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On the Lack of Inverses to C
∗-Extensions

Related to Property T Groups

V. Manuilov and K. Thomsen

Abstract. Using ideas of S. Wassermann on non-exact C∗-algebras and property T groups, we show

that one of his examples of non-invertible C∗-extensions is not semi-invertible. To prove this, we show

that a certain element vanishes in the asymptotic tensor product. We also show that a modification of

the example gives a C∗-extension which is not even invertible up to homotopy.

1 Introduction

The Brown–Douglas–Fillmore theory of C∗-extensions [2] works nicely for nuclear
C∗-algebras because an extension of a nuclear C∗-algebra is always invertible in the

extension semi-group. As a steadily growing number of examples show, this is not the
case for general extensions [1, 6, 9, 13, 17–19]. In contrast, besides all its other merits,
the E-theory of Connes and Higson [3] provides a framework which incorporates
arbitrary extensions of C∗-algebras, and in previous work we have clarified the way

in which this happens [10, 11]. Specifically, in the E-theory setting the notion of
triviality of extensions must be weakened, at least so far as to consider an extension
of C∗-algebras

(1.1) 0 // B // E
q

// A // 0

to be trivial when it is asymptotically split, by which we mean that there is an asymp-

totic homomorphism [3] ϕ = (ϕt )t∈[0,∞) : A → E such that q ◦ ϕt = idA for each
t ∈ [0,∞). When the quotient C∗-algebra A is a suspension, i.e., is of the form
C0(R)⊗D, this is the only change which is needed to ensure that E-theory becomes a
complete analogue of the BDF theory for nuclear C∗-algebras. Specifically, when the

quotient C∗-algebra is a suspension and the ideal is stable, every extension is semi-
invertible, by which we mean that it is invertible in the sense corresponding to the
weakened notion of triviality, i.e., one can add an extension to it so that the result
is asymptotically split. Furthermore, a given extension will represent 0 in E-theory

if and only if it can be made asymptotically split by adding an asymptotically split
extension to it. One purpose of the present paper is to show by example that this
nice situation does not persist when the quotient C∗-algebra is not a suspension. We
will show that an extension considered by S. Wassermann [19], and shown by him to

be non-invertible, is not semi-invertible either. By slightly modifying Wassermann’s
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example, we also obtain an extension which is not even invertible up to homotopy,
giving us the first example of a C∗-algebra for which the semi-group of homotopy

classes of extensions by a stable C∗-algebra, in casu the algebra of compact operators,
is not a group. The conclusion is that the E-theory approach to C∗-extensions does
not completely save us from the unpleasantness of extensions without inverses. But
unlike the BDF theory, as shown in [11], in E-theory they can be eliminated at the

cost of a single suspension.
The method we adopt in order to show that Wassermann’s example from [19] is

not semi-invertible is basically the same as his, although the verification is somewhat
more complicated since it uses the asymptotic tensor norm, which was introduced in

[12], in place of the minimal tensor norm. To show that a suitably modified version
of the extension is not even invertible up to homotopy we proceed quite differently
in order to bring a K-theoretical obstruction to bear.

2 Wassermann’s Extension Is Not Semi-Invertible

2.1 Wassermann’s Example

Let G be an infinite countable discrete group with the property T of Kazhdan [14].
It is a result of Wang [16], cf. [19], that there are at most a countable number of

unitary equivalence classes of finite-dimensional unitary representations of G. As in
[19], we assume that there actually are infinitely many equivalence classes of such
representations. This is the case, for example, when G = SL3(Z). We then fix a
sequence πk, k = 1, 2, 3, . . . , of inequivalent finite-dimensional irreducible unitary

representations of G which contains a representative for each equivalence class of
such representations. Consider the direct sum π =

⊕
∞

k=1 πk of these representations,
acting on the Hilbert space H, and let B be the C∗-subalgebra of L(H) generated by
{π(g) : g ∈ G}. The C∗-subalgebra of L(H) generated by B and the ideal K = K(H)

of compact operators on H will be denoted by E. Then K is an ideal in E and we
denote the quotient E/K by A. It was shown in [19] that the extension

(2.1) 0 // K // E
q

// A // 0

is not invertible, or not semi-split. We are going to prove that it is also not semi-

invertible.

Theorem 2.1 The extension (2.1) is not semi-invertible.

