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ULC PROPERTIES IN NEIGHBOURHOODS OF 
EMBEDDED SURFACES AND CURVES IN E* 

J. W. CANNON 

1. Introduction. In this paper we derive those properties of topologically 
embedded curves and surfaces in E3 which can be obtained without use of 
Bing's Side Approximation Theorem [3] for surfaces. The local homology and 
homotopy properties studied classically play the largest role in the paper, but 
the final geometrization of some of the results requires theorems such as 
the PL Schoenflies Theorem, Dehn's Lemma, the Loop Theorem, the Sphere 
Theorem, and Waldhausen's generalization of the Loop Theorem (n.b., one 
application of Waldhausen's theorem (in (3.4)) requires use of the nontrivial 
normal subgroup in the statement of that theorem). Our major goals are the 
following: 

(1) Lemmas (3.2) and (3.3), which we use together with Dehn's Lemma and 
related theorems in another paper [14] to give a new proof of the Side Approxi
mation Theorem. 

(2) A catalogue in Section 2 of the essential ULC properties that we have 
used or seen applied in a study of topologically embedded surfaces in E3 

(including new proofs of a number of theorems proved originally by means of 
the Side Approximation Theorem). 

(3) A new proof of the fact that every topologically embedded disk in E3 

contains numerous tame arcs and tame finite graphs (Sections 2, 3; cf. [2]). 
(4) A 1 — ULC version of the well-known Hosay-Lininger Theorem 

(Section 6; cf. [23; 25; 15]). 
(5) Global and relative 1 — ULC approximation theorems for surfaces 

in E3. 

The paper is not devoted, however, only to new proofs of old theorems. 
We also establish the following new theorems: 

(6) A finite graph G in E3 is tame if it has a singular regular neighbourhood 
inE 3 . 

(7) An (n — 1)-sphere S in Sn has 1 — ULC complement if S is locally 
spherical or locally capped. 

(8) A 2-sphere S in E3 is tame if S is locally spherical or locally capped. 

Result (3) is a consequence of (6) and (2). Another consequence of (6) is a 
conjecture communicated to us by O. G. Harrold (cf. [20]): 

(9) An arc A in E3 is tame if E3 - A is 1 - ALG at each point of A. 
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Result (9) completes a characterization of tame finite graphs begun by 
McMillan [27]: 

(10) A finite graph G in E3 is tame if Ez — G is 1 — FLG at each point of G. 

Boyd and Wright [5] have also announced (9) and (10) but have found 
curiously that their proof of (9) is valid for simple closed curves and not for 
arcs. This puts their proof of (10) in jeopardy. Because of the importance of 
(9) and (10), we have developed and included independent proofs. Nicholson 
[30] and Detmer [16] have used (9) to obtain characterizations of tame 
topologically embedded complexes in E3. Detmer [16] has extensions of these 
characterizations to certain subsets of complexes, which subsets need not be 
topological complexes. 

The special case of (6) where G is an arc or simple closed curve settles in the 
affirmative a conjecture of Gillman [19; Conjecture 4 for k = 1, n = 3]. 

(11) An arc or simple closed curve in E3 is tame if it is deformation free. 

Result (8) completes, and result (7) generalizes, work begun in papers by 
Loveland [26] and Eaton [17]. 

The idea of writing a paper on surfaces in 3-manifolds which explored in some 
detail those results which can be obtained without the Side Approximation 
Theorem and emphasized the 1 — ULC property arose in discussions with 
Eaton in San Antonio in January of 1970. We draw on Eaton's ideas heavily in 
the proofs of the results mentioned in (4) and (5). We wish to acknowledge his 
ideas and influence. 

We feel some need to apologize to the reader who seeks in our Sections 2 and 
3, along with [14], the shortest path to the Side Approximation Theorem. We 
have not included the shortest, most direct proofs that we know for the relevant 
facts. We have looked, rather, beyond the Side Approximation Theorem to the 
other main theorems about tame surfaces and tame subsets of surfaces and have 
chosen those results which lead more directly to these other theorems. 

We suggest [9] as a basic reference for the topics discussed. We assume as 
familiar the notions of Euclidean spaces (E1, E2, E3, . . . ) , ?z-cells (B°, B1, B2, . . . 
and their homeomorphic images), w-spheres (S° = Bd J31, S1 = Bd B2, . . . and 
their homeomorphic images), complexes, manifolds, disks (2-cells), arcs 
(1-cells), finite graphs (1-complexes), crumpled cubes, tamely (and flatly) 
embedded complexes, general position and cut-and-paste techniques, and some 
elementary geometric homology and homotopy theory. We also assume the 
PL Schoenflies Theorem (see [9, p. 277] for references and discussion), 
Dehn's Lemma [31] (cf. also [9; 4.5.1 and Addendum to 4.5.1]), the Loop 
Theorem [32; 37] (including Waldhausen's generalization [39]), and the 
Sphere Theorem [31]. In addition, we assume the simpler facts from the 
homological linking theory (integer coefficient) of simple closed curves in Ez 

(cf. [1, Chapter 15] and [34, § 77]). Namely, we use the notation L(J, K) for 
the linking number of disjoint oriented simple closed curves or loops in E3. 
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We assume the fact that L(Jy K) may be calculated, as indicated in 
[9, Section 4.7], by taking nearby polygonal approximations J7 and K' to J and 
K, taking a polyhedral singular oriented surface D in E3 bounded by J' and in 
general position with respect to Kr, and counting the algebraic number of 
intersections of Kf with D. We now list the standard facts of the situation. 

1.1. L(J, K) is independent of the choice of J', K' and D. 
1.2. L(J,K) = L(K,J). 
1.3. If Ji is homologous (integer coefficients) in E3 — K to J2, then 

L(JUK) =L(J2,K). 

1.4. If / is an oriented simple closed curve in E3, then there is an oriented 
simple closed curve K in E3 — J such that L (J, K) = 1 (cf. paragraphs 2 and 3 
of the proof of (3.4)). 

1.5. If J and K are disjoint oriented simple closed curves in E3 and L (J, K) = 
0, then J is nullhomologous in E3 — K. 

1.6. If D is a disk in Ez (not necessarily polyhedral) and p £ Int.D, then 
there is a simple closed curve / in (E3 — D) \J {p} for which L(J, Bd D) 7̂  0. 
Furthermore, if / is any such loop and J\ is any loop in E3 — Bd D, then J± is 
homologous in E3 — Bd D to some multiple of / . In particular, \L(J,BdD)\ = 1 
by (1.4). 

We use p for the Euclidean metric, Diam for diameter, Bd for boundary 
(point set or combinatorial), Int and Ext for interior and exterior, N(X, e) for 
the (open) e-neighbourhood of X in Em, where e > 0 is a constant or 
e : X —> [0, 00 ) is a continuous function, depending on context. An e-set has 
diameter less than e; an e-map or homeomorphism moves no point x as far as 
e(x) (unless e(x) = 0 ) ; we also use (^e)-sets and (^e)-sets with obvious 
interpretations. The symbol CI denotes closure. 

Central to our development are the ulc and ULC properties. The standard 
references to these properties are [42, Chapter 3, Section 5 and Chapter X] 
and [18]. For the reader's convenience we define these properties here. Let 
coefficients G = Z or Z2 (integers or integers mod 2) be fixed. Let A and A' be 
subsets of Em (some m). Let i be a nonnegative integer. We say that A is 
i — le (i.e., i — le with respect to G) in A' at x Ç Em if, for each e > 0, there 
is a 8 > 0 such that each i-cycle (with G coefficients) in N(x, 8) P\ A bounds 
homologically in N(x, e) H A'. If A is i — le in A1 at each point x G Cl A, 
then we say that A is i — le in Af. U A is i — Ic'mA' and, for each e > 0, the 
corresponding 8 may be chosen independently of x G Cl A, then we say that 
A is i — ulc in ̂ 4r. If A is i — le in ̂ 4; for i = 0, 1, . . . , w, then we say that 
A is lcn in ^4;. If A is i — ulc in ^4' for i = 0, 1, . . . , n, then we say that 
A is ulc" in ,4'. We say that A is i - LC in 4 ' at x 6 Em if, for each e > 0, 
there is a ô > 0 such that each map / : Sl —> iV(x, 8) C\ A extends to a map 
y * . j3<+i _» JV(X, e) H 4 \ We leave it to the reader to define i - ULC, LCn, 
and ULCn. If A is w/cw or ULCn in itself (i.e., A' = A), then we say simply 
that A is w/<f or ULC1. 
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2. ULC propert ies in E3 . We collect here the local homology (ulc) and 
local homotopy (ULC) properties we have found useful in a study of embedded 
surfaces. (The 2 — ulc and 2 — ULC properties are included only for com
pleteness, however; we have never seen them used to real advantage.) The 
more important results appear in a list for reference at the beginning of this 
section. Each is labeled by the subsection number (2A, 2B, or 2C) in which its 
proof appears. Related but less important results, lemmas, and discussions 
appear in the subsections themselves. We highly recommend that most readers 
refer only to the list of theorems and not to the proofs until a second or third 
reading of the paper. 

We feel that Theorems (2C.6) and (2C.7) and their proofs are the highlights 
of this section. The former of these theorems is proved in a most roundabout 
way in the literature (cf. [13]) and both were proved originally in ways that 
depended in a very essential way on the Side Approximation Theorem 
[13; 8, Theorem 4.2]. 

Throughout this section, 5 will denote a 2-sphere in E3, U and V the 
components of E3 — S. 

2A. LOCAL HOMOLOGY PROPERTIES. 

The set U is ulc2 (Z or Z2 coefficients) ; hence, in particular, U is ULC0 = ulc0. 

2B. GLOBAL PRELIMINARIES, UNICOHERENCE, SEPARATION. 

2B.1. The set Cl U is an absolute neighbourhood retract, locally contractible, and 
locally connected. 

2B.2. H±(U) = Hi (CI U) = TTI(C1 U) = 1 (Z or Z2 coefficients for homology). 

2B.3. The sets U and CI U are unicoherent. Equivalently, if p, q £ U (or 
p, q G Cl U) and p and q are separated in U (or Cl U) by a set X, then some 
component of X separates p from q in U (or in Cl U). 

2B.4. If e > 0, then there is a 5 > 0 such that no two sets in U (or Cl U) of 
diameter ^ e are separated in U (or Cl U) by a 8-set. 

2C. LOCAL HOMOTOPY PROPERTIES. 

2C.1. Homotopies of maps in crumpled cubes. Suppose e > 0. Then there is a 
ô > 0 such that, for each topological space X, mapsf : X —•» Cl U and g : X —> Cl U 
which are 8-homotopic in E3 are e-homotopic in Cl U. 

2C.2. Adjustments of maps in ULC sets. Suppose C C E3 and C is ULCn 

(n a nonnegative integer). Suppose P is an (n + 1)-complex, B is a closed 
subset of P, and f : P —» Cl C is a map. Then, for each e > 0, there is a map 
f*:P-*C\C such that 

f*\B =f\B, 
f*(P - B) C C,and 

p(f*(x)if(%)) < e, for each x e P. 

https://doi.org/10.4153/CJM-1973-004-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-004-1


ULC PROPERTIES 35 

2C.3. Expansions of ULC sets. If C C C" C CI C C E3 and C is ULCn, 
then C is ULCn. 

2C.4. Intersections of ULC sets. If G, C2, . . . are ULCn sets in E3, each with 
the same closure C in E3, and each is open in C, then P)£=i Ci is also ULC1. 

2C.5. Equivalence among 1 — ULC properties. If X is a subset of S, then 
the following two properties are equivalent: 

(1) (Cl U) - Xisl - ULC. 
(2) Uisl- ULC in (Cl U) - X. 

If, in addition, X is compact and has no degenerate component, then the following 
condition is also equivalent to the first two: 

(3) Uisl - ULC in E3 - X. 

2C.6. / / X is a compact subset of S and X lies on some tame 2-sphere S' in Ez, 
then Ez - S i s l - ULC in £ 3 - X. 

Remark. Theorem (2C.6) is a special case of the following theorem which we 
shall not prove in this section. (But cf. (4.3).) 

2C.6'. Invariance of the 1 — ULC property. Suppose X is a compact subset 
of S and both U and V are 1 — ULC in E3 — X. Then, if S' is another 2-sphere 
in E3 which contains X, Int Sr and Ext S' are 1 — ULC in E3 — X. 

2C.7. Existence of ULC sets in Cl U. 
(1) If U C C C CI U, then C is 0 - ULC (= ULC0). 
(2) There is a ^-dimensional Fa-set F in S such that U" W F is ULC1. 
(3) There is a ^-dimensional Gs-set G in S such that U VJ G is ULC2. 

Addendum to 2C.7. 

(2') If Xi, X2, . . .is a sequence of compact sets in S and, for each i, (Cl U) — 
Xiisl — ULC, then we may require that F C. G (Z S — U£=i Xf. 

(3;) If U C C CCI U and C is open in CI U, then C is 2 - ULC. 

2A. (Continued). That U is ulc2 is classical (cf. [42, p. 66 for Z2 coefficients, 
Chapter X in general]). 

2A.1. COROLLARY. Each point of S is arcwise accessible from U. 

Proof. We leave this as on exercise. 

2B. (Continued). 

Proof of (2B.1). That S is an absolute neighborhood retract (ANR) is a 
well-known consequence of the fact that 5 can be embedded as a neighborhood 
retract of the absolute retract E3 (use the standard embedding of the 2-sphere 
in E3; cf., for example, [36, Exercises C, pp. 56-57]). But it is an easy exercise 
to show that a closed subset of En is an ANR if its boundary in En is an ANR. 
Hence Cl U is an ANR. A second easy exercise shows that a neighborhood 

https://doi.org/10.4153/CJM-1973-004-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-004-1


36 J. W. CANNON 

retract of a locally contractible and locally connected space is in turn locally 
contractible and locally connected. 

Proof of (2B.2). The result that HX{U) = 1 is classical (cf. [42, p. 61 for Z2 

coefficients]). In order to see that Hi(C\ U) = 7ri(Cl U) = 1, take any family 
J i , . . . , Jk of loops in Cl U bounding singular disks Di, . . . , Dk in E3. After 
slight adjustment by a homotopy that keeps Ji, . . . , Jk in Cl U (cf. (2C.2.1)), 
we find that we may assume that S (£ U *=i Di> Let p (z S — U*=i Dt. Then 
5 — {p) is an absolute retract (AR). Thus there is a m a p / : U Dt —> S — \p\ 
that does not move \J Dt C\ S. Define g : U Dt —> Cl U by g(x) = f(x) for 
x $ Cl U and g(x) = x for x Ç CI [/. Then Ji, . . . , Jk bound the singular 
disksg(D1),...,g(Dk)mCl U. 

Proof of (2B.3). The equivalence in locally connected spaces of unicoherence 
and the second condition stated in (2B.3) is well-known (cf. [42, p. 51]) and 
an easy exercise. If [/or Cl U were not unicoherent, then one could construct an 
essential map of the relevant space onto the circle S1 (cf. [41, p. 227]). But this 
is clearly impossible because of (2B.2). 

Proof of (2B.4). We need one lemma. 

2B.4.1. LEMMA. If P is an open subset of CI U, then there is an open subset Q of 
P such that 

(i) Qns = pr\s, 
(2) (CI U) — Q is connected, and 
(3) U — Q is connected. 

Proof. Since U is arcwise connected, there is a connected finite graph G\ in U 
such that (CI U) — P C N(Gi, 1). Proceeding inductively, we find that there 
is a connected finite graph Gi in U such that Gt-i C Gt and (Cl U) — 
P C N{GU 1/i) for each i. Since U is 0 — ULC (2A), we may require further 
that d - Gf_i C N((C\ U) - P, 1/i). Let X = [(CI U) - P] U (U Gt). 
Then X is closed and Q = (CI U) — X satisfies the requirements of (2B.4.1). 

