ON CONJUGATES IN DIVISION RINGS

CARL C. FAITH

Let D be a non-commutative division ring with centre C, and let Δ be a proper division subring not contained in C. In (4) Cartan raised the question: is it ever possible for each inner automorphism of D to induce an automorphism of Δ ? As is well-known, Cartan (4, Théorème 4) with the aid of his Galois Theory answered this negatively in case D is a finite dimensional division algebra. Later Brauer (3), and Hua (8), using elegant, elementary methods, extended Cartan's theorem to arbitrary division rings.

Let D^* denote the group of all non-zero elements of D, and let $H(\Delta)$ be the subgroup of all elements of D^* which effect inner automorphisms of Dthat map Δ onto Δ . In this note I prove the following extension of the Cartan-Brauer-Hua theorem: $H(\Delta)$ cannot have finite index in D^* . This theorem implies (and is implied by) the condition: D always contains infinitely many subrings $x\Delta x^{-1}$ isomorphic (or conjugate) to Δ .

Although this result implies that every finite division ring is commutative, its proof does not constitute a new proof of this old theorem (17) of Wedderburn's. As a matter of fact, the proof requires not only Wedderburn's theorem but also Jacobson's theorem (9) on algebraic division algebras over a finite field.

1. Conjugates in division rings. If S is any subset of a division ring D, the *centralizer of S in D* is the set $S' = \{x \in D | sx = xs \text{ for all } s \in S\}$. When S consists of the single element θ , θ' denotes this division subring. S'' is the division subring (S')'. If Δ is any division subring of D, Δ^* represents the multiplicative group of non-zero elements of Δ . C will always be the centre of D.

The group of all automorphisms of D which leave fixed each element of Δ is signified by $G(\Delta)$; $J(\Delta)$ is the subgroup of those inner automorphisms of D which belong to $G(\Delta)$. The group $G(\Delta)$ is *outer* when $J(\Delta)$ is the identity subgroup (e). Since $J(\Delta)$ is isomorphic to ∇^*/C^* , where $\nabla = \Delta'$, one deduces from the following proposition that if $J(\Delta)$ is a finite group \neq (e), then Δ' is a finite field. Thus when C is not a finite field, $J(\Delta)$ is finite if and only if $G(\Delta)$ is outer.

PROPOSITION 1. If ∇ is any proper division subring of a division ring D, then ∇^* has finite index in D^{*} if and only if D is a finite field.

Proof. If D is a finite field there is nothing to prove. Conversely, if D is not a finite field, then D is not finite (17). Suppose ∇^* has finite index in D^* . Then

Received April 22, 1957.

 ∇^* necessarily has infinitely many elements; for each $\theta \in D$, there exist elements δ_1 , δ_2 , and $\delta \in \nabla$, $\delta_1 \neq \delta_2$, such that $\theta + \delta_1 = \delta(\theta + \delta_2)$. But then $(1 - \delta)\theta \in \nabla$. Since $\delta_1 \neq \delta_2$, δ cannot be 1. Thus $(\delta - 1)^{-1} \in \nabla$, so that $\theta \in \nabla$. Hence $D = \nabla$, and ∇ is not a proper subring.

Proposition 1 actually implies that a non-central element θ of a non-commutative division ring D has infinitely many conjugates in D. This is Herstein's theorem (7). As several authors (15, 16) have remarked, the Cartan-Brauer-Hua theorem is not needed in the proof.

If Δ is an arbitrary division subring of D, there is occasion to consider isomorphisms of $\Delta(\theta)$ which leave fixed the elements of Δ . Such an isomorphism, often called *an isomorphism of* $\Delta(\theta)$ with respect to Δ , when induced by an inner automorphism of D is effected by an element $x \in \Delta'$. If θ commutes with every element of Δ' , that is, if $\theta \in \Delta''$, then no non-trivial isomorphism of the kind mentioned exists. If Δ' is finite, then the number of conjugates $x^{-1}\theta x$, with $x \in \Delta'$, is also finite. In all other cases, however, θ has infinitely many such conjugates, as can be deduced from the case $\nabla = \Delta'$ of the next theorem, which has been obtained also by Kasch (11).

THEOREM 1. Let D be a non-commutative division ring, and let ∇ be an infinite division subring not contained in the center of D. Then every element θ in D which is outside of ∇' possesses infinitely many conjugates $x^{-1}\theta x$ with $x \in \nabla$.