We shall elaborate a little on Wassermann’s argument, so let us therefore first out-
line it. He shows that (2.1) does not admit a completely positive section for the
quotient map (i.e., is not invertible) because the sequence

(2.2) K ⊗ B // E ⊗min B // A ⊗min B

is not exact. That (2.2) is not exact he deduces as follows: The representation
G ∋ g 7→ π(g)⊗ π(g) of G in E ⊗min B extends by the universal property of C∗(G) to
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a ∗-homomorphism ∆ : C∗(G) → E ⊗min B. By [8, Theorem 1.10], G is finitely gen-
erated. Let g1, g2, . . . , gn be a set of generators of G. We assume that this set contains

the neutral element and is symmetric, i.e., contains g−1
i for all i = 1, . . . , n. Wasser-

mann shows [19, proof of Theorem 6] that there is δ > 0 such that the spectrum of
the image of the element

∆

( 1

n

n∑

i=1

gi

)
∈ E ⊗min B

in the quotient E ⊗min B/K ⊗ B lies in [−1, 1 − δ] ∪ {1} and contains 1, while the
spectrum of its image in A⊗min B under the quotient map of (2.2) lies in [−1, 1− δ].

Thus (2.2) is clearly not exact, and it follows that (2.1) is not invertible.
In order to adopt this approach in the asymptotic setting, it is crucial that Wasser-

mann’s proof of Theorem 6 in [19] gives a tiny bit of additional information. Recall,
[7, 14], that 1 is an isolated point in the spectrum of 1

n

∑n
i=1 gi in C∗(G), and that

the corresponding spectral projection p is the support projection of the trivial repre-
sentation. In particular, p = h

(
1
n

∑n
i=1 gi

)
for an appropriately chosen continuous

function h on [−1, 1], and then it is clear that Wassermann’s argument for Theo-
rem 6 in [19] proves that the image of p is non-zero in E ⊗min B/K ⊗ B, but zero in

A⊗min B. It is this fact, that the non-invertibility of (2.1) can be detected by the non-
vanishing of a projection in a certain C∗-algebra, which makes it possible to adopt it
to the asymptotic case.

2.2 Left Asymptotic Tensor C∗-Norm

Let us review the construction of the left asymptotic tensor norm [12]. Let ϕ =

(ϕt )t∈[1,∞) : A → L(H1) be an asymptotic homomorphism from A to the C∗-algebra

of bounded operators L(H1) of some Hilbert space H1, referred to in the following
as an asymptotic representation of A, and let π : B → L(H2) be a (genuine) represen-
tation of B. Then ϕ and π define in the natural way two commuting ∗-homomor-
phisms,

A → Cb

(
[1,∞), L(H1 ⊗ H2)

)
/C0

(
[1,∞), L(H1 ⊗ H2)

)
,

B → Cb

(
[1,∞), L(H1 ⊗ H2)

)
/C0

(
[1,∞), L(H1 ⊗ H2)

)
,

giving rise to a ∗-homomorphism

ϕ⊙ π : A ⊙ B → Cb

(
[1,∞), L(H1 ⊗ H2)

)
/C0

(
[1,∞), L(H1 ⊗ H2)

)
.

The left asymptotic tensor norm ‖ · ‖λ, defined on A ⊙ B, is

‖c‖λ = sup
ϕ,π

‖ϕ⊙ π(c)‖,

where the supremum is taken over all asymptotic representations of A and all repre-

sentations of B. On a linear combination, c =
∑m

i=1 ai ⊗ bi , of simple tensors,

‖c‖λ = sup
ϕ,π

(
lim sup

t→∞

∥∥∥
m∑

i=1

ϕt (ai) ⊗ π(bi)
∥∥∥

)
.
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Let A ⊗λ B be the completion of A ⊙ B with respect to the norm ‖ · ‖λ.

It is a convenient fact that the left asymptotic tensor norm can be calculated using

only a single representation of B.

Lemma 2.2 Let π ′ : B → L(H ′) be a faithful representation of B such that π ′(B) ∩
K(H ′) = {0}. Then ‖c‖λ = supϕ ‖ϕ⊙ π ′(c)‖ for all c ∈ A ⊙ B.

Proof Let ρ : B → L(H2) be an arbitrary representation of B. We claim that

(2.3) ‖ϕ⊙ ρ(c)‖ ≤ ‖ϕ⊙ π ′(c)‖

for every asymptotic representation ϕ of A and every c ∈ A ⊙ B. To prove this, let
ε > 0 and write c =

∑m
i=1 ai ⊗ bi . By Voiculescu’s non-commutative Weyl–von

Neumann theorem [15], there is an isometry V : H2 → H ′ such that

m∑

i=1

‖ai‖‖ρ(bi) −V ∗π ′(bi)V‖ ≤ ε.