We now complete the proof of (2B.4). There is by the lemma an open cover 
{ Ua} of CI UinClU such that, for each a, both (CI U) - Ua and U - Ua are 
connected and such that, for each a, Diam Ua < e. There is, by Lebesgue's 
theorem, a positive number ô such that each <5-set in Cl U lies in some Ua-
Let X and Y be two sets in U (or CI U) each of diameter ^ e and Z a ô-set in 
U - (X U F) (or in (CI U) - (X U F)) . Then Z C £/« for some a. But 
each of X and F intersects the connected subset U — Ua (or (CI £7) — Ua) 
oî U — Z (or of (CI U) — Z) since £4 is an e-set. Therefore Z does not separate 
X a n d F i n U (or in Cl U). 

2C. (Continued). 

Proof of (2C.1). Since S is an absolute neighborhood retract, there is a 
neighborhood N of S in CI V and an e/2-retraction R : N —-> S. Choose 
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5, 0 < à < e/2, such that N(S, 5) C N C CI U. If, then, / : X -> Cl U and 
g : X —> Cl [/are 5-homotopic maps in E3, say by i l : X X 1 —> Es, H : f ^ g, 
we examine the map H' : X X I —> Cl U defined by 

rr//v A = (H(x,t)iîH(x,t) eau 
w l ) \RH(x, t) if # ( x , 0 g CI U. 

One checks immediately that Hf is an e-homotopy from / to g in Cl U. 

Proof of (2C.2). This is a corollary to [18, Theorem 2]. For completeness and 
to emphasize the elementary nature of the result, we include a detailed proof 
for the case n = 1. Choose ôi > 0 such that ôi-loops in C bound singular 
e/3-disks in C (C is 1 — ULC). Choose 50 > 0 such that each two points of C 
which lie within ôo of each other lie on a singular 5i/2-arc in C (C is 0 — ULC). 
Triangulate the set P — B with mesh approaching 0 near B such that the 
image under / of each simplex has diameter less than ô0/3. Enumerate the 
vertices of P — B : vuv2, . . . . Define/ *(vi) Ç Csuch that p(f (flz)>/*(^)) < 
min(ôo/3, 1/i). Enumerate the edges: ei, ei, . . . . If ek is a 1-simplex of P — B 
with vertices vt and vj} define / * : ^ - > C s o as to extend f*\{vu Vj) and so 
that D i a m / * ( ^ ) < 5i/2. This is possible since 

P(f*(pt)j*(vs)) ^ p(f*<Pi)J (*<)) + P(/(^)-/fe)) 
+ P(f(vj),f*(vj)) 

< do. 

Require further that D i a m / * ^ ) —> 0 as k —> oo. Enumerate the 2-simplexes 
of P — B : t\, ti, . . . . If tm is a 2-simplex of P — B with edges eu ej} ekl 

define/* : tm —•> Cso as to extend/*\e t VJ e$ \J ek, so that Diam/*(£m) < e/3, 
and so that Diam/ * (tm) —•> 0 as m —> GO . Define / *|J3 = / \B. It is an easy 
matter to check t h a t / * , so defined, satisfies the requirements of the theorem. 

2C.2.1. COROLLARY. If f : S1 —» Cl U is a loop that bounds a singular disk 
D : B2 —» CI £7, /&e?£ / bounds a singular disk Df : B2 —» Cl Z7 arbitrarily close 
to D such that (Dr)~l{S C\ IntB2) is ^-dimensional. 

Proof. Let Gi, G2, . . . be a sequence of triangulations of B2 with mesh going 
to zero. The image under D of that part of the 1-skeleton of G\ which lies in 
I n t £ 2 may be moved into U by (2C.2) since U is 0 - ULC (2A). This 
adjustment may be realized by a slight homotopy of D in Ez by the homotopy 
extension property (cf. [24, p. 13]). The homotopy, if small enough, may be 
retracted into Cl U since Cl U is an ANR (2B.1). Sequential application of this 
procedure pulls the images under D of the 1-skeletons of G2, G%, . . . into U 
as well. The map D' may be taken as the limiting map. 

Proof of (2C.3). This is essentially [18, Theorem 3]. Suppose e > 0 and 
0 ^ k ^ n given. Let 8 > 0 be chosen such that any m a p / : Sk —» C of Sk into 
a ô-set in C extends to a map g : Bk+1 —» C taking Bk+1 into an e-set in C. Let / 0 : 
Sk —» C be a map into a <5-set in Cr. Extend /0 over a closed collar neighborhood N 
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of S* in Bk+\ Use (2C.2) with P = N and B = Sk to adjust f0\N so as to take 
N — Sk into C. If one uses enough care in the application of (2C.2), then 
/o| (Bd N) — Sk will be a map of a ^-sphere into a 5-subset of C. Thus / 0 may 
be extended over the remainder of Bk+1 to take Bk+1 into a small subset of 
CU/ 0 (5* ) C C. Result (2C.3) follows. 

Proof of (2C.4). This is essentially [10, Lemma 2.3]. Suppose e > 0 and 
0 ^ k S n given. Since G is fe — Z7LC, there is a ô > 0 such that each m a p / 
taking Sk into a <5-subset of G extends to a m a p / * taking J5&+1 into an e-subset 
of G- Let / : Sk —> PlïU G be a map into a <5-subset of HS=i G, and 
fi : 5*+ 1 —» G an extension of / with Diam/i(5 f c+1) < e. We now define 
positive numbers C], e2, . . . and maps / i , / 2 , . . . inductively as follows. Let 

0 < 6! < (1/4) • min{e - Diam/i(B*+1), P ( / I ( ^ + 1 ) , C - G ) } . 

Let / 2 : Bk+i -> C - G be such that /2 |S* = /x|S* and p( / i (£) , /2(p)) < el 

for each £ £ J3&+1. Such a map exists by (2C.2). For i > 1, let e* be in the range 
0 < e, < (1/4) • min{€l_i, P [ / , ( ^ + 1 ) , C - G]}. Let fi+1 : Bk^ -* C - G + 1 

be such that fi+i\S* = fi\Sk and p (/,(/>), fi+i(p)) < et for each p £ 5*+i. 
Again, at each stage such a map exists by (2C.2). 

Because C is a complete space, it follows t h a t / * = lim/* exists, is contin
uous, extends/, and takes I2*+1 into an e-subset of f~)T=i G- We conclude that 
nSli G is & - Z7LC(0 ^ k S n), hence that P l t i G is C/LC*. 

Proof of (2C.5). We need one lemma and a corollary to that lemma. 

2C.5.1. LEMMA (Burgess [8, Lemma 1]). If Dl7 D2, . . . , Dn are disjoint disks 
in Ez and f is a map of a disk K into Ez such that f (Bd K) C E3 — Ul=i D u 

then there is a map g of K into E3 such that 

g\BdK =f\BdK, 
g(K) Cf(K) U U t i IntDt, and 
g{K) — \J™=\Di is connected. 

Proof. This is an immediate consequence of Tietze's Extension Theorem 
(a disk is an absolute retract). In rough outline, one chooses disjoint closed 
subsets of K whose images under / are to be retracted into Dlt D2, . . . , Dn} 

respectively, in order to define g. 

2C.5.2. COROLLARY. CI U is 1 - ULC. 

Proof. Suppose e > 0 given. Let Di, . . . , Dn be a collection of e/3-disks in S 
such that 5 C U?=i IntZ?*. Let 8 > 0 be such that each ô-subset of 5 lies in 
some Int-Di. Let / : S1 —» CI U be a 5-loop. Since U is 0 — ULC, it follows 
from (2C.2) that / may be closely approximated by a map g : S1 —•» U. By 
(2C. 1 ), we may assume t h a t / and g are homotopic under a very small homotopy 
in CI U. That is, we lose no generality in assuming that / : S1 —> U. Let 
/ * : B2 -> £ 3 be a singular 5-disk bounded by / . Then / * (B2) Pi S C Int Dt 
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for some i. By (2C.5.1), there is a map g : B2 —> E3 such that 

g\Si=f*\Si=f\S\ 

g(B2) C / * ( £ 2 ) W I n t £ „ a n d 

gCB2) — Di is connected. 

It follows that g(B2) CCIU and Diamg(52) < Ô + e/3. We conclude that 
Cl U is 1 - ULC. 

We now complete the proof of (2C.5). Clearly (1) implies (2), and (2) 
implies (3). 

We now show that (2) implies (1). Suppose (2) satisfied and suppose e > 0 
given. By (2C.5.2), there is a ô > 0 such that 5-loops in Cl U bound singular 
e-disks in CI U. Let / : S1 —» (Cl U) — X be a map into a ô-set. Let 
/ * : 5 2 - > C l U be a singular e-disk bounded by f. By (2C.2.1), we may 
assume that [ ( j f*)" 1^)] H Intj52 is a O-dimensional subset of U. Let 
P i , P 2 , . . . be a null-sequence of very small disjoint disks in Int B2 such that 
( J* ) - 1 (5 H l n t ^ 2 ) C U IntDi. The loops /* |Bd Dhf *|Bd D2, . . . form 
in turn a null sequence of very small loops in U. By (2), these bound a null 
sequence of small singular disks gt : Di~^ (Cl U) — X. Then 

g = [f\(B2- UDt)]U Ugi'.B2-*E* 

is a map from 5 2 into a small subset of (CI U) — X; and if D\, D2, . . . and the 
singular disks g*(D*) are kept sufficiently small, then Diamg(52) < e. We 
conclude that (1) is satisfied. 

Now assume the additional conditions on X and suppose (3) satisfied. Let Xt 

be the union of components of X having diameter at least l/i(i = 1, 2, . . .). 
Then Xt is a closed set satisfying the hypotheses for (3). Let e > 0 be given. 
Making e smaller if necessary, we may assume e < 1/i. Choose ôi > 0 such 
that ôi-subsets of 5 lie in e/2-disks in 5 and ô > 0 such that ô-loops in U 
bound singular ôi-disks in Ez — Xt. Let / : 5 1 —» U be a 5-loop, 

F : B2 —-> Ez — Xt a singular ôi-disk in E3 — Xt bounded by / . 

Then F{B2) C\ S lies in the interior of an e/2-disk E in S. Since X< has no 
component of diameter less than 1/i, Int E — Xt is simply connected (though 
not necessarily connected). T h u s / (B2) Pi S may be covered by finitely many 
disjoint disks Di, D2, . . . , Dn in £ — J j . By (2C.5.1), there is a map 
g:B2-> F(B2) \J U l i ^ i such that g |Bd£ 2 = / and g(B2) - Uî-i J3* is 
connected. It follows that g(B2) C (Cl Î7) - Xt and that Diamg(52) g 
e/2 + ÔL We conclude that Z7 is 1 — Z7LC in (CI U) - Xt. By (2A) and 
(2C.3), Cl U - X*isO - ZJLC. By the equivalence of (1) and (2), (CI U) - Xt 

is 1 - ULC, hence ULC1. By (2C.4), (CI U) - X = f W ((CI 17) - X7) is 
ULC1. Thus (3) implies (1), and the proof is complete. 

This is the natural point to insert some material for use in Section 6. This 
material is a simple elaboration of the proof that (3) implies (1) in the theorem 
just completed. 

https://doi.org/10.4153/CJM-1973-004-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-004-1


40 J. W. CANNON 

Suppose 5 > 0. We define 
(^(Sfô) = {e> 0|<5-sets in S lie in simply connected sets in 5 of diameter rg e}. 

e(s,B) = inf £ (S, ô). 

2C.5.3. The number e(S, ô) is an element of the set S (5, ô). 

Proof. Suppose X is a <5-set in S. Then X lies in the interior of a compact 
<5-set XQ in S such that Bd X0 is a union of finitely many disjoint simple closed 
curves. For each i, let Ui be a simply connected subset of S which contains X0 

and has diameter less than e(5, <5) + 1/i. Let Vt be the union of those com
ponents oî S — XQ which lie entirely in Ui. A quick check shows that X0 U Vt 

is simply connected; indeed it is either 5 or a union of finitely many disjoint 
disks in S. Since S — X has only finitely many components, some one of the 
sets Vi is repeated for infinitely many i. For such a Vu ^o W Vt is a simply 
connected set of diameter ^ e(S, ô) in S and it contains X. 

2C.5.4. A ô-loop in U bounds a singular e(S, 5) + 8-disk in Cl U. 

Proof. The proof has already been carried out in the proof of (2C.5): a 
ô-loop L: S1 -> U bounds a singular ô-disk D : B2 -> £ 3 ; the set 5 C\ D (B2) is a 
ô-set in 5, hence lies in a simply connected subset W of 5 of diameter ^ e(5, 5) ; 
as the proof of (2C.5.3) shows, W may be taken as a union of finitely many 
disjoint disks in S (or W = S). Lemma (2C.5.1) shows how to cut D off on W 
so as to obtain a singular disk Df : B2 -» (£> (52) U l f ) n C l U; but Diam D' ^ 
Diam D(B2) + Diam PF < Ô + e(5, 5). 

2C.5.5. e(5, ô) - > 0 a 5 Ô - > 0 . 

Proof. The proof is clear. 

2C.5.6. If h : S —* E3 is an a-homeomorphism, then 

e(h(S),ô) g e(5, ô + 2a) + 2a. 

Proof. Let X be a 5-set in A (5). Then /^-1(X) is a 5 + 2a-set in S, hence lies 
in a simply connected set W in S of diameter ^ e(5, 5 + 2a). Thus h(W) is a 
simply connected e(S, ô + 2a) + 2a-set in h(S) which contains X. 

Proof of (2C.6). The proof follows a sequence of definitions and lemmas, 
(2C.6.1)-(2C.6.5). The proof is constructed so as to use the fact that U is 
ulc1 with Z2 coefficients. An analogous proof could be constructed using Z 
coefficients. 

2C.6.1. Definition. Suppose G is a group. Then the (mod 2)-commutator 
subgroup G1 of G is the subgroup of G generated by squares of elements of G. 
Inductively, we define Gn = (Gn-1)1 and G» = HSU Gn. 

2C.6.2. If (f> : G —> H is a homomorphism of groups, then <j>{Gn) C Hn and 
*(G>) C.H». 
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Proof. Note t ha t <t>(g2) = <j>(g)2 {g G G). The desired result is an easy 
induct ive consequence of this trivial observation. 

2C.6.3. 7/ G is a free group, then Gw = 1. 

Proof. This result is well-known (cf. [33, first paragraph of the proof of 
8.4.16]). 

2C.6.4. Definition. If G is the fundamental group iri(M) of a path-connected 
space M, then we write Gn = <inn(M) and G03 = œ(M). 

T h e group w^iM) can be interpreted geometrically as the kernel of the 
natura l homomorphism wi(M) —» Hi(M, Z2) from homotopy group to 
homology group. T h a t is, a loop L : S1 —» M represents an element of TI1(M) 
if an only if it bounds a singular (possibly nonorientable) surface in M. This 
follows from the classification theorem for 2-manifolds (which shows t h a t a 
square corresponds to a Môbius strip, a commuta tor to a disk with one handle ; 
cf. [29, Chapter 1, § 5]). ( I t is helpful to realize t h a t each commuta tor in a 
group is a product of squares.) The groups win(M) and u(M) have similar 
geometric interpretat ions. 

2C.6.5. T H E W-THEOREM. Suppose N is a connected open subset of Cl U, p is a 
point of N P U, and F is the family of loops in N C\ U based at p and bounding 
singular disks in N. Then each loop in F represents an element of w(N C\ U, p). 

Proof. I t suffices to show t h a t each element L : S1 —> N P U of F is homo-
topic in iV-Bd U to a product of squares of elements of F. This we can do by 
showing t h a t L bounds a singular 2-manifold h : E —* N-Bd U such t h a t h is 
nullhomotopic in N. Indeed, this implies t h a t L is homotopic to a product of 
squares and commuta tors (hence of squares) of loops in h{E) by the classifi
cation theorem for 2-manifolds. Each such loop is in F because h is nullhomo
topic in N. 

