For every compact space X, w(X) = sup{w(F) : F is a compact subset 

ofCpCp(X)}. 

PROOF. It is known (see [1]) that w(X) = d(Cp(X)) = iw(CpCp{X)). But iw(F) = 
w(F) < iw(CpCp(XJ) for every compact subset F of CPCP(X). Since X embeds in 
CpCp(X), the proof is completed. • 

COROLLARY 4.4. IfX is a monolithic compact space, then sh(Cp(X)) = w(X). 

PROOF. Since CP(X) is stable, it is immediate from Lemma 4.3 and Proposition 4 
that sh^CpiX)^ > w(X). The reverse inequality comes true since w(X) — d(Cp(X)Y m 

COROLLARY 4.5. For every monolithic compact space X, the cardinal r+, where 
T > t(X), is a caliber ofX if and only if it is a caliber ofCp(X). 

PROOF. In view of Corollary 4.4 sufficiency is obvious. However, Sapirovskii has 
proved (see [7]) that for every compact space X the condition: (*) r+ caliber and r > t(X) 
means that TTW(X) < T+ and the necessity comes true. • 

Baturov has proved (see [1]), that l(Y) = e{Y) for Y C CP(X), where e{Y) = sup{|A| : 
A is a closed discrete subspace of Y}. Therefore, s(Y) > l(Y). Hence, s(Cp(X)^) > 
hl(Cp(X)). But, d(X) < hl(Cp(X)) (see [1]). Since X is monolithic compact, w(X) < 
hl(Cp{X)). Keeping in mind that w(X) = nw(X) = nw(Cp(X)) > s(Cp(X)) the follow­
ing is valid. 

PROPOSITION 5. IfX is a monolithic compact space, then a) w(X) = s(Cp(X)) and 

b) sh(Cp(X)) - s(Cp(XJ). m 

Arkhangel'skii proves in [4] that for a space X, CP(X) is 2l(x) monolithic where 1{X) 
is the Lindelôf degree of X. Hence, under GCH we can state the following. 

https://doi.org/10.4153/CMB-1992-065-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1992-065-6


COMPACT SETS IN CP(X) AND CALIBERS 501 

PROPOSITION 6 (GCH). Let X be a space such that l(X) = r. Ifr+ is a caliber ofX, 
then w(F) < r for every compact subset F ofCp(X). m 

LEMMA 7. Let F be a compact set in CP(X). Then d{eF{X)\ = w(F). 

PROOF. Since eF(X) separates the points of F, the induced function e* from F to 
Cp(eF(X)) such that for every/ in F and g in eF(X), e*(f)(g) = g(f), is a homeomorphic 

embedding. Thus, w{F) = nw(F) < nwicp{eF{X))\ — nw(eF(X)), provided that for 

every space Y the equality nw(Y) = nw(Cp(YJ) is valid (see [1]. Theorem 1, p. 14). But 

eF(X) is monolithic ([3]). Hence, d(eF{X)) = nw(eF(X)) < nw(Cp(FJ) = nw(F) = 

w(F). m 

PROPOSITION 7.1. Let X be stable. Then p(X) = sup{w(F) : F is a Corson compact 
subset of Cp{X)}. 

PROOF. Since every supersequence is a Corson compact space, p(X) < sup{ w(F) : F 
is a Corson compact subset of CP(X)}. Now, let F be a Corson compact subset of CP(X), 
such that w(F) — A. Then, there is a function 6 from CP(F) to a Z*(r) continuous, linear 
and 1-1, ([5]). Thus, there is a supersequence A in CPCP(F) which separates the points of 
CP{F) ([2], Proposition 2.9). Therefore, A separates the points of Y = eF(X). Hence B = 
7ry(A), where TTY is the natural projection from CPCP(F) to CP{Y) such that irY(g) — g\ Y, 
is a supersequence in CP(Y) separating the points of Y. Thus, nw(Y) > nw(B) = w(B) and 
iw(Y) < w(Cp(B)} = \B\ — w(B), since eB from Y to CP(B) is continuous and 1-1. From 
the stability of Y, we get that nw(Y) = w(B). But, Lemma 4.3 implies that nw(Y) — w(F). 
Hence, w(B) = \B\ = A, meaning that Y and accordingly X, has no (A, a;) caliber. • 

COROLLARY 7.2. IfX is a Corson compact space, then (a) w(X) — p(Cp(X)) and 

(b) sh(Cp(X)) =p(Cp(X)) = s(Cp(X)). 

PROOF, (a) Since X is monolithic, then CP(X) is stable. Thus w(X) < p(Cp{X)). 

However, in view of Proposition 7.1, Lemma 4.3 gives w(X) > p(Cp(X)^. • 
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