Proof. If θ has only finitely many conjugates with $x \in \nabla$, then A^* has finite index in ∇^* , where $A = \nabla \cap \theta'$. Since ∇ is not finite, by Proposition 1, A must be all of ∇ . But then $\nabla' = A'$. Since $\theta \in A'$ this implies that $\theta \in \nabla'$, contrary to its choice. Thus θ must have infinitely many conjugates $x^{-1}\theta x$, with $x \in \nabla$.

The following corollaries are all proved under the assumption of Theorem 1, that is, $\nabla = \Delta'$ is infinite. In case *D* is an algebraic division algebra, Jacobson's theorem (9) makes this assumption on Δ' superfluous.

COROLLARY. Let $[\theta]$ denote the set of elements in D of the form $x\theta x^{-1}$, with $x \in \Delta'$. Then, if $[\theta]$ contains an element other than θ , then $[\theta]$ contains infinitely many elements.

Proof. Since $[\theta] \neq \theta$, then $\theta \notin \Delta''$, so by Theorem 1, the set $[\theta]$ is infinite.

If $[\theta]$ is finite for every $\theta \in D$, then $D = \Delta''$. Thus $\Delta' = C$, that is, $G(\Delta)$ is outer. This yields the next corollary, which emphasizes the severity of Nobusawa's locally finite condition (13).

COROLLARY. If the set of conjugates of θ with respect to Δ is finite for each $\theta \in D$, then $G(\Delta)$ is outer.

Let X be indeterminate over Δ , and let $\Delta[X]$ denote the polynomial ring consisting of all finite sums of elements of the form $aXbX \dots cXd$, with $a, b, \dots, c, d, \in \Delta$. If $\theta \in D$ is a zero of a polynomial in $\Delta[X]$, then so is

every conjugate of θ with respect to Δ . Thus the next corollary is a consequence of Theorem 1. When $\Delta = C$ it specializes to a corollary of Herstein's (7).

COROLLARY. If at least one zero of a polynomial $p(X) \in \Delta[X]$ lies in D but outside of Δ'' , then p(X) has infinitely many zeros in D.

The next theorem provides another generalization of Herstein's theorem.

THEOREM 2. Let D be a non-commutative division ring with centre C, and let Δ be a proper division subring which contains C, and has finite dimension d over C. Then any element of D which lies outside of Δ possesses infinitely many conjugates with respect to Δ .

Proof. H. Cartan (4) has shown under the hypotheses of the theorem that D has finite dimension over Δ' equal to d, and moreover, that $\Delta'' = \Delta$. Now Δ' cannot be finite. Otherwise D is an algebraic division algebra over a finite field, and hence, by Jacobson's theorem (9, Theorem 8), D is commutative, contrary to hypothesis. Theorem 1 now applies.

2. Isomorphic division subrings. Let Δ be a division subring of a noncommutative division ring D, such that Δ is not contained in the centre C of D. Then the number of distinct isomorphisms of Δ of the form $x^{-1}\Delta x$ is equal to the index of ∇^* in D^* , where ∇ is the centralizer of Δ in D. That this index is always infinite can be obtained from the case A = D of the next proposition, as well as from Proposition 1.

PROPOSITION 2. Let D be a division ring, and let A be a division subring with infinitely many elements. Let Δ be a division subring of D not contained in the centralizer A' of A. Then there exist infinitely many isomorphisms of Δ of the form $x^{-1}\Delta x$, with $x \in A$.

Proof. By Theorem 1, any θ in D not in A' is moved infinitely many times by the inner automorphisms of D effected by the elements of A. Since Δ is not contained in A', there must be infinitely many distinct isomorphisms of the form $x^{-1}\Delta x$, with $x \in A$.