Let D : B2 —> N be a singular disk bounded by L. There is a positive distance 
between D(B2) and (Cl U) — N. Although we shall ignore the details of the 
epsilontics, it is to be understood t h a t all things chosen to be small are to be 
small with respect to the distance between D(B2) and (Cl U) — N. 

There is a tr iangulation of B2 with 2-simplexes Bi, . . . , Bk so small t h a t the 
image of each under D is very small. By (2A), (2C.2), and the homotopy ex
tension proper ty (cf. the proof of 2C.2.1), we may assume t h a t the image 
under D of the 1-skeleton lies in U. Using the fact t h a t U is 1 — ulc (2A), we 
replace each D\Bt by a map ht: Ei—* N r\ U of a compact , connected 2-mani
fold Ei having one boundary component Bd Bi such t h a t hi{Et) is a very 
small subset of N C\ U and ht\Bd Ei = D\Bd Bt. We require t h a t Eu . . . , Ek 

have disjoint interiors so t h a t E = UÎLi Ei is a compact, connected 2-manifold 
with one boundary component S1 = Bd B2. We therefore see t h a t h = 
Ut=i hi : E —» N Pi U defines a singular 2-manifold in N P U. This is the 
singular 2-manifold promised in the outline given in the first paragraph of the 
proof. I t remains only to show t h a t h is contractible in N. 
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To this end, let rt : Et —> Bt be a map which fixes Bd Et = Bd Bt. Define 
r : E -+ B2 by r = \J rt. Then if appropriate care has been taken, the maps 
Dr : E->N and h : E-> N will be homotopic in N (by (2C.1)). But D is 
contractible in N, hence also are Dr and h. This completes the proof. 

We now complete the proof of (2C.6). We may assume that S' is a round 
2-sphere in E3. Suppose e > 0 given. For each p £ X, let 5P be a round 2-sphere 
in E3 which contains p in its interior, has diameter less than e, and intersects S' 
in a single simple closed curve. Let Dv be a disk in Int Sp such that 

p G Int A, C f l , C 5 . 

Let [/p be a spherical neighborhood of p in Int 5P such that Uv f~\ S C Int Dp. 
Let ô, 0 < 8 < e, be so small that any <5-subset of Ez which intersects X lies 
in some Up. We prove now that any <5-loop / : S1 —» £ 3 — S bounds a singular 
e-disk in Ez — X. 

If the convex hull of J(Sl) misses X, then J certainly bounds a singular 
e-disk in Ez — X. Otherwise / (S 1 ) lies in some Up, p G X. Then J bounds a 
singular disk D in Ï7, and D(5 2 ) Pi 5 C Dp. By (2C.5.1), D(B2) may be cut 
off on Dp in such a manner that the singular disk E(B2) thus obtained lies in 
D(B2) U £>p and does not intersect both U and V, say £ ( 5 2 ) C Cl U. By 
the co-theorem (2C.6.5), J represents an element of co(iV), where iV is the 
component of U r\ Int Sp whose closure contains E(B2). By the homo-
morphism lemma (2C.6.2), J represents an element of œ(IntSp — X) since 
N C Int SP — X and inclusions of spaces induce homomorphisms on funda
mental groups. But 7n(IntSj, — X) is clearly a free group since Sp and 5 ' are 
round 2-spheres. Thus J represents the trivial element of iri(IntSp — X) by 
(2C.6.3), and therefore J shrinks in the e-subset IntSp — X of E3 — X. This 
completes the proof of (2C.6). 

2C.6.6. COROLLARY. / / X is a compact subset of S which has no degenerate 
components and if X lies on a tame 2-sphere in E3, then (Cl U) — X and 
(CI V) - X are 1 - ULC. 

Proof. By (2C.6), U is 1 - ULC in £ 3 - X. By (2C.5), (Cl U) - X is 
1 - ULC. Similarly (CI V) - X is 1 - ULC. 

Proof of (2C.7.(1)). This is a consequence of (2A) and (2C.3). 

Proof of (2C.7.(2)) and the inclusion FC.S— UT=iXi of Addendum 
{2') to (2C.7). It is easy, using (2C.6), to find a sequence Hi, H2y . . . of compact 
subsets of 5, each satisfying the requirement that (Cl U) — Ht and 
(CI V) - Hi be 1 - ULC, such that 5 - \JT=i Ht is totally disconnected 
(a O-dimensional GVset). One simply intersects small 2-spheres, that are tame, 
with 5 and takes small continua from the intersection for the H^s. We may 
also assume that the X / s appear among the H/s. By the countable inter
section theorem (2C.4) (take Ct = (Cl U) - Ht), the sets (Cl U) - USLi Ht 

and (CI V) — US=i Ht are 1 — ULC. Let Ju J2, . . . be an enumeration of all 
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polygonal simple closed curves in Ez — S having vertices with rational 
coordinates. Suppose for concreteness that Jt C U. Let D{ : B2 —> (Cl U) — 
U£=i Hi be a singular disk bounded by J\ such that 

D i a r n D , ^ 2 ) ^ 2 . i n f { D i a m P ( 5 2 ) | £ > : £ 2 - + ( C l U) - UZiH^BdD = J,}. 

Let Ft = Di(B2) r\S and F = U£=i Ft. We suffice ourselves with showing 
that U U F is 1 - J7LC. By (2C.5), we need only show that U is 1 - ULC in 
[ / U F . 

Suppose e > 0 given. Choose ô > 0 such that 5-loops in £/ bound singular 
e/2-disks in (CI U) — US=i H{. Let J : B2 —> Z7 be a ô-loop. We may assume 
after a slight homotopy that J = J** for some i. Then J^ bounds an e/2-disk in 
(CI U) - \Jt-iHi. Hence D i a m Z ) ^ 2 ) < e. Thus J can be shrunk in an 
€-subset of U\J F{ C U U F. This completes the proof. 

The usefulness of (2C.7) depends in large measure on the following lemmas. 

2C.7(2).l. Suppose G is a compact 1-dimensional set in S, f : G —-» [0, oo ) 
is a real-valued continuous function, and F is a ^-dimensional Fa-set in S. 
Then there is a homeomorphism h : S —> S such that 

p(x,h(x)) èf(x) (x G G), and 

h(x) $ F (x e G,f(x) > 0). 

Proof. We leave the proof as an exercise. 

2C.7(2).2. If G is any graph in S and e > 0, then there is an e-homeomorphism 
h:S->S such that (CI U) - h(G) and (CI V) - h{G) are 1 - ULC sets. 

Proof. This is an immediate consequence of (2C.7(2).l), (2C.7) Addendum 
(2'), and (2C.3). 

Proof of (2C.7(3)), the inclusions FCG CS - U £ i Xt and of (3') from 
the Addendum. 

Proof of (3): This follows in two steps. 

2C.7(3).l. If M is a closed, connected, unbounded subset of Ez, then Ez — M 
is 2 - ULC. 

Proof. Let / : S2 —» Ez — M be a singular 2-sphere of diameter less than e. 
Then there is a 3-cell B in Ez of diameter less than e such that / (5 2 ) C Int B. 
Since M VJ (Ez - Int B) is closed and connected, T2[(EZ - M) C\ Int 5 ] = 
TT2{EZ - [M U (E3 - IntB)]} = 0 by the Sphere Theorem [31]. Hence / is 
nullhomotopic in the e-set (Ez — M) C\ IntB. 

2C.7(3).2. If C is a crumpled cube in Ez and M is an open subset of C which 
contains Int C, then M is 2 — ULC. 

Proof. Let / : S2 —» M be a singular 2-sphere of diameter less than e. Let 
Ô = (1/3) . [€ - Diam/(52)] . Although M need not be open in Ez, it is 
nevertheless an ANR; thus, for some open set W of Ez which contains M, 
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there is a ô-retraction r : W —> M. By (2B.4.1), we may assume that E3 — Wis 
connected. Hence by (2C.7(3).l) and its proof,/ is nullhomotopic in a subset 
of W of diameter less than Diam/(S2) + <5/3. L e t / * : Bz -> W be a singular 
3-cell in W that is bounded by / and has diameter less than e-(2ô/3). Then 
r : f*(B3) —> M is a singular 3-cell in i f bounded b y / that has diameter less 
than e. 

We now complete the proof of 2C.7(3) and its addendum. Choose a sequence 
sequence ifi, H2, . . . of compact subsets of S, exactly as in the proof of 2C.7 (2). 
Then (CI U) - HiisO- ULCby (2A) and (2C.3), (CI U) - Ht is 1 - ULC 
by choice of if,, and (CI £/) - if, is 2 - ULC by (2C.7(3).2). Thus (CI [/) -
if, is ULC2 by definition. Hence Cl U - U Htis ULC2 by (2C.4). Let G = 
S — [J Ht. The inclusions F (Z G d S — KJ Xt are then obvious. This com
pletes the proof. 

3. Taming arcs and finite graphs in E3 . Our main result is the following: 

3.1. An arc A in E3 is tame if it has a singular regular neighborhood. The 
taming homeomorphism may be chosen to be locally PL except at the points of A. 

A connected finite graph G in Ez is said to have a singular regular neighbor
hood in Ez if there is a polygonal finite graph G' in E3, a regular neighborhood 
P of G' in E3, and a m a p / : P —•> E 3 which takes G' homeomorphically onto G, 
takes P — G' into E3 — G, and has nonzero degree deg(/ , G) with respect to G. 

We define deg(/ , G) as follows. Let A be any arc in G. Let f> denote a path in 
E 3 — Int A which joins the endpoints of A. Let D be a polyhedral disk in P 
transverse to / _ 1(^4) whose image under / misses B. Then deg(/ , G) = 
\L(B \J A,f |Bd D)\. Note that deg(/ , G) depends only o n / and G and not on 
the choice of A, B, and D (cf. (1.1) and (1.3)). 

If G is not connected, we require that deg( / , Go) be nonzero for each com
ponent Go of G. 

Our methods are capable of proving more than (3.1) (as we show in (3.10), 
(3.16), (3.22), and (3.28)), but (3.1) seems to be the optimum result as far as 
simplicity of statement and proof are concerned. In the latter part of this 
section we generalize (3.1) to finite graphs and prove that 1 — ^4LG arcs are 
tame and that an arc is tame if it satisfies singular analogues of Harrold's local 
unknottedness and local peripheral unknottedness condition [22]. We have 
chosen to isolate the singular regular neighborhood condition for arcs for first con
sideration partly because it is geometrically the most intuitive of the conditions 
but mainly because it leads most directly to the following two lemmas, the only 
two results from this section which we need in our proof of the Side Approxi
mation Theorem [14]. 

3.2. If S is a 2-sphere in E3 and A is an arc in S such that (S W Int S) —A 
and (S U Ext S) - A are 1 - ULC (cf. (2C.7(2).2)), then A has a singular 
regular neighborhood. 
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3.3. / / an arc A in Ez has a singular regular neighborhood and p Ç IntA, 
then A pierces an almost-polyhedral disk at p. (A 2-manifold is said to be 
almost-polyhedral if it is polyhedral except at finitely many points.) 

In summary, although (3.1) is our main result, we need only (3.2) and (3.3) 
for use in [14]. We therefore prove these latter results first: first (3.2), then a 
trio of lemmas (3.4)-(3.6) culminating in a proof of (3.3), then another pair 
of lemmas (3.7)-(3.8) culminating in a proof of (3.1). 

Proof of (3.2). This is an immediate consequence of the ULC mapping 
theorems of Section 2. Note first that (S U Int S) — A and (S KJ Ext S) — A 
are 0- and 2-ULC by (2A), (2C.3), and (2C.7(3).2). Let D be a disk in 5 
such that A C Int D. Let A' be the straight line segment in E3 joining (0, 0, 0) 
and (1, 0, 0). Let Dr be a closed rectangular neighborhood of A' in the x^-plane 
{(x, y, z)\z = 0}. Let h : D' —> D be a homeomorphism which takes A' onto A. 
Let P = {(x,y,z)\(x,y,0) Ç D', z£ [ -1 ,1 ]} , P+ = {(x,y,z) G P\z > 0}, 
and P- = {(x, y, z) G P\z < 0}. Finally, let pr : P —> £>' be the orthogonal 
projection defined by (x, y, 2) —> (x, 3;, 0). The composite h • £r takes P onto Z). 
By (2C.2), there is a map / : P -> £ 3 such that f \ D' = h - pr\D' = h and 
such that / ( P - ) C (5 U Int 5) - A and /(P+) C ( 5 U E x t 5 ) - i 4 . One 
sees immediately that / is a singular regular neighborhood of A with 
deg(f,A) = 1 (cf. (1.1)-(1.6)). 

We now proceed to the lemmas needed in the proof of (3.3). We assume in 
this section until (3.9) that A is an arc in Ez with a singular regular neighbor
hood/ : P —-> Ez. We denote the a r c / - 1 (̂ 4) by A' and assume for convenience 
of description that A' is a straight line segment. We adjust / so that it is piece-
wise linear at each point of P — A'. We choose a simple closed curve / in Ez 

such that A (Z J. We choose linear orderings on A and A' compatible with the 
topology and preserved by / . If x Ç A, then we write x' = f~1(x). If x < y 
in A, then we use the interval notation [x, y] and [xr, y'] for the arcs in A and 
A'j respectively, joining x to y and x' to y'. 

3.4. / / x\ < X2 in A and e > 0, then there is a polyhedral annulus B in 
N([xi, x2], e) — J such that \L(B,J)\ = 1 and such that the boundary com
ponents Ji and J2 of B lie in N(xi, e) and N(x2, e), respectively. 

Proof of (3.4). The idea is to choose small polyhedral 2-spheres about Xi and 
X2y span a singular annulus between these 2-spheres, then use Waldhausen's 
form of the Loop Theorem [39] to change the singular annulus into a real 
annulus. The principal difficulty is that of spanning the singular annulus 
between the 2-spheres. The details are as follows. 

We may assume that X\, x2 G Int A, that N(xi, e) P\ N(x2, e) = <£, and that 
N([xi, x2]j e) r\ J C Int A. We choose points h, t2 Ç A such that xi < h < 
t2 < x2. We choose polyhedral 2-spheres Ri and R2 about Xi and x2, respectively, 
such that Ri separates xt from tt in E3. We require that 
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(1) JRx U Int R1 U [xi, h] C # (* i , e), 
(2) R2 U Int i?2 W [*2, *2] C iV(x2, e), and 
(3) Ui H [*lf *2] = f t H [xi, *2] = 0. 
For each i (i = 1, 2), there is a polygonal simple closed curve Ki'm Rt — J 

which separates [xi, x2] P Rt from (J — [xi, x2]) r\ Rt in Rt. Note that 
\L(J, Ki)\ = 1. Let Di and Ei be the two disks in Rt bounded by Ku with 
notation chosen so that Ei Pi [xi, x2\ = <£• 

Consider Z7* = /"^[ iV^-, e) — Et]. Then there is a polyhedral 2-sphere St 

in Î7t whose intersection with A' is the two-point set {#/, £/} and whose 
interior lies in £7* and intersects A' precisely in the open arc between x/ and t(. 
(Since we are assuming A' is a straight line segment, we could take 5^ to be the 
boundary of some rectangular solid in Ui of which the appropriate segment of 
A' is a spanning arc.) Since deg(/ , A) 9^ 0, any simple closed curve in Sx 

which separates the two points of A' C\ Si in St has image under/ which links J. 
We shall first cut D t off near/(5i) where this can be done without introducing 

new intersections with J. We shall then cut f (Si) off near the new Dt where this 
can be done without introducing new intersections with J. We shall obtain 
thereby a new polyhedral 2-sphere (still denoted by Rt) and a new map 
gi : Si —> £ 3 (an adjustment of/ \Si) such that g^iRi) is a union of finitely 
many disjoint simple closed curves in Sif each separating x( from t/ in St. 

