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A TWO-SIDED SHOOTING METHOD IN COMPUTATION OF
TRAVELLING COMBUSTION WAVES OF A SOLID MATERIAL
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Abstract

Numerical solutions for travelling combustion waves of a solid material are sought. The
algorithm of computation is based on a two-sided shooting method. It is found that there is
a lower bound of the wave speed c, say c", such that for c < c* no numerical solution can
be constructed. This c* is a function of the activation energy of the medium.

1. Introduction

A simple model for the combustion of a solid material is given by

30
— = v2e + HXf{0), (i)

at

^ = V2* - €Xf(9), (2)
(3)

where 0 and x are the temperature and the concentration of the combustible material,
and x and t are independent variables for space and time. H is a positive number related
to the chemical properties of the combustible material, the external temperature, and
the geometrical dimension of the medium. The parameter a, considerably larger than
one, is proportional to the activation energy of the medium and e = e~a.

The governing equations for the travelling combustion wave for the above problem
may be obtained by letting x = x, where —oo < x < oo and $• = x + ct, where c is
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[2] Travelling combustion waves 221

the wave speed. Equations (1) and (2) become

9" - cff + HxfiO) = 0, (4)

X" ~ ex' ~ €XfW) = 0, (5)

where the prime denotes the derivative with respect to £. The relevant boundary
conditions to the problem are

0(-oo) = 0, 0(oo) = 9mm, x(-oo) = 1, x(oo) = 0, (6)

where 9max is the maximum temperature reached after combustion, whose value has
to be determined. It should be noted that no solution to (4) and (5) subject to the
boundary conditions (6) is possible. This can be seen by taking the limit as £ -> — oo
in (4); the left hand side of this equation gives 1, while the right hand side equals 0.

In [2], Tam replaced the function f(G) by

Jexp{a0/(a + fl)}-l i f 0 > O

10 otherwise.

By assuming that \{r = $9 + H\ is bounded and satisfies the boundary conditions
imposed on 9 and x. we have H = e9 + Hx and 9max = H/e. Thus, instead of using
(4), (5), and the boundary conditions above, Tam in [2] considered

9" - cG' + (H - t9)g(9) = 0 (8)

subject to boundary conditions

0( -oo)=O, 0(oo) = ///€. (9)

Tam then proved the existence of solutions using a phase-plane method. Previously,
a number of authors proved the existence of solution for similar problems. Aronson
and Weinberger [1], for example, gave a detailed proof of the existence of solution
for a more general function of F{9) such that 9 satisfies the equation

9" - cG' + F{9) = 0 (10)

subject to conditions 0(£) e [0, 1], 0(£) ^ 0, and lim^oo 9(t-) = 0. Also see [5] for
a discussion of such a problem.

The algorithm of computation is based on a shooting method as follows. Since
the problem is invariant under translation we may choose the location of £ = 0 to be
such that 9(0) = H/e — S, for a small positive 5. For each c, we derive an a priori
bound for 9'(0). Assuming the solution exists for some c; for those c, one can choose
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222 Andonowati [3]

a set of values of 0'(O) such that the solution can be extended to the right to satisfy
the boundary condition at £ = oo. Furthermore, there must be a subset of such values
such that the solution can be extended to the left to satisfy the boundary condition
at £ = — oo. Indeed in [2], Tarn showed analytically that for c > s/Ad, where
a = maxe{F(9)/9), the solution to (8) and (9) exists. This method of computation
was motivated by the existence proof in [3]. A similar method was employed in [4]
by Tarn and Andonowati for a different problem.

In the next section we present the properties of solutions 0(£). We derive an a
priori bound for #'(0) in Section 3. The algorithm of computation is then constructed.
In Section 4 numerical results are obtained; and concluding remarks are presented in
Section 5.

2. Behaviour of solutions

We note that the differential equation (8) above has two critical points (9, 9') =
(0, 0) and (9, 9') — (H/e, 0). By linearizing the equation near the critical points, we
should have c2 > AH in order to satisfy the boundary condition at £ = —oo. When
c2 > AH the critical point (0, 0) is a stable node while the critical point (H/e, 0) is
an unstable node.