Let Δ be a proper division subring not contained in the centre C of a noncommutative division ring D. Let

$$H(\Delta) = \{x \in D^* | x \Delta x^{-1} = \Delta\},\$$

and consider the two conditions:

(1) index of
$$H(\Delta)$$
 in $D^* = m < \infty$;
(2) index of ∇^* in $H(\Delta) = r < \infty$;

where ∇ is the centralizer of Δ in *D*. I wish to prove that (1) cannot hold. Since Proposition 1 asserts that (1) and (2) cannot hold simultaneously, it will be useful to note some conditions under which (2) holds. Equation (2) can be interpreted as follows: The inner automorphisms of D induce only finitely many distinct automorphisms in Δ . This case certainly occurs when Δ is a field having finite degree over $\Delta \cap C$. More generally, since the centre Z of Δ is mapped onto Z by every automorphism of Δ , it is easily seen that $H(Z) \supseteq H(\Delta)$. Thus if Z is not contained in C, the case just mentioned for fields having finite degree produces the next lemma.

LEMMA 1. Let Δ be a proper division subring of a non-commutative division ring D such that the centre Z of Δ has finite degree n > 1 over $Z \cap C$, where C denotes the centre of D. Then $H(\Delta)$ has infinite index in D^{*}.

The proposition below is actually a result of Brauer's (3). It asserts that in general h and h + 1 cannot both belong to $H(\Delta)$. I include the proof for the sake of completeness.

PROPOSITION 3. Let h and h + 1 be non-zero elements of D. Then both h and h + 1 belong to $H(\Delta)$, where Δ is a division subring of D, if and only if h lies in Δ , or in the centralizer of Δ .

Proof. The sufficiency is evident. Let $\delta \in \Delta$. Then following Brauer (3);

(i) $h\delta = \delta_0 h$, where $\delta_0 = h\delta h^{-1} \in \Delta$;

(ii) $(h+1)\delta = \delta_1(h+1)$, where $\delta_1 = (h+1)\delta(h+1)^{-1} \in \Delta$.

From (ii), $h\delta + \delta = \delta_1 h + \delta_1$, so that by (i), $(\delta_0 - \delta_1)h = (\delta_1 - \delta)$. If for some choice of δ , $\delta_0 \neq \delta_1$, then $h = (\delta_0 - \delta_1)^{-1}(\delta_1 - \delta)$ lies in Δ . Otherwise, for all δ , $\delta_0 = \delta_1$. Then from (ii) $\delta = \delta_0$. This is true for all δ . Thus h lies in the centralizer of Δ . This completes the proof.

Now let h and h_0 both belong to $H(\Delta)$. Then if $h + h_0 \in H(\Delta)$, it is necessary that $hh_0^{-1} + 1 \in H(\Delta)$. By the preceding proposition hh_0^{-1} lies in Δ , or Δ' . If further $h_0 \in \Delta \cap \Delta'$, then h lies in Δ , or Δ' . This produces the

COROLLARY. If h, h_0 , and $h + h_0$ all belong to $H(\Delta)$, Δ as in the preceding proposition, then hh_0^{-1} lies in either Δ , or Δ' . If further h_0 lies in the centre of Δ , then h lies in Δ , or Δ' .

Let *D* be a non-commutative division ring with centre *C*, and let Δ be a proper division subring not contained in *C*. Then there exist two elements v and d, v in *D* but outside of Δ , and d in Δ , such that $vd \neq dv$. Now Nagahara (12, Lemma 1) has shown that there is at most one c in $d' \cap \Delta$ such that $(v + c)d(v + c)^{-1}$ lies in Δ . Now let $(v + c)d(v + c)^{-1}$ be outside of Δ , $c \in d' \cap \Delta$. Then v + c does not belong to $H(\Delta)$. It is natural to inquire whether there exist at most two c's in $d' \cap \Delta$, say c_1 and c_2 , such that $v + c_1$ and $v + c_2$ belong to the same right coset of $H(\Delta)$ in D^* . This question is answered in the affirmative below.

PROPOSITION 4. Let D be a non-commutative division ring with centre C, and let Δ be a proper division subring not contained in C. Choose v in D outside of

 Δ , and d in Δ , such that $vd \neq dv$. Let $\{c_k\}$ be a sequence of distinct elements of $d' \cap \Delta$. Then at most two elements of the sequence $\{v + c_k\}$ can belong to the right coset of $H(\Delta)$ in D^* determined by any one of them.