For notational simplicity in making these adjustments, we drop the subscript 
i and consider R, 5, /, x, N(x, e), D, E, and g without subscripts. WTe shall 
work only in N(x, e) — (J\J E), with the single exception that we may 
remove some intersections of D with / . We shall take care to have g agree wi th / 
in some neighborhood of {#', t'\. With these conventions in mind, we proceed 
to the adjustment of D. 

We delete a small polyhedral (open) neighborhood N of 

(D r\ [xu x2]) U Int E from E\ N H / ( 5 ) = 0. 

We then take a small (relative) regular neighborhood Nf of the (noncompact) 
polyhedron (D - N) KJ ( / (5) - / ) in £ 3 - [J U N]. Then D' = D - N is a 
union of finitely many disjoint properly embedded disks-with-holes in N'. It 
is an easy exercise with the Loop Theorem [37] to show that we may adjust D' 
so that iri(Df) —> TriCA/7) is 1-1. (If V is not connected, then the condition is to 
be satisfied for each component of D'.) Indeed, if wi(D/) —> TI(N;) is not 1-1, 
then there is, by the Loop Theorem, a disk F in Int N' whose intersection with 
D' is Bd F. Replace with F the disk in R which is bounded by Bd F and which 
does not contain E. This also changes D'. An iteration of the procedure yields 
the desired property for Df'. Since E is not affected and no new intersections 
with J are introduced, the new 2-sphere still separates x from t\nEz. Since all 
adjustments are made in N(x, e), the appropriate condition (1) or (2) is still 
satisfied. 

We now adjust/(5) slightly near/(5) P\ R so tha t / (5 ) and R are in general 
position. This may be done by a slight adjustment of / : P —> E3. Then 
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5 r^f~l(R) is a union of finitely many disjoint simple closed curves. Suppose 
one of these does not separate the two-point set {%', t') in S. Then its image 
under / is a loop in D' which is trivial in N'. Thus this loop is trivial in Df 

(ji(D') —» Ti(Nf) is 1-1) and this intersection of f(S) and R may be removed 
by changing f(S). An iteration of this simplifying procedure yields a map 
g : S —» Ez such that g~l(R) is a union of finitely many disjoint simple closed 
curves in 5, each of which separates/ - 1 (x) from/_ 1(0 in 5. (The intersection is 
nonempty since R separates x from t in E3.) 

We are finally in a position to describe a singular annulus which has one 
boundary component on R\ (adjusted) and one on R2 (adjusted). (We resume 
use of subscripts.) There is in St a disk Ft that contains / _ 1 ( ^ ) = U in its 
interior, is bounded by one of the curves in gcx(Ri), and intersects no other 
of those curves. Delete from each Fx a very small open subdisk Gt near to, and 
containing, }~l{ti) = / / . We require that Gt be so near t{ thatg*|G* = / \Gt. 
There is an annulus B0 in P — A' which is very near the arc [hf, t2] and joins 
Bd Gi and Bd G2. We require that f(B0) H (Ri U R2) = 0 and that 
/(Bo) C N([xh x2], e). Then B' = / |(50) \J g1\(Fl - Gx) VJ g2\{F2 - G2) is a 
singular annulus spanned between Rx and i^2 in iV([xi, x2], e). 

We note that |L(B ;, J ) | = deg(/ , A) ^ 0. Thus Waldhausen's form of the 
Loop Theorem [39] applies to the singular annulus B' in the manifold M = 
iV([xi, x2]\ e) — [J W Int R\ U Int JR2] relative to the normal subgroup 
kernel|>i(M) -^ TTI(£3 - J) -> i?i(£3 - J)] C TTI(M). We conclude that 
there is a nonsingular polyhedral annulus B in M such that L(B,J) j£ 0 and 
such that one boundary component of B lies in R\, the other in R2. 

It remains only to show that \L(B, J)\ = 1 if e is sufficiently small. Let £ 
be the image under / of the midpoint of/_1[xi, x2]. Exactly as we found the 
disks Di and Et early in this proof, we find a small polyhedral disk D near p 
such that (Bd D) H J = 0 and |L(J, Bd D) | = 1. If e is small enough, then B 
must separate Bd D from J in P . (Otherwise, one could construct a simple 
closed curve in Ez — B that links one boundary component of B and not the 
other.) We put D in general position with respect to B and find that Bd D is 
homologous in D — J to a family of simple closed curves in B. Hence 1 = 
\L(D,J)\ = m - \L(B, J)\ for some positive integer m. We conclude that 
\L(B, J)\ = 1, as desired. This completes the proof of (3.4). 

We need some descriptive apparatus before we proceed to our next lemma. 
For A C Ez and t > 0, let tA = {(tx, ty, tz)\(x, y,z) £ A}. 

Definition. A Dehn-annulus in E3 is a PL m a p / : B2 — lnt(^B2) —» Ez such 
that S{f)r\ {Sl\J iS1) = 0. (Recall that S(f) = Cl{x|/-Y(x) ^ x}.) 
Then / | S1 KJ f Î S*1 is called the boundary of/ (denoted B d / ), and B d / is 
said to bound/. We write |Bd / | = / ( 5 1 U J51). A half-open Dehn-annulus in 
E3 is a locally PL map / : B2 - {0} -> £ 3 such that 

(1) 5 ( / ) r\ (1 /05 1 = 0 (i = 1, 2, . . .), and 
(2) lim supw_^/((lA)-B2 - {0}) is a compact subset of E3 - f(B2 - {0}). 
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The restriction/ | S1 is called the boundary of/ (denoted B d / ) and is said to 
bound/. We write | B d / | = / (5 1 ) . 

We recall [35] (alternately, use [9, Addendum to 4.5.1]): 

3.5. / / / is a Dehn-annulus in Ez and U is a neighborhood in Ez of \f \ — 
\Bdf |, then Bd / bounds a real polyhedral annulus in | B d / | U U. 

An immediate application of (3.5) is the following. 

3.6. If f is a half-open Dehn-annulus in E3, U is a neighborhood in £ 3 of 
| / | — |Bd / |, and f is not contractible in / (5 1) U U, then B d / bounds a non-
singular, locally-polyhedral, half-open annulus g in f(S1) VJ U such that 

limsupg((l/i)B2 - {0}) C l imsup / ( ( l / f )£ 2 - {0}). 
n->co n->co 

Proof of (3.6). Define At = (l/i)B2 - I n t ( ( l / i + 1)B2). It follows from 
condition (2) in the definition of half-open Dehn-annulus that, by con
solidating several consecutive/ (A *)' s into a single new f (Ai) and adjusting/ 
accordingly, we may assume that/(.4*) C\f(Af) = 0 for \i — j \ > 1. By using 
(3.5) (which applies because of condition (1) in the definition of half-open 
Dehn-annulus) infinitely many times, we may assume that / \A t is a PL 
embedding for each i. By a general position argument, we may assume that 
f(Ai) Hif(Ai+i) is the disjoint union of the simple closed curve/((1/ i + 1)5X) 
and finitely many other simple closed curves in / ( I n t At) P \ / ( I n t A i+1). 
Since/ is not contractible mf{Sl) \J U, it follows that a curve / of the inter
section between/(yl i) and/(^4 i+1) is contractible in one of the two annuli if and 
only if it is contractible in the other. Thus we have a well-defined notion of 
trivial and nontrivial intersections. Changing each annulus /(A2t) with even 
subscript, but changing it only near f(A2i-i) \J f(A2i) VJ f(A2i+i), we may 
remove all trivial intersections by cut and paste. We maintain the requirement 
t h a t / 0 4 0 C\f(Aj) = 0 if \i — j \ > 1. We now piece together a real locally-
polyhedral half-open annulus B. Let B2 be an annulus in f(A2) which is 
bounded by one curve of intersection with/(^4i) and one with/(^43) but which 
otherwise misses f{Af) (J ^ 2). Define similarly BAj B§, . . . . Let B\ be the 
annulus in/(^4i) which is bounded by B2 C\f{A\) and/OS1). In general, define 
B2i+\ to be the annulus in/(^42î+i) which is bounded by 

U(A2i+1) r\ B2i] yj [f(A2i+1) r\ B2i+2]. 

Then B — US=i Bt is the desired half-open annulus. This completes the proof 
of (3.6). 

Proof of (3.3). The idea is to use (3.4) to obtain a null sequence of polyhedral 
annuli running along A and converging to p, to piece these annuli together to 
form a half-open Dehn-annulus in E3, and then to apply (3.6) to obtain a 
nonsingular, locally-polyhedral, half-open annulus which, together with {p}, 
forms an almost-polyhedral disk pierced by A at p. The details are as follows. 
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We choose a sequence gi, q2l . . . of points in A converging monotonically to 
p(qi < g_2 < . . .)• We choose polyhedral disks Du D2, . . . in P transverse to 
A' at qi, q2y . . . such that f(Di),f(D2), . . . is a null sequence of disjoint 
singular disks in (Ez — J)\J A. These singular disks will be used to piece 
together the annuli mentioned in the previous paragraph. 

We choose the aforementioned annuli as follows. We first pick points 
Pu *u p2, r2,...'mA such that px < qi < f\ < pi < q2 < r2 < . . . . By (3.4), 
there are polyhedral annuli Bt(i = 1, 2, . . .) in N([pu ri+i], l/i) —J, respec
tively, such that \L(Bi, J)\ = 1 and such that the two boundary components 
of Bt lie in N(pu l/i) and N(ri+1, l/i), respectively. By choosing these annuli 
iteratively and by putting even more stringent conditions on how close they 
are to be to \pu ri+i\ and their ends to pi and ri+i, we may require that the Bt 

be pairwise disjoint, that/(£>*) intersect only B^\ \J Bt among the Bk, and 
(after adjustment for general position) t h a t / - 1 ( £ t _ i ) ^ Dt a n d / - 1 (Bt)r\ Dt 

each contain a simple closed curve which separates/ - 1 (q/) = q/ from Bd Dt in 
Di (cf. the last paragraph of the proof of (3.4)). 

We now piece the annuli together. By the restrictions of the preceding 
paragraph, there is an annulus Ai'mDi — {q/} which separates Bd Dt from q( 
in D u has one boundary component i n / - 1 (B *_i), one i n / - 1 (B t). We require that 
A i be minimal with respect to this property so that if K is a component of 
( I n t ^ t ) r\f~l{Bi-\ C\Bi), then K bounds a disk in At. For such a curve K, 

f \ K : K —> B i_i VJ B t is trivial since B ^_i and B t link J while / | K does not. 
We remove these trivial intersections of At with B^i U 5 j by standard cut 
and paste techniques: redefine/ on the disk bounded by K in A t so as to take 
this disk into Bt-i VJ BÙ then push f{Ai) slightly to one side of Bt-i KJ Bt 

near this new singular disk o n 5 j _ i U 5 f which is bounded b y / \K. 
This puts us in a position of being able to apply Waldhausen's Loop Theorem 

once more. It follows that, in an arbitrary neighborhood of the adjusted f(A *), 
there is a nonsingular annulus Cu one boundary component a subset of and 
nontrivial in Bi-i, the other a subset of and nontrivial in Bu dC\ (U Bk) = 
Bd Ci. We note that some Ci may intersect some Cj (i ^ j), but this inter
section must be a subset of Int d \J Int Cj <ZL Ez — (U Bk). Let B/ be the 
annulus in Bt joining d and Ci+i. Then 

Bo = BS U C2\J B2' U C3 U Bz'^J C3 U . . . 

is a half-open Dehn-annulus in E3 (nonsingular on B\ \J B2 \J . . .). Note 
that {p} = l im^œ (d U B/ \J Ci+1 U Bt+1' U . . .). 

We apply (3.6) to find a real, locally-polyhedral, half-open annulus g : B2 — 
{0} - > £ 3 - / such that \imsupi->œg((l/i)B2 - {0}) = {p}. Then 

g(B*- {0})U{£} 

is the desired disk. This completes the proof of (3.3). 

3.7. If p € Bd A, q Ç Int A, and e > 0, then there is a 2-sphere S in E3 which 
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separates the endpoints of A in E 3 , intersects A precisely at g, is locally polyhedral 
except at g, and lies in an ^-neighborhood of the arc in A from p to q. 

Proof of (3.7). For convenience, we assume p < q. Le t r e I n t A, p < q < r, 
be such t h a t [p, r] C N([p, g], e). Le t 5 be the other endpoint of A. By (3.3), 
there is a disk D in N([p, g], e) which intersects J only a t g, is pierced there by 
J, and is locally polyhedral except a t q. In the open s u b s e t / - 1 (N[p, g], e)) of P 
there is a polyhedral 2-sphere 5 ' such t h a t S' P A' = {r'\ and S' separates p' 
from s' in E 3 . By pu t t ing a possibly more s t r ingent condition on how close 
f(S') is to be to [p, r] and by adjust ing f(S2) and D for general position, we m a y 
require further t h a t / ( S ' ) P D C I n t 1} and tha t , for a t least one component K 
o f / - 1 ( D ) P Sf,f \K is a loop in D which is no t nullhomotopic in D — {q}. For 
otherwise one could prove t h a t d e g ( / , A) = 0. W e shall piece together the 
desired 2-sphere 5 from D a n d / ( 5 2 ) . 

Le t K be a component olf-^D) P S' such t h a t / |2£ : K - » £> - {g} is no t 
nullhomotopic in D — {g}. Among all such components , we assume K chosen 
so t ha t the disk E bounded by K in S' — {r') contains no other such component . 
If / ( I n t £ ) C\ D is nevertheless nonempty , we can remove such intersections 
by cut and paste: indeed, let K' be a component o f / _ 1 ( D ) Pi I n t E ; then 
/ \Kf is a loop in D — {q\ t h a t is nullhomotopic in D — {q} ; if Er is the disk 
in E bounded by K', t h e n / |E r m a y be redefined to take E' into D — [q] ; this 
intersection with 1} may then be removed by pushing the new singular disk 
f(E') to one side of D. T h a t is, after a cut -and-pas te adjus tment , we m a y 
assume t h a t f-^D) P E = Bd E = K. T h u s the Loop Theorem [37] is 
applicable. 

By the Loop Theorem [37], there is a disk F in an a rb i t ra ry neighborhood of 
f(E) such t h a t F P D = Bd F C I n t D - {q} and such t h a t Bd F is not 
nullhomotopic in D — {q}. Then 5 m a y be taken as the union of F and the 
disk in D bounded by Bd F. 

3.8. If p G In t A, //z<m //^re are a singular diskf : B2 —> E 3 and a subarc B of A 
with p G In t 5 s^c/z thatf takes a subarc B' of Bd B2 onto B, takes the endpoints 
of B' onto the endpoints of B, and takes B2 — B' into E 3 — A. 

Proof of (3.8). Th is is an immediate consequence, of the fact t h a t A has a 
singular regular neighborhood. 

Proof of (3.1). W e have established t h a t an arc A in E 3 has which has a 
singular regular neighborhood satisfies the conclusions of (3.3), (3.4), (3.7), 
and (3.8). T h u s (3.1) will be complete when we have established the following. 

3.9. An arc A in E 3 {not assumed to have a singular regular neighborhood) is 
tame if it satisfies the conclusions of (3.3), (3.4), (3.7), and (3.8). The taming 
homeomorphism may be chosen to be locally PL except at the points of A. 

Proof. Resul t (3.9) is almost the theorem t h a t an arc is t ame if it is locally 
peripherally unknot ted (l.p.u.) and locally unknot ted (l.u.) [22, Theorem 7]. 
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(Indeed, (3.3), (3.4), and (3.7) imply that A is l.p.u. and (3.8) is a singular 
substitute for the l.u. property.) For this reason, and since (3.9) is not needed 
in [14], we omit a few details. 