The following properties of 9 can be derived easily from (8) and (9) or by examining
the direction field of the phase plane 9'vs9. These properties of the solution 9 are to
be used in constructing the algorithm of computation in the next section.

PROPERTY 1. If 9(£) is a solution of (8) with the boundary conditions (9) then 0 <
< H/e and 0(£) is monotonically increasing.

PROPERTY 2. Let F(0(£)) = (H - e0(£))g(0(£)), then F(0(£)) has exactly one
extremum which is a relative maximum, say, at i- = £m. For £ < £m, F(9(%)) is
monotonically increasing and for £ > £m, F(0(^)) is monotonically decreasing.

PROPERTY 3. 0(£)) nas exactly one inflection point, £„, such that for § < £,, 0'(£) is
monotonically increasing and for % > %e,d'{%) is monotonically decreasing.

PROPERTY 4. If%e is the inflection point of'9(%) and%m is the point such that F(0(|m))
is a maximum then £, < £m.

3. An algorithm based on an a priori bound

For fixed numbers a and H, let S be a small positive number relative to 9max = H/e
such that H/e — S > 9m, where F(9m) = {H — e9m)g(9m) is the maximum. Such 9m

https://doi.org/10.1017/S0334270000000618 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000618


[4] Travelling combustion waves 223

satisfies F'(9m) = 0 or

(H - e0m) exp{c*0m/(a + 9J) = e(exp{a0m/(a + 9m)} - 1);

0 < 9m < H/e.

We choose £ = 0 to be a point such that

0(0) = H/e-8>9m

(11)

(12)

H/e

FIGURE 1. 0(£) and F(0($)) vs ?. The choice of S in the algorithm is such that H/e-8> Bm.

Given 6(0) = H/e - 8, an a priori bound for 9'(0) can be obtained as follows.
From (8)

0'(O) = (13)
c c

Using Properties 1 and 4, we have 0(0) > 0(fm) > 0(£), where F(0(^m)) is the
maximum and £, is the inflection point of 0(£). From Property 3, we conclude that
0"(O) < 0 (see Figure 1). Thus,

O<0'(O) < - { / / - (14)

Substituting 0(0) = H/e - 8 into (14) and knowing that g(9(0)) = e\p{a$(0)/(a +
0(0))} - 1 < ea = l/e, we have

0 < 0'(O) < 8/c. (15)
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Further notice that we choose £ = 0 to be a point such that 0(0) is close to H/e.
The reason for doing this is that the critical point (H/e, 0) is unstable. Thus the
integration to the right of (8), using Runge-Kutta of order four, will accumulate a high
truncation error for a reasonably long distance of £ from the initial point. The critical
point (0, 0), on the other hand, is stable and so the truncation error of the integration
to the left will not be multiplied at each step of integration.

The algorithm of computation is as follows. Since the solution of (8) exists only
for c > \JAH', start with some fixed c > y/AH and calculate 8/c. As the critical point
(H/€, 0) is unstable and (0,0) is stable, integrate (8) to the right with 0(0) = H/e - 8
and a fixed 0'(O) € (0, S/c). Allow the value of 0'(O) to change within the bound
0 < #'(0) < S/c, until we find that the integration to the right can go to, say Lx, which
0(£) behaves as predicted by its analytical properties, namely, 0(£) is monotonically
increasing to H/e and 0'(£) is monotonically decreasing to 0. Change c and repeat
the procedure to find the corresponding 9'(0). Thus for each a, we obtain a set

Ao = {(c, 0'(O)) | 0(0) = H/e - 8 such that the integration of (8)

to the right has 0(£) monotonically increasing to H/e and 0'(£) is

monotonically decreasing to 0}. (16)

For each (c, 9'(0)) € Aa, we integrate (8) to the left to verify that 0(£) tends to zero.
It should be noted that the algorithm is contructed merely based on an a priori

bound of the initial condition and the analytical properties of the solutions.