Proof. Suppose $v + c_k$, k = 1, 2, 3, all belong to the same right coset of $H(\Delta)$ in D^* , where the c_k , k = 1, 2, 3, are distinct elements of $d' \cap \Delta$. Then $(v + c_1)(v + c_2)^{-1} = h$, and $(v + c_3)(v + c_2)^{-1} = h_0$, where h and h_0 belong to $H(\Delta)$. This implies that $(1 - h)v = hc_2 - c_1$, and $(1 - h_0)v = h_0c_2 - c_3$. Thus,

$$(a) \ b = \ c_2 \ (a \ n) \ (c_2 \ c_1),$$

(
$$\beta$$
) $v = -c_2 + (1 - h_0)^{-1}(c_2 - c_3).$

Moreover, by equating v in (α) and (β) , one obtains:

$$(1-h)(1-h_0)^{-1} = (c_2-c_1)(c_2-c_3)^{-1} = d_0 \in d' \cap \Delta.$$

Therefore,

$$(\gamma) \quad d_0 h_0 = h + (d_0 - 1).$$

From the corollary to Proposition 3, it follows, since neither d_0 nor $d_0 - 1$ equals zero, that $h(d_0 - 1)^{-1} \in \Delta$, whence $h \in \Delta$, or else $h(d_0 - 1)^{-1} \in \Delta'$. Now h cannot belong to Δ , otherwise by (α) , v must belong to Δ , contrary to its choice. Consequently $h(d_0 - 1)^{-1} \in \Delta'$, so that h belongs to the division ring A generated by Δ' and the elements c_1 , c_2 , and c_3 . But then (α) shows that $v \in A$. Thus $v \in d'$, that is, vd = dv, contrary to its choice. This completes the proof.

Evidently from this proposition, $H(\Delta)$ has infinite index in D^* provided only that Δ is a proper subring of D not contained in the centre such that for some choice of d in Δ , $d \notin C$, the division ring $d' \cap \Delta$ is infinite. Otherwise every $d \in \Delta$ belongs to a finite division ring. Thus (directly, even without applying Wedderburn's theorem) Δ is an algebraic division algebra over the finite field $Z = \Delta \cap \Delta'$. Then Jacobson's theorem (9, Theorem 8) implies that $\Delta = Z$, that is, Δ is commutative, so that $d' \cap \Delta = \Delta$ for each $d \in \Delta$. Consequently Δ must be a finite field of necessarily finite degree n > 1 over the subfield $\Delta \cap C$. The first lemma now may be applied to complete the proof of the next theorem.

THEOREM 3. Let D be a non-commutative division ring, and Δ a proper division subring not contained in the centre. Then there exist infinitely many distinct subrings $x\Delta x^{-1}$.

3. Applications. Let D be a non-commutative division ring, and let Δ and A be division subrings such that the following conditions are satisfied:

- (1) Δ does not contain A.
- (2) A' does not contain Δ .

When A is infinite, (2) in conjunction with Proposition 2 implies that Δ has infinitely many isomorphisms of the form $a\Delta a^{-1}$ with $a \in A$. Then it is interesting to ask: Are there infinitely many different subrings $a\Delta a^{-1}$ with $a \in A$? Theorem 3 shows that the answer to this question is yes in case A contains Δ properly, inasmuch as (2) implies that Δ is not contained in the centre of A. This is a special case of (I) of the next corollary.

COROLLARY 1. Let D be a non-commutative division ring, and let Δ and A be division subrings such that (1) and (2) above hold. Then D contains infinitely many different subrings of the form $a\Delta a^{-1}$ with $a \in A$, provided any one of the following conditions are satisfied:

- (I) $\Delta \cap A$ is not contained in the centre of A.
- (II) $Z \cap A$ is infinite, where Z is the centre of Δ .
- (III) D has characteristic 0.
- (IV) D is algebraic over the prime subfield.

Proof. (I) Let $B = \Delta \cap A$, and let $H_B = H(B) \cap A^*$, $H_{\Delta} = H(\Delta) \cap A^*$. It is easily verified that $H_B \supseteq H_{\Delta}$. Since $B \notin A$, and since B is not contained in the centre of A, H_B , and a fortiori H_{Δ} , has infinite index in A^* . This completes the proof of (I).

(II) Since $A' \cap \Delta \neq \Delta$, and since $\Delta \cap A \neq A$, one can choose $d \in \Delta$, $d \notin A'$, and $v \in A$, $v \notin \Delta$ such that $vd \neq dv$. Now $d' \cap \Delta \cap A$ contains $Z \cap A$. By Proposition 4 the sequence $\{(v + c)\Delta(v + c)^{-1}\}$ is infinite, $c \in Z \cap A$. This completes the proof of (II).