Step 1. Definition of the compact set F. Let A' be the straight line segment 
in E3 joining (0, 0, 0) and (1, 0, 0). For each positive integer i, let St = 
Bd N(A', 1/i). Let C = CI N(A'% 1) = Si U IntSi . For each positive 
integer j and odd positive k < 2j, let D(k\j) be the circular disk of radius 1/j 
perpendicular to A' and centered at (k/2j, 0, 0). Let F denote the compact 
set A1 \J U St U U D(k\j). Note that the closure of a component K of 
C — F is either a 3-cell or a solid torus of which K is the interior. Note also 
that Bd K C F — A' and that F — Bd K is connected and intersects S\. 

Step 2. Mapping F into Ez. We let J be a simple closed curve in E3 which 
contains A. It is a fairly standard (though lengthy) exercise in general-position 
arguments and cut-and-paste to use (3.3), (3.4), and (3.7) to construct a 
homeomorphism h from F into E3 which takes A' homeomorphically onto A, 
takes each D(k\j) to a disk in (E3 — J) \J A which is pierced by / and is 
locally polyhedral modulo J, and takes each St to a polyhedral 2-sphere which 
contains A in its interior. If K is a component of C — E, then 

[ I n t A ( B d 2 O ] n * ( 7 0 = 0 

by the remarks of the previous paragraph on Bd K and the requirement that 
A C Int h (St). We write X* for Int A(BdX). Then CI X* is either a 3-cell 
or a cube with a (possibly knotted) hole. We would like to extend h\Bd K to 
take K into K*. However, if one does not exercise more care than we have done, 
this need not be possible. Therefore, we first normalize h, throw away portions 
of certain of the disks D(k\j) near the ends of A', and finally show that the 
adjusted and restricted h thus obtained does extend to a homeomorphism from 
E3 to £3 . 

Step 3. Adjusting h. Let ir be the half-plane {(x, y, z) G Es\y ^ 0 and 
z = 0}. Suppose K is a component of C — F such that Cl K is a solid torus. 
Then Bd K intersects, say, Si and Si+i. Let J(K) be the simple closed curve 
7T Pi Bd K. We redefine h on the boundary of each such K so that h\J(K) does 
not link J. We work only in U Sj — U D(k\j), work first on S2, then on S3, 
and so on. Suppose therefore inductively that h has already been redefined on 
the annulus St Pi Bd K. Redefine h on the annulus Si+\ C\ Bd K without 
changing the image of Si+i P Bd K so that any twisting about J done by the 
arc h[J(K) — Si+i\ is precisely undone by the twisting of the arc h[J(K) Pi Si+i] 
about J. This is possible since \L(h(Si+i P Bd K), J)\ = 1. Geometrically, 
this change may be accomplished in the following way: cut h[Si+i P Bd K] 
apart along a centerline; twist one of the free boundaries produced by the cut 
the appropriate number of full revolutions around / , and sew the two free 
boundary curves back together once again. 

Step 4. Throwing away certain portions of U D(k\j). Let G and C2 be the 
two halves into which D ( l | l ) separates C. Let C^i (i = 1, 2) be the collection 
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of components of d — F whose closures are solid tori. If K, K0 G $f i, define 
Ko ^ K if the following two conditions are satisfied: 

(l)p(Ko,A') £p(K,A'). 

(2) sup{p(*o,Z>(l | l )) |*o G Ko} S sup{p(k,D(l\l))\k G K). 
We call an element of K of j f i \J J ^ 2 good if, for each Ko ^ K (defined only 
for certain K and K0 in the same one of C^\ and J ^ ) , CI i£o* is a solid torus 
(as opposed to a cube with a knot ted hole) . If i£ is not good, we delete from F 
the interior of the annulus in [ U D(k\j)] ^ Bd K which is furthest from 
D ( l | l ) . Le t F' be the new compact set formed from F by the deletions de
scribed. 

S tep 5. Extending h\F' to all of E 3 . Le t K be a component of C — F'. Then , 
jus t as with the components of C — F, Cl K is a 3-cell or solid torus of which K 
is the interior and K* = I n t h(Bd K) C E3 - h(F'). 

If Cl K is a 3-cell, then we extend h\Bd K in any fashion so as to take Cl K 
homeomorphical ly onto CI i£* in a PL fashion. This is possible by the PL 
Schoenflies Theorem. 

If Cl K is a solid torus, then K is a good component of C — F and Cl K* 
is a solid torus. But h (J(K)) is a meridian in Cl K* since h\J(K) does not l i n k / . 
Hence h\Bd K can be extended to take Cl K homeomorphical ly onto Cl K*. 

Clearly h\Si can also be extended to take E3 — I n t Si onto E3 — I n t h (Si). 
I t remains to be shown t h a t the function h : E3 —> E3 defined piece wise above 

is actual ly continuous. This amoun t s to showing tha t , for components K of 
C — F'', D iam K —» 0 as p(K, A') —» 0. In order to show this, i t suffices to 
establish tha t , given a point p G I n t A' and a component K ot C — F which 
is sufficiently close to p, K is good. I t is for this s tep only t h a t we need (3.8). By 
an easy compactness argument , it follows from (3.8) t h a t for K sufficiently 
close to p and any KQ ^ K, there is a singular d i s k / : B2 —> Ez — J such t ha t 
/ ( B d B2) H Cl Ko* = 0 a n d / |Bd B2 is homologous to J in £ 3 - CI i£0*. Since 
J is a homology centerline of E3 — K0* a n d / ( 5 2 ) C\ J = 0, it is a well-known 
consequence of the Loop Theorem t h a t CI X 0* mus t be a solid torus. Hence K 
is good. This completes the proof of (3.9) and (3.1). 

We now generalize (3.1) to finite graphs. 

3.10. T H E O R E M . A finite graph G in E3 is tame if it has a singular regular 
neighborhood. 

T h e proof of (3.10) occupies (3.11)-(3.14), with (3.10) being an immediate 
consequence of (3.13), (3.14) and the following remark: by (3.1) it suffices to 
consider the case where G is an n-od in ^ 3) with a single branch point p and G 
is locally polyhedral except a t p. W e choose a singular regular neighborhood 
/ : P —> E3 for G and require t h a t / be locally piece wise linear except a t p and 
t h a t the branches of j~l(G) be s t ra ight line segments emana t ing from the 
origin (0, 0, 0) in E3. W e choose in P a (polyhedral convex) cube C abou t 
( 0 , 0 , 0 ) with the endpoints of f~l(G) in E3 — C and choose a spherical 
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neighborhood N of p in £ 3 - / ( B d C). Since deg(/ , G) ^ 0, it follows that 
f | Bd C cannot be nullhomotopic both in E3 — {p} and in the complement of 
set of endpoints of G. Since/ | Bd C is nullhomotopic in the complement of the 
set of endpoints of G, it is not nullhomotopic in the complement of any point 
oiN. 

3.11. deg( / ,G) = 1. 

Proof of (3.11). Fact (3.11) depends only on the fact that n ^ 3. We delete 
all but three branches of G so that G is a triod. 

Consider congruent solid cylinders d and C2 having the same straight line L 
as axis. Let Di and D2 be the end disks of d; let Ei and E2 be the end disks of 
C2 corresponding respectively to Di and D2 under the translation of E3 along L 
which takes C\ onto C2. Let Rt = L P Ct (i = 1, 2). 

It follows from (3.1) that we may assume that R2 is a maximal arc in G, 
that C\ C P\ and that / \Ri coincides with the restriction to Ri of the afore
mentioned translation which takes Ri onto R2. 

We may also assume that f~l[f{Ci P Bd C2)] = D1 \J D2 and that 
f \D i (i = 1,2) is a cyclic covering of Et branched over the point Et C\ L and 
(necessarily) of degree deg(/ , G). 

We set B — C1(G — R2) and note that we may assume that C\ C\f~l{B) 
is a straight line segment perpendicular to L from the center point of R\ to a 
point of Bd C\ and that C2C\B is an arc missing £ i \J E2 and irreducibly 
joining L to Bd C2. (Incidentally, note that ( / |Ci) ( Z " 1 ^ ) ) ^ ^- Also note 
if C2 C\ B were not an arc irreducibly joining L to Bd C2, one could simply 
throw away part of B.) 

Let Cz be a third congruent solid cylinder with axis L. Let g : Cz —» C2 be a 
cyclic covering of G2, branched over i?2, of degree deg(/ , G). T h e n / factors 
through g, say b y / * : Ci —» C3, by the lifting criterion for coverings. A simple 
argument shows t h a t / * ( B d C\) must intersect each preimage of Int.B in G3, 
hence t h a t / - 1 (B) Pi Ci contains at least deg(/ , G) points. Since/ - 1(i>) P\ Bd 
C\ contains exactly one point and deg(/ , G) is positive by hypothesis, we 
conclude that deg(/ , G) = 1. 

3.12. We may assume that f is a piecewise linear homeomorphism on the inverse 
image of some neighborhood of G — {p\. 

Proof of (3.12). This is an immediate consequence of (3.11) and the fact that 
G is already polyhedral except at p. 

3.13. The point p has arbitrarily small neighborhoods in E3 bounded by poly
hedral 2-spheres that intersect G transversely and in precisely n points. 

Proof of (3.13). Let 5 be a polyhedral 2-sphere in f'^N) Pi Int C that 
bounds a small neighborhood of (0,0,0) =f~1(p) in Ez and intersects 
/ _1(G) transversely and in precisely n points. We may assume, by (3.12), that 
/ (S) has no singularities near / (S) C\G. An application of Dehn's Lemma [35], 
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or [9, Addendum to 4.5.1] yields a polyhedral 2-sphere5 / inN which coincides 
with f(S) near f(S) Pi G. This completes the proof since N can be chosen 
arbitrarily small. 

3.14. Suppose R and S are disjoint polyhedral 2-spheres in N, each meeting G 
transversely and in precisely n points, and suppose that, for some t > 0, 

p € ( I n t S ) C (RVlntR) C {f(tC) - / [ B d ( / C ) ] } Cf(tC) C N. 
(Recall that tC = {(tx, ty, tz)\(x, y, z) € C].) 

Then for each homeomorphism h : R—> S2, there is a homeomorphism 

h* : [(R U IntR) - (IntS)] -> [(S2 U In tS 2 ) - In t ( |S 2 ) ] 

which extends h and takes each component K of G C\ [{R \J Int R) — (IntS)] into 
the straight line segment joining h(K C\ R) and the origin 0 = (0, 0, 0). 

Proof of (3.14). Consider the noncompact 3-manifold-with-boundary 
M = (tC) — f " 1 ^ ) . Choose small disjoint polyhedral disks Di, . . . , Dn on 
Bd(/C) with interiors covering respectively the n points of f~l{G) C\ Bd(tC). 
Consider the n cones 0 * D±, . . . , 0 * Dn (0 * Di denotes the join of the origin 0 
and the disk Dt in E3; recall that C is convex so that it makes sense to take the 
join). We may assume by (3.12) t h a t / has no singularities on some neighbor
hood of (U l - i 0 * Di) H M in M. We may also assume that 

Bi =f(0*Di)r\[(R\JIntR) - (Int 5)] (i = 1, . . . , n) 

is a 3-cell meeting each of R and S in a single disk. Define 

Mo = M - U l - i t O * (IntDi)] 

and No = [(R\JlntR) - Int S] - U W [0 * (lntDt)]. Let R0 = N0 r\ R 
and So = No H 5. 

In order to prove (3.14), it clearly suffices to show that the pairs (N0, R0) 
and (Ro X I, Ro X {0}) are homeomorphic. To this end we show how to use 
the m a p / \tC and the Loop Theorem to find disks which cut iV0 apart to form a 
3-cell. 

Step 1. In Bd(tC) we choose polygonal arcs A2, . . . , An joining the point 
/ " H G ) H P i to the p o i n t s / - 1 ^ ) C\ D2, . . . J-^G) Pi Dn, respectively. We 
require t h a t ^ ^ H Aj = / - x ( G ) HDxîori ^ / a n d t h a t ^ ^ P i Bd Dj be a single 
point for j = 1 or i and be empty otherwise. Let Ej = 0 * Aj (j = 2, . . . , n). 

Step 2. We adjus t / slightly so t h a t / ( £ 2 ) , . • . , / (£») , and Bd N0 are all in 
general position. As a consequence, (fEj)~

1(Bd No) is, for fixed/, the union 
of finitely many disjoint simple closed curves in Int Ejm Since/ \tC is a homeo
morphism on some neighborhood of (U^=i 0 * Dt) C\ M in M, exactly one of 
those curves, say Jjy intersects U*=i 0 * Di and necessarily does so in exactly 
two arcs, one in 0 * Bd Di and the other in 0 * Bd Dj. Let E/ be the subdisk of 
Ej bounded by J j . If J is any other component of ( / | £ / ) - 1 ( B d N0), then 
/ ( / ) C ^ o ^ ' S ' o ; we claim t h a t / \J is nullhomotopic in RQ ^J 50 . If not, then 
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there would be such a J such t h a t (i) / \J is not trivial in R0 U So, bu t (ii) if 
Ej(J) is the disk in E / bounded by J and K is any other component of 
[ £ , ( / ) ] H [ ( / | £ / ) - i ( B d No)], then K is trivial in R0 U 5 0 . We can remove 
those trivial c u r v e s / ( X ) of intersection by adjusting / \Ej(J). T h e Loop 
Theorem applied to the a d j u s t e d / \Ej(J) implies the existence of a disk D in 
N — G whose boundary lies in R0 VJ So and is nontrivial there. I t follows from 
the existence of D t h a t Bd D links no loop in (E3 — N) \J G; bu t it follows 
from the fact t h a t Bd D is a nontrivial simple closed curve in Ro U So, t h a t 
Bd D does link a loop in (E3 — N) U G. This contradiction establishes our 
claim. 

Step 3. We adjust each / \E/ (J = 2, . . . , n) so t h a t ( / \Ej')~l(Bd N0) = 
Bd E / ; t h a t this is possible follows from the claim established in Step 2. W e 
note t h a t f(E/) (as adjusted) necessarily lies in No] we further note t h a t 
/ |Bd E / is nontrivial as a loop in Bd No since it links a loop in In t N0. Hence 
we may apply the Loop Theorem to find polyhedral disks Fj (j = 2, . . . , n) 
having the following properties: 

(1) Bd Fj lies in Bd No and is a nontrivial simple closed curve there. 
(2) In t F j C No. 
(3) E2, . . . , Fn are in general position. 
(4) Bd Fj lies in the union of / ( B d E / ) and a small neighborhood of the 

singularities o f / ( B d E / ) . (This last requirement follows from the proof of 
the Loop Theorem [37].) 

I t follows from the known properties of / \E/ and the linking a rgument 
indicated in Step 2 t h a t Bd Fj <£ Ro^J 5 0 . Hence, it follows from (4) t h a t 
Bd Fj intersects / ( 0 * Bd Di) and / ( 0 * Bd Dj) in a single arc from R0 to S0 . 

Step 4. S tandard arguments can be used to remove intersections in F2,. . . , Fn 

so t ha t they m a y be assumed disjoint. If No is split along F2 W . . . VJ Fn to 
form a new manifold-with-boundary iV*, it is easy to see t h a t Bd N* is a 
2-sphere, hence t ha t N* is a 3-cell. Wi th this much s t ructure on the pair 
(No, Ro) it is an easy task to define a homeomorphism 

h: (No,Ro)~> (Ro X I,R0), 

and we leave the details to the reader. This completes the proof of (3.14). 
We remark t h a t another proof of (3.14) can be given by using the results of 

[7; 38], or [39]. 

We now consider various other versions of (3.1). We first recall a definition. 

3.15. Definition. An arc A in E 3 is said to have 1 — ALG complement in E 3 if, 
for each e > 0, there is a b > 0 such t h a t each loop in E 3 — A which bounds 
homologically (Z coefficients) in a ô-subset of E 3 — A also bounds a singular 
€ -d i sk inE 3 — A. 