4. Numerical results

We demonstrate the above algorithm with a = 10 and H = 1.0. Calculating
Omax = H/e = He" and 9m from (11) we obtain 9max = 22026.46579481 and 9m =
1425.31026371. By choosing 8 = 26.46579481, we have 0(0) = 22000.0 > 9m.
As an example, let c = 16. This gives S/c = 1.65411218 and so 0 < 9'(0) <
1.65411218. We integrate (8) to the right with 0'(O) = 0ANu where NX runs from
1 to 16 and find that 0'(O) = 1.6 is the best candidate for a refinement. We next
integrate (8) to the right with 0'(O) = 1.6 + 0.01 N2, where JV2 runs from -10 to 10
and find 9'(0) = 1.64 is the candidate for further refinement. The proccess continues
until we obtain 0'(O) — 1.64018585, where the integration to the right can go as far as
£ = 26.0 in which 0(£) is monotonically increasing toward 6max = 22026.46579481
while 0'(t) is monotonically decreasing to 0. For different values of c we repeat the
process to find the corresponding 9'(0). From the above procedure, we obtain Aff=10 =
{(c, 0'(O))|0(O) = 22000.0}. For each value of (c, 0'(O)) e Ao=10, we then integrate
(8) to the left to check whether that value yields a solution. In the case of c = 16, we
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obtain 9'(0) = 1.64018585 and the integration to the left can go as far as £ = -200.0,
where 0(-2OO.O) = 0.00472871. We consider this value of 6>(-200.0) is close to 0,
and thus a numerical solution for a = 10, H = 1.0, and c = 16 is established. We
repeat the procedure for different values of or.

It is found that as c decreases, the integration to the left toward the stable node
becomes increasingly difficult. It is then conceivable that there is a limit for c, say
c = c*, below which no travelling wave solution can be constructed. This c* is an
increasing function of a. We note that the parameter a is proportional to the activation
energy of the material. Larger values of a correspond to more combustible material,
and result in larger critical values c*. Numerical results give a strong indication that
solutions of (8) subject to the boundary conditions (9) exist for c > c*(a). Thus it is
suggested, numerically, that c* is the minimum speed for the combustion waves.

For a = 10.0 and H = 1.0, Figure 2 shows the solution #(f,c) for some c,
c > c*(10). The numerical solution 0( | , c) for a = 20.0 is presented in Figure 3.

c = 30

= 16

FIGURE 2. The solution 6 for a = 10.0, 16 < c < 30, with H = 1.0. Note that c*(10) = 13.4.

We noted that in [2] Tam derived a sufficiency condition for the solution to exist,
that is

c > (17)

where

a = max 6(C,

F(B)
max ,

0<9<H/< 0
= max (18)
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c = 1400"

c= 1200

FIGURE 3. The solution 9 for a = 20.0, 1200 < c < 1400, with H = 1.0. Note that c*(20) = 910.0.

and

, c)) = , c))

(see Figure 4). Let

cs(a) =

(19)

(20)

We present in Table 1 a comparison of the values of cJ(a) and c*(a) for some a. We
find that cs(a) is considerably larger than c*(a) and thus the numerical result gives a
better lower bound of c for the solution to exist than the one found analytically in [2].

TABLE 1. The comparison of lower bounds for the wave speed c derived analytically, c*, and calculated
numerically, c*, for different values of a with H — 1.0.

a
10.0
12.0
14.0
20.0

a
90.629

455.597
2438.343

470302.493

c5

19.0399
42.6894
98.7592

1371.5721

c*
13.4
30.4
70.8

910.0
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8

c = 30 c = 25 c = 20 c = 15

-250 -200 -150 -100 -50

FIGURE 4. F(G(c, f ))/9(c, £) vs £ for different c : c = 15, 20, 25 and 30, where H = 1.0 and
a = 10.0.

5. Concluding remarks

We have sought numerical solutions for travelling combustion waves of a solid ma-
terial. The mathematical model is presented in (8) subject to the boundary conditions
(9). Since the boundary conditions are prescribed at f = dboo, to find a numerical
solution for this problem we need to ask from which initial value of £ should an integ-
ration be executed. We answer the question by presenting a computational algorithm
based on a two-sided shooting method.

Using this method, we establish a lower bound of c, say c*, so that a solution should
exist. This c* is a function of the activation energy a of the medium, and it increases
as a increases. The numerical results also suggest that for a given set of parameters a
and H with c >c*, the solution to the system is unique.
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