(III)-(IV). Let P denote the prime subfield of D. If D has characteristic 0, then P is infinite, and so is $Z \cap A$. Hence (II) applies. If D is algebraic over P, then Jacobson's theorem shows that P must be infinite.

COROLLARY 2. Let D be a non-commutative division ring, and let F be a division subring whose centralizer F' is not a field. Let d be any element of F' not contained in its centre. Let R be any division subring of F, and let $\Delta = R(d)$ denote the division subring generated by R and d. Then there exist infinitely many different $x\Delta x^{-1}$ with $x \in F'$.

Proof. Let A = F'. It is clear that (1) of Corollary 1 holds inasmuch as Δ is contained in the centralizer d' of d, whereas A is not. Moreover, since $d \in \Delta \cap A$, it follows that $\Delta \cap A$ is not contained in the centre of A. Thus (I) and (2) of Corollary 1 hold, so that its conclusion applies.

It is an interesting consequence of this result that the extension D/F of the corollary possesses infinitely many intermediate division rings $x\Delta x^{-1}$ in the case R = F. That the hypothesis on F' is necessary in some cases for this situation to arise can be seen as follows: Let F be a division subring of D containing C, and having finite dimension over C. It is known (10, p. 165) that there is a 1 - 1 correspondence between intermediate division subrings of F/C and those of D/F', and that F'' = F. Now suppose that

CARL C. FAITH

F' is a field. Then, since $F \supseteq F'$, F' has finite degree over C. If further we assume that F'/C is separable, then this extension contains only finitely many intermediate fields. Then D/F contains only finitely many intermediate division rings.

The Cartan-Brauer-Hua theorem has been generalized extensively to simple and other rings (1, 2, 6, 14). I have obtained an analogue of Theorem 3 for these rings, and this has been announced in (5). The new results in (5) neither depend upon, nor contain, the results of the present paper.

References

- 1. S. A. Amitsur, Invariant submodules of simple rings, Proc. Amer. Math. Soc., 7 (1956), 987–989.
- 2. W. E. Baxter, Lie simplicity of a special class of associative rings, Proc. Amer. Math. Soc., 7 (1956), 855-863.
- 3. R. Brauer, On a theorem of H. Cartan, Bull. Amer. Math. Soc., 55 (1949), 619-620.
- 4. H. Cartan, Théorie de Galois pour les corps non commutatif, Ann. Ecole Norm. Sup., 64 (1947), 59-77.
- 5. C. C. Faith, Concerning non-invariant submodules of simple, matrix, and local matrix rings, Notices Amer. Math. Soc., 5 (1958), 372.
- A. Hattori and G. Toyoda, On the multiplicative group of simple algebras, J. Math. Soc. Japan, 4 (1954), 262–265.
- 7. I. N. Herstein, Conjugates in division rings, Bull. Amer. Math. Soc., 7 (1956), 1021-1022.
- 8. L. K. Hua, Some properties of a sfield, Proc. Nat. Acad. Sci., 35 (1949), 533-537.
- 9. N. Jacobson, Structure theory for algebraic algebras of bounded degrees, Ann. Math., 46 (1945), 695-707.
- *Structure of rings*, Amer. Math. Soc. Colloquim Publications, 37 (New York, 1956).
- F. Kasch, Eine Bemerkung ueber innere Automorphismen, Math. J. Okayama University, 6, (1957), 131-133.
- T. Nagahara, On generating elements of Galois extensions of division rings, Math. J. Okayama Univ., 6 (1957), 182.
- 13. N. Nobusawa, On compact Galois groups of division rings, Osaka Math. J., 8 (1956), 43-50.
- 14. A. Rosenberg, The Cartan-Brauer-Hua theorem for matrix and local matrix rings, Proc. Amer. Math. Soc., 7 (1956), 891–898.
- W. R. Scott, On the multiplicative group of a division ring, Proc. Amer. Math. Soc., 8 (1957), 305.
- 16. H. Tominaga, A note on conjugates, Math. J. Okayama Univ., 7 (1957), 75-76.
- J. H. M. Wedderburn, A theorem on finite algebras, Trans. Amer. Math. Soc., 6 (1905), 349-352.

The Pennsylvania State University

380