3.16. T H E O R E M . An arc A in E 3 is tame if it has 1 — ALG complement in E 3 . 

Proof of (3.16). There are two lines of a t tack available; one can show t h a t an 
arc which has 1 — ALG complement has a singular regular neighborhood or 
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one can proceed directly to mimic the key parts of the proof of (3.1), namely 
the proof of (3.4) and of (3.3). By work of McMillan [27], it suffices to show 
that A satisfies the conclusion of (3.3). Since the details of both approaches 
are fairly standard and are much like what we have already done elsewhere in 
this paper, we suffice ourselves with a simple indication of the kinds of con
structions involved. These indications we simply state as Lemmas (3.17)-(3.19) 
and accompanying remarks. In each of these lemmas we assume that / is a 
simple closed curve in E3 which contains A. 

3.17. If (1) L : S1 —> Ez — J is a loop bounding a singular disk D : B2 —» E3, 
(2) L does not link J, (3) D (B2) Pi J is a subset of an arc A0in J, and (4) e > 0, 
then L bounds homologically (Z coefficients) in N(D(B2) \J A0, e) —J. 

Proof. This is a standard duality result. 

3.18. If p € J and e > 0, then there is a loop in N(p, e) — J which has linking 
number 1 with J. 

Proof. This is proved in the second and third paragraphs of the proof of (3.4). 

Lemmas (3.17) and (3.18) supply curves with any desired homological 
entanglement with J. With these lemmas it is easy to prove, for example, the 
following 

3.19. If p, q G Int^4 and e > 0, then there is a singular annulas A0 in 
N([p, q], e) — J which has linking number 1 with J which has one boundary loop 
in N(p, e), the other in N(q, e). Furthermore, the boundary loops can be taken to 
be any prescribed loops sufficiently close to p and q and having linking number 1 
with J. 

Proof of (3.19). One takes a finite sequence Jly . . . , J R of small loops near 
the arc pqy each having linking number 1 with / (3.18). One connects each 
consecutive pair Ju Ji+i with an arc Bt so chosen (3.18) that J\B tJi+i~lB ~x 

is a loop Li that does not link / . By (3.17) and definition (3.15), Lt bounds a 
small singular disk Dt in Es — J. Then A0 = U^-i Dt. 

Just as one constructs singular annuli, so one can construct singular 2-
spheres like the singular 2-sphere f(Si) in the fourth paragraph of the proof 
of (3.4). All further details of the proof of (3.16) we leave to the reader. 

We now consider one final version of (3.1), namely (3.22). We first need two 
definitions. 

3.20. Definition. An arc A in Es is said to be s-l.p.u. (singularly locally peri
pherally unknotted) at a point p Ç A if, for each e > 0 there is singular 
2 -sphere / : S2—>N(p, e) not null-homotopic in £ 3 — {p} such t h a t / " 1 (̂ 4) 
has [order A(p)] points and such that all sufficiently small curves around a 
point q off"-1 (A) in S2 have images under / which link A locally in E3. (Recall 
that [order A(p)] = 1 or 2 as p is an end or interior point of A, respectively.) 
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An arc A in Ez is said to be s-l.p.u. if it is s-l.p.u. at each point. We say that a 
singular 2-sphere l ike / above meets A regularly and encloses p. 

3.21. Definition. An arc A in E3 is said to be s-l.u. (singularly locally un
knotted) at p Ç Int 4̂ if the conclusion of (3.8) is satisfied at p. An arc is 
s-l.u. if it is s-l.u. at each interior point. 

3.22. THEOREM. An arc A in Ez is tame if it is s-l.p.u. and s-l.u. (Remark. The 
hypotheses can be weakened slightly; this will be apparent from the proof.) 

Proof. The proof is essentially like that of (3.1) except that Lemma (3.4) 
becomes more difficult to prove. We shall show the adjustments necessary 
in a sequence of lemmas, Lemmas (3.23)-(3.27). Our result follows from (3.25), 
(3.26), (3.27), and (3.9). We shall assume throughout that / is a simple 
closed curve which contains A. 

3.23. Suppose p G IntA, 0 < à < e < Diam J, and f : S2 -> N(p, e), where 
f is a singular 2-sphere that meets A regularly, encloses p, and misses J — A. 
Suppose further that D is a polyhedral disk in Es — J whose boundary misses 
f(S2) and can be joined to p by an arc B which misses f(S2) U Int D. Then Bd D 
bounds a polyhedral disk in [D VJ N(f(S2), Ô)] D N(p, e) - / . 

Proof of (3.23). We may assume that D and/(52) are in general position. We 
may cover D — N(p, e) by finitely many disjoint disks-with-holes Du • . • , Dn 

in ( In tD) — f(S2). We change D inductively so as to reduce the number of 
disks-with-holes needed for the covering to zero. This will complete the proof. 

Suppose n > 0. The existence of the arc B and a linking argument show that 
/ _ 1 (D) is a nonempty collection of disjoint simple closed curves in S2 — f~l (A). 
Each of these bounds a disk in S2 — f - 1 (A ) since they have images under / 
which do not link J (since they lie in D). If Jt is one of these curves, let Et be 
the disk in S2 — f -1G4) bounded by Jt. If/ \Jt is nullhomotopic in (Int D) — 
\Jj Djy then we can remove the intersection/(/*) from/(52) P\ D by mapping 
Ei into (Int D) — Uj Dj and then pushing the image of Et to one side of D. 
This adjustment can be made without disturbing the arc B which joins Bd D 
and p in the complement of f(S2) \J IntD. Therefore, after the adjustment, 
some intersections necessarily remain. We find therefore that we may assume 
/ \Ji is not nullhomotopic in (Int D) — U ; Dj. Among all such J"/s we choose 
an i such that the corresponding Et is innermost on S2. Then the Loop Theorem 
[37] as applied to a one sided neighborhood of [D — U Dj] \J f{Et) supplies a 
nonsingular disk E in an arbitrary neighborhood of f(Ei) such that 
Bd E C Int D, Int E C E* - D, and Bd E is not nullhomotopic in (Int D) -
\Jj Dj. We replace the disk D' in D bounded by Bd E with the disk E. Since D' 
necessarily contains some Dj while E does not intersect E3 — N(p, e) we find 
that, for the new D, D — N(p, e) may be covered by fewer disks-with-hole in 
Int D than was true for the old D. Again the process can be carried out without 
disturbing B] hence the process iterates and the proof is complete. 
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3.24. Suppose f : S2 —> Ez is a singular 2-sphere which meets A regularly in two 
points xi, x2 G IntA and misses J — A. Then for each e > 0, there is a polyhedral 
annulus B in N(f(S2), e) — / , with one boundary component in N(xi, e), the 
other in N(x2, e). 

Proof of (3.24). W e m a y assume t h a t N(xi, e) and N(x2, e) are disjoint from 
each other and from ( / — I n t ^ 4 ) . Le t ft : S2 -^ N(xf, e) (i = 1, 2) be a 
singular 2-sphere which meets A regularly and encloses xt. W e now proceed as 
in the proof of (3.4), which proof the reader should a t this point review. Instead 
of the point tt of (3.4), we choose two points ta and ti2 very near to and on 
opposite sides of xt in A. Instead of the 2-sphere Rt of (3.4), we choose a 
nonsingular, polyhedral, connected 2-manifold Rt m Ez — J very close to xt 

and having precisely two boundary components , one very near ta, the other 
near ti2j each linking / exactly once. (Such an R{ m a y be obtained by applying 
cut-and-paste techniques to the singular analogue of Rt supplied by (3.18), 
the proof of (3.19), and (3.17); we suppress details.) 

Ju s t as we simplified Dt in (3.4), so we u s e / ( 5 2 ) to cut off handles from our 
new Ri. By (3.23), we may require t h a t any new disk F used in the simplified 
Rt lie in N(xu e). 

I t m a y not be immediately clear t h a t the process i terates since the boundary 
of the next F in the ad jus tment m a y intersect the first F, hence possibly 
intersect fi(S2), in which case (3.23) would be inapplicable. However, a 
momen t of reflection shows t h a t the boundary of the next F used m a y be 
adjusted to miss the first F and the process can be completed. 

T h e remainder of the proof proceeds in the fashion of the proof of (3.4). 

3.25. The conclusion of (3.4) is valid for A. 

Proof. One simply chains together annuli obtained from (3.24) to obtain the 
desired annulus. T h e proof is much like Harrold ' s original proof t h a t l.p.u. 
arcs satisfy the conclusion of (3.4) (cf. [21, proof of Theorem 1]). 

3.26. The conclusions of (3.3) is valid for A. 

Proof. W e leave it as an exercise. (Work directly with (3.24) or use (3.25) 
as (3.4) was used in the proof of (3.3).) 

3.27. The conclusions of (3.7) and (3.8) are valid for A. 

Proof. This is also clear. 

3.28. T H E O R E M . A simple closed curve J in E3 is tame if J pierces a singular 
disk at some point and is homogeneous by isotopy. (The curve J is homogeneous 
by isotopy if, for each p, q £ J, there is an isotopy H : Ez X / —• E3 of Ez 

such t h a t H (A X {*}) = A for each t G / , H0(p) = p, and Hi(p) = q.) 

Proof. T h e curve / clearly satisfies the hypotheses of (3.21) ; hence / is t ame . 
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4. ULC properties in Em (m ^ 3). We first list the results of Section 2 
which generalize without real change in proof to higher dimensions. We then 
sharpen results (2C.6) and (2C.6/) for use in Section 5. 

The following results from Section 2 generalize immediately to the higher 
dimensional setting where S denotes, instead of a 2-sphere in E3, an (m — 1)-
sphere in Em (m ^ 3), and where £/and F denote the complementary domains 
of S in Em: 

(2A) (ulcn, each n, coefficients either Z or Z2), (2B.1), (2B.2), (2B.3), 
(2B.4), (2C.1), (2C.2), (2C.3), (2C.4), (2C.5) ((1) and (2)), (2C.6), (2A.1), 
(2B.4.1), (2C.2.1), (2C.5.1) (Du D2, . . . , Dn disjoint compact absolute 
retracts; g(K) Cf(K) U ( U l i f l * ) ) , (2C.5.2), (2C.6.5). 

We have been unable to generalize the following results: 
(2C.5) ((3)), (2C.7) and addenda. 
We have made no attempt to generalize (2C.5.3)-(2C.5.6). 
We now proceed toward a proof of a stronger version of (2C.6) (Theorem 

4.2)). Suppose that X is a compact subset of the (m — 1)-sphere 5 in Em
y 

p G U, and h : S —> Sm~l is a homeomorphism from S onto the standard 
(m — 1)-sphere Sm~l in Em. If a G iri(Em — X, p), then there is a representa
tive loop/ : (51, 1) —» (Em — X, p) for a, called a standard representative for 
a, such t h a t / is a simple closed curve which pierces S at each point of f(Sl) C\ S. 
There is an embedding hf : (S VJfiS1)^) -» (Em, 0) which extends h : S ->5W~1 

such that hf • / is a simple closed curve with hf • f{t) G I n t 5 w _ 1 if and only if 
/(*) G U. Define^: 7n(Em - X, p) ->7n(£m - h(X), 0) by <p{a) = els (hrf). 

4.1. THEOREM. The function cp = <ps,x is well-defined and is a surjective group 
homomorphism with Ker <p = o)(Em — X, p). That is, <p induces an isomorphism 
between 7n(£m - X, p)/œ(Em - X, p) and 7n(£m - h(X), 0). 

Note that the homomorphism depends upon 5 and the homeomorphism h; 
the theorem says however that the kernel of the homomorphism depends only 
on X itself. 

Proof of (4.1). That <p is well-defined and a surjective group homomorphism 
is immediate once we show that if/ is an arbitrary standard representative for 
the trivial homotopy class a, then hf • f is nullhomotopic in Em — h(X). (We 
retain the notation of the paragraph in which ç is defined.) Le t / * : B2 —* Em — 
X be an extension of / : (S1, 1) -> (Em - X,p) (where S1 = Bd B2) as 
promised by the supposition that/represents the trivial class in iri(Em — X, p). 
Note that the sets Rx and R2, Rx = (S - X) \J {f(Sl) H V) and R2 = 
(S — X) U (/(51) r\ U), are open subsets of topological polyhedra, hence are 
absolute neighborhood retracts. It follows that there is a closed neighborhood N 
of S1 VJ ( /*) _ 1 (^) in ^ 2 that is a finite union of disjoint disks-with-holes and 
an extension g : TV -^ / (5 1 ) U (5 - X) = ^ U i?2 of / * ([51 U (Z*)" 1 ^) ] 
such that, for each x G iV, 

(1) / * (x) G 5 W F implies g(x) e Ri C S\J V, and 
(2) f*(x) £ SV U implies g ( x ) f f t C ^ C / . 
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Let M be the component of N that has S1 as one boundary component. Then 
hf • g\M : M —> Sm~1 U Ar -/(S1) and each boundary component of M distinct 
from S1 is mapped by hf • g to a loop lying either in (5m _ 1 U Ext5~m l) — h (X) or in 
(S™-1 \J IntS™"1) - h(X) (by (1) or (2)). In either case, such a loop bounds a 
singular disk in Em — h(X) since 5 m _ 1 is flat. Thus hf - /bounds a singular disk 
in Em — h(X) as desired. We conclude easily that <p is well-defined and a sur-
jective group homomorphism. 

In order to see that oo(Em — X, p) C Ker <p, observe that 

*>(«(£* - X, p)) C œ(ET - h(X), 0) 

(by (2C.6.2)) and that œ(Em - h(X), 0) = 1 since in(Em - h(X), 0) is a free 
group (cf. (2C.6.3)). 

Suppose finally that a Ç Ker <p. That means that if/ is a standard representa
tive for a, hf • / is nullhomotopic in Em - h(X). L e t / * : B2-> Em - A(Z) be 
an extension of A/ - /such that 5 m _ 1 and the singular disk/*(B2) are in general 
position. It follows that the components of ( / * ) _ 1 ( ^ _ 1 ) form a finite collection 
of mutually disjoint simple closed curves in Int B2, which curves we ignore, and 
disjoint spanning arcs se\, . . . , se\ of B2. Examine the map 

defined by g(x) = hf1 <>f*(x) for each ^ ^ U ^ U ^ . U ^ . Let Ut 

be a component of B2 - (S1 U s/i U . . . KJ s/k). Then Jt = Bd Ut is a 
simple closed curve and g\Jt is a loop Lt in either (5 KJ V) — X or in 
(S U [/) - X. It follows that a = e l s / = cls(aiLiai_1) . . . c\$(ak+iLk+iak+i~l) 
where ai, . . . , afc+i are paths in JE™ — X. But it follows from the higher dimen
sional version of Theorem (2C.6.5) that each loop Û ^ L ^ - 1 represents an ele
ment of œ(Em — X, p) since Li does not intersect both components of Em — S. 
Hence a £ œ(Em — X, p) and Ker <p C u(Em — X, p). This completes the 
proof of Theorem (4.1). 

ADDENDUM TO THEOREM (4.1). If f is a standard representative of a class 
a G Tri(Em — X, p), then a 6 co(£m — X, p) if and only if there is a partition 
& = [(#i> &i)> • • • » (ar, bT)] of f(S1) C\ S into disjoint pairs such that for each 
i and j (i 7e j), 

(1) at and bt are the endpoints of an arc A t in S — X, and 
(2) at and bt are not separated by a,j and b3 inf(S1). 

Proof. If a Ç o)(Em — X,p), then a Ç Ker <p by Theorem (4.1). In this case 
proceed as in the proof of the inclusion Ker <p C co(£w — X, p) to find the 
spanning arcs s/1 of that proof. Let at and bt be the images under g of the 
endpoints of srf\ and let the A t required by conclusion (1) of the addendum 
be an arc in g{s/1) from at to bt. The converse is proved in essentially the same 
manner. 

Linking compact subsets of (m — 1)-spheres in Em. Consider the sphere S, 
compact subset X, loop / , partition S?, and arcs At of the Addendum to 
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Theorem (4.1). If the arcs At can be chosen to have diameter less than e, 
then we say that / does not e-link X on 5. We can now state the promised 
sharpened version of (2C.6). 

4.2. THEOREM. Suppose that S and S' are (m — 1)-spheres in Em and that X is 
a compact subset of S C\ (S' W Ext S'). Suppose further that f : S1 —> Int S' is a 
standard representative (with respect to S) of an element of iri(Em — X) and thatf 
bounds a singular e-disk D : B2 —> Sf VJ Int Sr. Then f does not e-link X on S. 

Proof. Let TV be a connected open subset of S' \J Int Sr which contains D 
and has diameter less than e. By the higher dimensional version of Theorem 
(2C.6.5), / represents an element of co ( iVn in tS ' ) = a>(N'). Let X' = 
X KJ (Bd N' C\ S). Then there is a natural homomorphism 

x i ( # / ) - > i r i ( J S w - X') 

induced by the inclusion N' C Em — X'. It follows, with the help of Proposi
tion (2C.6.2), t h a t / represents an element of co(Em — X'). The Addendum to 
Theorem (4.1) supplies a partition & = [(ai, &i), . . . , (aT, bT)] of/(51) P\ S 
and arcs ^4i, . . . , Ar in S — X' satisfying (1) and (2) of the Addendum. But 
each arc A t has its endpoints in N' and misses Bd Nr, therefore is of diameter 
less than e. The proof is complete. 

We now prove the higher dimensional version of (20.6'). 

4.3. THEOREM. Suppose that S, S', and X are as in (4.2) and that Em — S is 
1 - ULC in Em - X. Then Int Sf is 1 - ULC in Em - X. 

Proof. Suppose e > 0 given. Choose a > 0 such that 3a-loops in Em — S 
bound singular e/3-disks in Em — X. Choose 0, 0 < (3 < a, such that /3-loops 
in Int Sf bound singular a-disks in S' U Int S'. L e t / : S1 —» Int S' be a /3-loop 
in Int S'. We may assume that / is in standard position with respect to 5 
(i.e., pierces S at each point of /(51) P\ S and is a simple closed curve) ; by our 
choice of (3, f does not a-link X on 5 (Theorem (4.2)). Let 

& = [(<*!,&!),..., (ar,br)] 

be a partition of/(51) C\ S such that, for each i and j (i 9e j), 
(1) at and bt lie in an a-arc A t in S — X, and 
(2) at and bt are not separated by aj and bs mf(Sl). 

Let a ( =f~1(ai), b( =/_1(^t)> a n d let A( be the straight line interval 
spanning B2 (S1 = Bd B2) from a / to b/. Note that A/ H A/ = 0 by (2). 
Let / * : S1 \J Ax

f \J . . . \J A/ -> Em - X be an extension of / which takes 
A / to A t. Let Ui, . . . , Ur+i denote the components of 

B2 - (SlU AX'\J . . . U Ar'). 

Note that Bd Ui = Jx is a simple closed curve mapped b y / * to a loop Li in 
Em — X which has diameter less than 3a and which does not intersect both 
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complementary domains of S. In order to shrink/ in an e-subset of Em — X it 
suffices to shrink each L i in an e/3-subset of Em — X, which we may do by our 
choice of a (where we here use the fact that 3a-loops in Em — S bound singular 
e/3-disks in Em - X). 

5. Locally spherical (m — 1)-spheres in Em (m ^ 3). An (m — 1)-
sphere S in Em is said to be locally spherical if for each p £ S and each e > 0 
there is an (m — 1)-sphere Sf in Em of diameter less than e such that p £ Int S' 
and Sf — S is simply connected. If m = 3, then the condition that S' — S be 
simply connected is equivalent to the requirement that 5 P S' be connected. 

5.1. THEOREM. If S is a locally spherical {m — 1)-sphere in Em, then Em — S 
is 1 - ULC. 

5.1.1. LEMMA. Suppose the following given: 
(1) S, an (m — 1)-sphere in Em; 
(2) L : S1->IntS, a loop; 
(3) D : B2 —> S U Int 5, & singular disk bounded by L; 
(4) Sf, an (m — I)-sphere with L C Ext 5 ' such that S' — S is simply 

connected ; 
(5) K, a compact subset of (Int S7) Pi S; 
(6) e, a positive number. 
Then L bounds a singular disk 

D" : B2 -> [(5 U Int 5) - K] P [iV(£>(£2), e) \ j (£' _ 5)]. 

Proof. We ignore the details of epsilontics but require that all things chosen 
to be small be chosen very small with respect to both e and to the distance from 
K toS'. 

By the higher dimensional version of (2C.2.1), we may assume that D-1^) 
is a O-dimensional subset of IntB2. Choose a finite collection Bi, . . . , Bk of 
disjoint disks in Int B2 with boundaries missing D~1(S) such that they form an 
essential cover for D~1(S P S') and such that the image of each under D has 
very small diameter. 

We may assume that Z}|Bd Bi is a loop in standard position (i.e., pierces Sf 

at each point of intersection with S' and is a simple closed curve) with respect 
to S' for each i. Since D\Bd Bfisa, very small loop missing S, by Theorem (4.2) 
there are disjoint spanning arcs Atj in Bt joining the finitely many points of 
(DlBdBi)-1^') into pairs such that D\B2 — U IntjB* can be extended to a 
mapD ' : (B2 - U Int Bt) U [U Ai3] - » S U Int 5 such t h a t D ' ^ takes ^ î ;-
into a very small subset of S' — S. 

Let U be the component of B2 - (D,)-1(S/) which contains Bd B2. Let 
F = Cl U (closure taken in B2), and let G = B2 — [/. We are prepared to 
define D", first on T7 and then by extension to G. 

Define D"\F : F-^SVJlntS as follows: If x G F P Domain Z)', define 
£" (* ) = D'(x). Ux £[Fr\ IntBi] - [U A^] CB2 - Domain D', then x is 
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in a component V of IntBi — \J A a. The set Bd V is a simple closed curve 
mapped by D' into a small subset of S W Int 5 and close to a point of 

D(B2)r\S' C\S. 

Hence D'|Bd V : Bd V -+ S U Int S bounds a small singular disk 

V : Cl F - + S V J I n t 5 

that lies in a small neighborhood of D(B2) n ^ A S , hence misses X. Define 
D"|C1 7 = V. 

Extend D" toB2 = F U G a s follows: Since S' — S is an absolute neighbor
hood retract, there is a neighborhood N of ( P ' ) " 1 ^ ' ) = ( .D' ) - 1^ ' - 5) in G 
and a map r : N -> Sr - S which extends Df\(Df)-1(S/). Note that 

( B " | F ) U f : F U i V - * S U I n t S 

and that N KJ F contains a neighborhood N' of F U (Z?')-1^') in £2 . We may 
assume that Bd N' is a union of Bd B2 and disjoint simple closed curves 
Ji, . . . ,Jm in Int222. One of the components N" of B2 — U j ^ contains 
.F — Bd .B2 in its interior. We may assume Ju . . . , Jp are the boundary com
ponents of N" distinct from Bd B2. Define D"\N" = [(D"|F) W r]|JV". Note 
that D" as defined thus far takes each Jt (i = 1, . . . , £) into 5 ' — S. Since 
S' — S is simply connected, D"\N" can be extended across the disk in B2 

bounded by Ji so as to take it into 5 ' — S. 
The map D" as defined above satisfies the requirements of (5.1.1). 

Proof of Theorem (5.1). Suppose e > 0 given. Choose ô > 0 such that ô-loops 
in Em — S bound singular e-disks which do not intersect both complementary 
domains of S. Let / : S1 —* Em — S be a <5-loop. For concreteness, assume 
f(Sl) C Int S. Let D : B2 -> 5 U Int 5 be a singular e-disk bounded by / . Let 
Si, . . . , Sk be (m — 1)-spheres and Ku . . . , Kk compact sets with 

KiC (Int 54) H 5 (i = 1 , . . . , * ) 
such that 

(1) Diam[£>(32) U Si U . . . \J Sk] < e, 
(2) (/(S1) C Ext 5,, for each i, 
(3) S* — S is simply connected, for each i, 
(é) D(B2)r\SC U t i l n t X , . 

Choose ei > 0 such that 
(5) Diam[£>CB2) U Si U . . . W Sfc] - 2ei < e, 
(6) [ W ( £ 2 ) , ei) H S] - Xi C U w Int Kt. 

Let P i : -B2 -> [(S U Int 5) - X J H [#(£>(£*), ei) U (Sf - S)] be a map as 
promised by Lemma (5.1.1). Note that 

(1)' Diam[Di(32) KJ S2 U . . . KJ 5 J < e, 
(2) ' /(S1) C E x t S « ( i = 2 , . . . , * ) , 
(3)' Si — S is simply connected (i = 2, . . . , k), 
(4)' P i ( 5 2 ) H S C U t 2 I n t Z , , 
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An iteration of the procedure yields after k steps a singular e-disk 

Dh :B2->IntS 

bounded by / . We conclude that Em — S is 1 — ULC. 

Remark. An (m — 1)-sphere S in Em is said to be locally capped if for each 
p £ S, each component U of Em — 5, and each e > 0 there is an embedding 
/ : Em~l —> U of E™-1 in an e-subset of U such that if {x̂ } is an unbounded 
sequence in Em~l, then {/(#*)} approaches 5 and such that >̂ is in an e-component 
of ( 5 U [/) - CI/CE™"1). By a method almost identical with the proof of 
Theorem (5.1), one can prove the following theorem. 

5.2. THEOREM. / / S is an im — l)-sphere in Em and S is locally capped, then 
Em - Sisl - ULC. 

5.3. COROLLARY. If S is a 2-sphere in Ez and S is locally spherical or locally 
capped, then S is tame. 

Proof. A 2-sphere in £ 3 is tame if £ 3 - S is 1 - ULC [44]. 

6. ULC approximation theorems for surfaces in E3 . The results of 
this section were obtained in our attempt to give a proof of the Hosay-Lininger 
Theorem (cf. [23; 25], and [15]) that was independent of Bing's Side Approxi
mation Theorem. We hoped thereby to develop techniques that would be 
applicable in higher dimensional problems as well. We did essentially free the 
proof from the Side Approximation Theorem ; however, in order that we obtain 
higher dimensional results, it is still necessary that we find some sort of 
substitute for (6.4). We have been unable as of yet to find such a substitute. 
We nevertheless report our partial results here. 

Our main results are Theorems (6.1), (6.5), and (6.7). They are special 
cases of known theorems (cf. [23; 25; 15; 3]) originally proved by the Side 
Approximation Theorem. Each follows rather directly from its own main 
lemma (respectively, (6.2), (6.6), and (6.8)). Our approach is as follows. 
In the case of (6.1), we first show how (6.1) follows from (6.2), then prove 
(6.3) and (6.4), and finally use (6.3) and (6.4) to prove (6.2). We then indicate 
the slight changes in technique necessary to prove (6.5), (6.7), and related 
lemmas. 

The main ideas involved in the proof of (6.1) are very simple: show that one 
can reembed a crumpled cube so as to have 1 — ULC complement by arranging 
that certain loops in horizontal planes be freed from entanglement with the 
crumpled cube (Lemma (6.3)); show how to tear apart linked handles of a 
crumpled cube so as to free horizontal loops from entanglement (Lemma (6.4)). 
The technical difficulties in the program, however, are considerable. Not the 
least of these is showing that, after one has torn apart a number of linked 
handles, one has really made progress toward making the complement of the 
crumpled cube 1 — ULC. One needs some sort of object that "remembers" 
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the progress made; this memory arrangement is built into the notion of #-pair 
for a crumpled cube (which is the subject of Lemma (6.2)). One needs also to be 
able to compare 1 — ULC properties of crumpled cubes whose boundaries are 
close homeomorphically. T h e necessary descriptive appara tus for this measure
men t comes from Section 2, (2C.5.3)-(2C.5.6). We recall those results. Suppose 
S is a 2-sphere in P 3 and 5 > 0. We defined 

e(S, 5) = inf{e > 0|o-sets in 5 lie in simply connected (^e ) - se t s in S}. 

We proved the following facts. 
(i) Aô- loop in I n t S ( E x t S ) bounds a singular e(S, 8) + 5 - d i s k i n 5 U I n t S 

( S U E x t S ) . 
(ii) c(5,5) - » 0 as <5-^ 0. 

(iii) If h : 5 —> P 3 is an a-homeomorphism, then 

e(h(S),Ô) ^ e(S,ô + 2a) + 2a. 

We now s ta te the main result of this section. 

6.1. T H E O R E M . Suppose C is a crumpled cube in P 3 and e > 0. Then there is an 
e-homeomorphism h : C —> Ez such that P 3 — h(C) is 1 — ULC. 

Proof. T h e homeomorphism h will be a limit of homeomorphisms obtained 
by repeated application of (6.2), whose s ta tement mus t be preceded by a 
definition. 

6.2.0. Definition. If C is a crumpled cube in P 3 and n a positive integer, 
then a pair (h, P) is called an n-pair for C if 

(1) h : C —» P 3 is a 1/^-homeomorphism, 
(2) P 3 - iV(C, 1/») C P = Cl P C P 3 - A(C), and 
(3) if 1 ^ i ^ n, then each 1/i-loop in P 3 — iV(C, 1/w) bounds a singular 

disk in P of diameter less than 3[e(Bd C, 1/i + 1/w) + (l/i + 1/»)]. 

6.2. I f C is a crumpled cube in P 3 and n is a positive integer, then there is an 

n-pair for C. 

We assume (6.2) for the moment and use it to prove (6.1). We choose 
i teratively an increasing sequence {nt} of positive integers and pairs {(hu Pi)) 
so as to satisfy a number of conditions. W e first list five of these and some of 
their consequences: 

(4) E l/nt < e. 
(5) 2l ^ 2 - » i _ i ^ nt. 
(6) (hiy Pi) is an w r p a i r for ht-i . . . hx(C). 
(7) If Pi = inf{p(/^_i . . . h!(x),ht-i . . . hi(y))\p(x,y) ^ 1/i}, then 

ZTLt V » i < Pi/2. 

(8) £ ? _ , l / » i < p(Pi-u *<-i • • • * i ( 0 ) . 
I t follows from (4) and (6) (or (5) and (6)) t h a t (h = l i m ^ ht . . . hi): 
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C —-> P 3 exists and is continuous; from (4) that h is an e-map; from (7) that h 
is 1-1; hence a homeomorphism; from (8) that 

Pt C P 3 - N(ht. . . Ax(C), l/ni+1) C I n t P 1 + i C P 3 - A(C); 

from (5) and (6) that 

P , D P 3 - N(h^ . . . Ai(C), l / » 0 D P 3 - iV(A(0, E7=*-i 1 M ) D 

P 3 - N(h(C), l /2 f - 2 ) . 
Hence UP* = P 3 - A(C). 

We now add a condition that forces P 3 — h(C) to be 1 — ULC. We recom
mend that the reader review at this point the properties of e(5, 8) outlined at 
the beginning of this section. Note especially property (iii). We may require 
that, for each i, 

(9) €[*«_! . . . foÇBd C), (2/»0 + 2(2/*,)] + 2(2/w<) < 1/i. 

This is possible by property (ii). In order to see that, under conditions (4)-(9), 
P 3 — h(C) must be 1 — ULC, suppose given a positive integer i and a 
l/?Zi-loop L in P 3 — A(C). We determined in the previous paragraph that, for 
each sufficiently large integer j > i, 

\L\ C P , - i C P 3 - N(h^ . . . JuiQ, l/nj) C Pj C P 3 - HQ. 

Thus by (6) and (3), L bounds a singular disk P in Pj C P 3 — M O of diam
eter less than 

3 • {«[*,_! . . . ^ ( B d C), 1/»* + 1/nj) + (1/m + 1/*,)]}. 

But Af-i . . . ^i(Bd C) and M_i . . . hi(Bd C) are homeomorphically within 
2/tii of each other by (5). Thus 

€[A,-i. . .Ai(BdC), 1 / » , + 1/»,] 

g e[/^_i. . . Ai(Bd C), 1/», + 1/», + 4 /»J + 4/»< < 1/i, 

by (iii) and (9). Thus Diam P < 3(1 A + l/nt + 1/nj) < 9/i. We conclude 
that P 3 - h(C) is 1 - Z7LC. This completes the proof of (6.1). 

We now return to (6.2). Lemma (6.2) depends on two further lemmas, 
which we now state and prove. 

Our first lemma for (6.2) shows that, in order to shrink a loop in the com
plement of a crumpled cube, it suffices to shrink certain small "horizontal" 
loops in the complement of that crumpled cube. 

6.3. Suppose C is a crumpled cube in P3 , ô > 0, rj > 0, and J is a 8-loop in 
P 3 — C. Then J is a boundary loop of some singular e(Bd C, 8) + 8-disk-with-
holes Do in P 3 — C such that each remaining boundary loop 

Ml Sj ^k;k^ 0)ofDo 

is an rj-loop, lies in an rj-neighborhood of C, and lies in some horizontal plane. 
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Proof. By (2C.2.1) and property (i) of this section, J bounds a singular 
e(Bd C, Ô) + <5-disk£> : B2 -» E3 - Int C such that D-^C) is totally dis
connected. We may assume, making rj smaller if necessary, that 

(Diam D(B2)) + 2V < e(Bd C, <5) + 5. 

We choose pairs of rectangular or cubical open sets Mi C -Wi, . . . , Mr C iV"r 

covering D(5 2 ) P\ C such that each Mt contains a point of C and each iV* 
is of diameter less than rj. By property (i) of this section, (2C.2.1), and (2C.6) 
(cf. [10, § 2; 11, proof of Theorem 1]), we may choose these pairs in such a 
manner that 
(*) If {7Ti, . . . , 7rs} is a finite family of horizontal planes and K : S1 —> Mp — C 

is a loop, then K bounds a singular disk in 

i V p - [ ( B d C ) f M U , 0 ] ( p = l , . . . , r ) . 
Since -D-1 (C) is totally disconnected, it is possible to cover D~X(C) C B2 by the 
interiors of disjoint disks Du . . . , Dm (m ^ 0) in Int.B2 such that the image 
under D of each Dj lies in some one of the sets Mp. 

The setting which we have just described is precisely the kind of setting to 
which we can apply the argument of [11, Theorem 1]. We conclude from that 
argument that D\Bd Dj is a boundary loop of a disk-with-holes Ej in Np — C 
such that each of the other boundary loops of Ej lies in a horizontal plane. 
Then D0 = [D(B2 - \J D(Dj)] KJ (U Ej) satisfies the requirements of (6.3) 
(difference and union are taken here in a combinatorial rather than set-theoretic 
sense). 

Our second lemma for (6.2) describes how one might pull apart "linked 
handles" in a crumpled cube C. This lemma is essentially due to Hosay [23] 
and was described to us verbally by R. H. Bing. 

6.4. Suppose the following given: D, a polyhedral disk in S3; N, a regular 
neighborhood of Bd D in Sd; H, a compact and arcwise-connected subset of 
S3 — (D \J N) ; C, a compact, arcwise-connected, and simply connected subset 
of Sz — (N \J H) ; C, a component of C — D. Then, for each e > 0, there is a 
homeomorphism h : H VJ C —» S3 — D such that 

(1) h is the identity except on N(C — C", e), and 
(2) either h(x) = x or h(x) G N(D - N, e),for x £ H U C. 

Proof. Let M = S3 - Int N and M0 = M - D. Let p : M* -» M be the 
universal covering of M. There is a lifting/ : H VJ C —> M* (i.e., pf = identity) 
such that/(JT VJ C) lies in a single component Mf of P~1{MQ). Let £ i and E2 

denote the disks which are the components of p~l(D) in CI Mo*. Let F\ and F2 

be two other components of p~1(D) so chosen that the component Mi* of 
M* — (Fi KJ F2) which contains both F\ and F2 in its boundary also contains 
f(H KJ C) \J Cl Mo*. Choose polyhedral disks £ / and E2' in Mo* very close 
to Ei and £2 , respectively, and parallel to them in M*. There is a homeo
morphism ho : CI Mi* —> CI 7kf0* which fixes the cell in M* bounded by E / 

https://doi.org/10.4153/CJM-1973-004-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-004-1


68 J. W. CANNON 

and E2 ' and which takes each Ft to an Ej (i,j = 1, 2). Then 

P'ho'f;HUC-*S* 

satisfies (1) and (2) provided only that E / and E2 ' are chosen close enough to 
Ei and E2, respectively. This completes the proof of (6.4). 

Proof of (6.2). We recall that we are given a crumpled cube C in E3 and a 
positive integer n and that we seek a pair (h, P) such that 

(1) h : C —» Ez is a l/»-homeomorphism, 
(2) E3 - iV(C, 1/») C P = Cl P C E3 - A(C), and 
(3) If 1 S i ^ w, then each 1/i-loop in E 3 — iV(C, 1/») bounds a singular 

disk in P of diameter less than 3 • [e(Bd C, 1/i + l/n) + {1/i + 1/»)]. 
The problem is that of pulling apart (by a homeomorphism h : C —» £ 3 ) 

certain of the linked handles of C so as to remove the obstruction to shrinking 
(in E3 — h(C)) loops from E 3 — N(C, l/n). Our proof will eventually depend 
on a reduction to a finite number the loops that must be considered in satisfying 
conclusion (3) above (cf. (6.2 r / /)). However, the notation necessary to describe 
the reduction would at this point tend to obscure the essential simplicity of the 
proof. Since even the finite case (cf. (6.2")) requires more notation than we 
care to impose upon the reader at this point, we consider first the following 
case: 

6.2'. Special case. If J : S1 -> £ 3 - C is a single (1/3» + 1/i)-loop (1 S 
i ^ n), then there is a pair (h, P) satisfying (1), (2), and 

(3r) JÇS1) C P and J bounds a singular disk of diameter less than e(Bd C, 
1/i + l/n) + (1/i + l/n) in P . 

Proof of (6.2'). Let P 0 be a closed, locally finite, connected polyhedron such 
that 

[E3 - N(C, l/n)] U / (5 1 ) C Int P 0 C Po C £ 3 - C. 

The P required by (6.2r) will be the union of P 0 and a certain disk bounded 
by J. 

Step 1. Application of (6.3). Choose an integer m such that 
(4) Qn < m, 
(5) Po H N(C, 1/m) = 0, and 
(6) No two sets of diameter ^ 1/6» in C are separated in C by a 1/m-set in 

C. (Such an integer exists by (2B.4).) 
By (6.3), J bounds, together with finitely many horizontal 1/m-loops 

J i , . . . , Jjc in N(C, 1/m), a polyhedral, singular disk-with-holes D0 in E3 — C 
such that 

(7) Diam DG < e(Bd C, 1/i + 1/3») + (1/i + 1/3»). 
Let 7Ti, . . . , TTJC be the horizontal planes containing Jît . . . , /&, respectively; 
[/,- (j = 1, . . . , fe) the union of the bounded complementary domains in TTJ 
of the image of the loop J5. We may clearly require also that 
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(8) the planes wi, . . . , irk are distinct, and 
(9) UiCNiCl/m) ( j = 1 , . . . , * ) . 

By a general position and cut-and-paste argument, we may obtain a new DQ 

which satisfies the above requirements as well as 
(10) Do H (J, \J U3) is connected (j = 1, . . . , ft). 

To obtain (10), one simply cuts part of the original D0 off near Wj if D0 protrudes 
through Uj without hitting J 5. This procedure may possibly increase or decrease 
the number of curves J"i, . . . , Jk. Conditions (5) and (9) ensure that the pro
cess does not affect / . Indeed, / C Po C Ez — N(C, 1/m) by (5), while 
Uj C N(C, 1/m) by (9). Condition (9) also makes it possible to choose each 
of the required new curves to be 1/m-curves in N(C, 1/m). 

Step 2. Application of (6.4). By (10), CC\Uj may be covered by the 
interiors of finitely many disjoint 1/m-disks in Uj — Do. Let [D\, . . . , Dm) 
be a union of such collections of disks, one collection for each j . By (8), no two 
of the Dj's intersect. By construction, C C\ (U Bd D,) = 0. By (5) and (9), 
(PoWDo)n (us , ) = 0. 

Let Mi, . . . , Mm and JVi, . . . , Nm be regular neighborhoods in Ez of 
Di, . . . , Dm and Bd Di, . . . , Bd Dm, respectively. We require that 

Mi U Nl9 . . . , Mm \J Nm 

be disjoint 1/m-sets, that U ^M
 De disjoint from C, and that 

(U MM) U (U JV„) 

be disjoint from H = P0^J Do- Finally, we require that 

(MM - Np) r\ (U TTJ) C Int DM for M = 1, • • • , w. 

We lose no generality by assuming that C — U MM has a component C7 

of diameter è l/6w. Note that each component of C — Cl C has diameter 
less than l/6w by (6) and the unicoherence of C (2B.3). 

We apply (6.4) repeatedly to obtain a homeomorphism 

h:H\J C - > E 3 - VDi 

such that h is the identity on (Cl C)\J H and either 

h(x) = x or ft(*) € U (MM - iVM) for x 6 H U C. 

We claim that h moves no point as far as 1/n. Indeed, let p G C — Cl C and 
X be the component of C — Cl C which contains p. By the remark of the 
previous paragraph, Diam CI K < l/6n. Furthermore, Cl K P\ Cl C 9^ 0 and 
h(C\K) C CI K KJ (U MM). Therefore, h fixes some point of Cl K and takes 
the whole set into a l/2w-set. Thus h does not move p any further than l/6w + 
1/2» = 2/3n < 1/n. 

We note that [ P 0 U D 0 U ( U Uj)] H ft(C) = 0. We define 

P = PoUD 0U(U £/,) 
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and see that (h, P) is a pair satisfying the requirements of (6.2'). Indeed, / can 
be shrunk to a point in D0 U (U Uj) C P C E3 - h(C) and 

Diam(£>0 U U t / i X e(Bd C, 1/i + l /3n) + (1/i + l /3n) + 2/m. 

6.2". Special case. Suppose J i , . . . , J , , . . . , J s : S1 —> Ez — C is a 
family of loops to which one may assign integers i ( l ) , . . . , i(<r), . . . , i(s) in the 
range 1 ^ i(a) ^ n such that, for each a (1 ^ c ^ s), Diam / , < l /3n + 1/i (a). 
Then there is a pair (h, P) satisfying conditions (1), (2), and 

(3") J* C P and Ja bounds a singular disk in P of diameter less than 
e[Bd C, l/i(a) + 1/n] + [1/i(a) + 1/n]. 

Proof. The proof is in essentially every detail exactly like the proof of (6.2'). 
The only real difference is that a great deal more notation is needed to keep 
track of things. We may safely leave the proof to the reader. 

6.2"'. Reduction of (6.2) to (6.2"). Let P 0 be a closed, locally finite, con
nected polyhedron such that Ez — N(C, 1/n) d Po d E3 — C. We may 
assume P 0 endowed with a triangulation T of mesh less than l/6n. There are 
only finitely many connected subcomplexes 7\, . . . , Tr of T of diameter less 
than l /3n + 1 whose convex hulls do not lie in P 0 . Since the fundamental 
group of each Tp is finitely generated, we may choose a finite family J i , . . . , Js 

of loops in P 0 such that each loop L in each Tp bounds, together with a product 
of JVs, a singular disk-with-holes D(L) in that Tp. For each a, let i(a) be the 
largest integer in the range 1 f=L i(<?) S n such that, for some p, Jff C Tp and 
Diam Tp < 1/i (a) + l /3n. 

Apply (6.2") to obtain a pair (h, P) such that 
(1) h : C —»E3 is a 1/n-homeomorphism, 
(2) [£3 - N(C, 1/n)] U P 0 C P = Cl P C E* - h(C), and 
(3") Each Ja bounds a singular disk Da in P of diameter less than 

e[Bd C, 1/i (a) + 1/n] + [1/i (a) + 1/n]. 

We claim that this is an n-pair for C. In order to see this, let L : S1 —» E3 — 
iV(C, 1/w) be a 1/i-loop (1 ^ i ^ n) . Since Diam L < 1/i and mesh T < 
l /6n, the simplicial neighborhood of L in T is a connected subcomplex of T of 
diameter less than l /3n + 1/i. If the convex hull of this neighborhood lies in P , 
we are done. Otherwise, this neighborhood is Tp for some p. Each of the loops 
Ja in T is assigned an integer i(a) ^ i. Thus, a Ja in Pp bounds a singular 
disk Dff of diameter less than e[Bd C, 1/i + 1/n] + [1/i + 1/n] in P . Then 
D(L) W U {.Drl/o- C Tp} contains a singular disk D in P which is bounded by 
L and has the required property, 

DiamZ) ^ Diam£>(L) + 2 Max{DiamZ>,|/, C Tp] 

S 3[e(Bd C, 1/i + 1/n) + (1/i + 1/n)]. 

This completes the proof of (6.2") and (6.2). 

https://doi.org/10.4153/CJM-1973-004-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-004-1


ULC PROPERTIES 71 

We next describe a relative version of (6.1), i.e., a version which tames part 
of Bd C and keeps a prescribed closed subset of C fixed. 

6.5. THEOREM. Suppose C is a crumpled cube in E3 and e : C —-> [0, oo ) is a 
continuous nonnegative real-valued function. Then there is an e-homeomorphism h 
from C into E3 such that E3 — h(C) is 1 — LC at each point x £ h(Bd C) for 
which e • h~l(x) > 0. 

The proof is like that of (6.1) except that one does not attempt to change 
things very near X = €-1(0) at any given stage of the proof. More exactly, 
one uses the following versions of (6.2.0) and (6.2). 

6.6.0. Definition. Suppose C is a crumpled cube in E3, X is a closed subset of 
C, b > 0, and n is a positive integer. A pair (h, P) is called an ^-pair for 
(C, X, Ô) if 

(1) h : C —> E3 is a 1/w-homeomorphism that fixes the set N(X, b/2) C\ C, 
(2) E3 - N(C, 1/n) C P = Cl P C E 3 - A(C), and 
( 3 ) I f l ^ ^ ^ w , then each 1/z-loop in E3 — N(C, 1/n) which bounds a 

singular e(Bd C, l/^)-disk in C1(E3 — C) — iV(X, 8) bounds a singular disk 
in P of diameter less than 3 • [€(Bd C, 1/i + 1/n) + (1/i + 1/n)]. 

6.6. Suppose C is a crumpled cube in E3, X is a closed subset of C, ô > 0, 
and n is a positive integer. Then there is an n-pair for (C, X, ô). 

When one applies (6.6) in the proof of (6.5), one chooses wi, n2, . . . much as 
in the proof of (6.1) but also chooses ôi, Ô2, . . . converging to 0, and uses 
e-1(0) as the X of (6.6). We do not go into the details of the proof. 

We note one final refinement of the result. 

6.7. THEOREM. Suppose C is a crumpled cube in E3, X is a compact subset of 
Bd C, [C1(E3 — C)] — X is 1 — ULC, and e > 0. Then there is an e-homeo
morphism h from C into E3 which fixes X such that E3 — h(C) is 1 — ULC. 

This result simply requires the following lemma. 

6.8. Let C, X, and e be as in (6.7). Then for each positive integer n, there is an 
n-pair (h} P) for C (Definition (6.2.0)) such that h is fixed on some neighborhood 
of X in C. 

This lemma is proved in exactly the same way as (6.2) except that one may 
use the fact that [C1(E3 — C)] — X is 1 — ULC in conjunction with (2C.2) 
to keep the small horizontal loops supplied by (6.3) sufficiently far away from 
X so that things need not be moved near X. We do not go into more detail 
except to mention that, since h is fixed on a neighborhood of X in C, [Cl (E3 — 
h(C))] ~" X is also 1 — ULC and one can iterate the procedure. 
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