Since lim supt→∞
‖ϕt (ai)‖ ≤ ‖ai‖, it follows that

‖ϕ⊙ ρ(c)‖ ≤ lim sup
t→∞

∥∥∥
m∑

i=1

ϕt (ai) ⊗V ∗π ′(bi)V
∥∥∥+ε

≤ lim sup
t→∞

∥∥∥ (1 ⊗V ∗)
( m∑

i=1

ϕt (ai) ⊗ π ′(bi)
)

(1 ⊗V ∗)
∥∥∥ + ε

≤ lim sup
t→∞

∥∥∥
m∑

i=1

ϕt (ai) ⊗ π ′(bi)
∥∥∥ + ε,

proving (2.3) and hence the lemma.

We now show how the asymptotic tensor norm can be used in proving non-semi-

invertibility of an extension. Note that, thanks to the exactness of the maximal tensor
product, E⊗min B/K⊗B is a quotient of A⊗max B. On the other hand, A⊗min B is the
quotient of E ⊗min B/K ⊗ B. Therefore A⊙ B is a dense subspace in E ⊗min B/K ⊗ B.
We denote the norm on A ⊙ B inherited from E ⊗min B/K ⊗ B by ‖ · ‖E. Since this

norm is a cross-norm, we may view E ⊗min B/K ⊗ B as a tensor product of A and B

and write E ⊗min B/K ⊗ B = A ⊗E B. Recall that A ⊙ B is dense in A ⊗λ B as well.

Lemma 2.3 Suppose that there exists c ∈ A ⊙ B such that ‖c‖E > ‖c‖λ. Then the

extension (2.1) is not semi-invertible.

Proof The idea of the proof is borrowed from [17]. Suppose the contrary, i.e., that

(2.1) is semi-invertible. Then there exists an extension 0 −→ K −→ E ′
q ′

−−→ A −→ 0
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and an asymptotic splitting s = (st )t∈[0,∞) : A → C , where D ⊂ M2(L(H)) is the
C∗-subalgebra

D =

{(
e b1

b2 e ′

)
: b1, b2 ∈ K, e ∈ E, e ′ ∈ E ′, q(e) = q ′(e ′)

}
.

By definitition of the left asymptotic tensor norm there is an asymptotic homomor-
phism st ⊗λ idB : A ⊗λ B → D ⊗min B with the property that

lim
t→∞

st ⊗λ idB (a ⊙ b) − st (a) ⊙ b = 0

on simple tensors. Let d : D → E be the completely positive contraction given by

d
(

e b1

b2 e ′

)
= e. Then the map d ⊗ idB : D ⊗min B → E ⊗min B is a well-defined

contraction. Let qB : E ⊗min B → E ⊗min B/K ⊗ B = A ⊗E B be the quotient map.

Consider the composition

rt = qB ◦ (d ⊗ idB) ◦ (st ⊗λ idB) : A ⊗λ B → A ⊗E B.

The maps qB and d ⊗ idB are contractions and the family (st ⊗λ idB)t∈[1,∞) is asymp-
totically contractive, so the family (rt )t∈[1,∞) is asymptotically contractive. Since

limt→∞ rt (c) − c = 0, it follows that ‖c‖E = lim supt→∞
‖rt (c)‖E ≤ ‖c‖λ. The

contradiction to ‖c‖E > ‖c‖λ completes the proof.

Let f (t) be a polynomial f (t) =
1
4
t2 + 1

2
t + 1

4
, and set x = f

(
1
n

∑n
i=1 gi

)
∈ C∗(G).

Then 0 ≤ x ≤ 1 and 1 is an isolated point in the spectrum of x. Put ∆(x) ∈ A ⊙ B.
As pointed out above, Wassermann has shown that the spectrum of the element
∆( 1

n

∑n
i=1 gi) ∈ A ⊙ B in the quotient E ⊗min B/K ⊗ B contains 1, and it follows

that ‖∆(x)‖E = 1. By Lemma 2.3, Theorem 2.1 will follow if we show that

(2.4) ‖∆(x)‖λ < 1.

Let ∆λ : C∗(G) → A⊗λB be the ∗-homomorphism determined by the condition that
∆λ(g) = q

(
π(g)

)
⊗ π(g), g ∈ G. The desired conclusion (2.4) is then equivalent to

‖∆λ(p)‖λ = 0, because 1 is isolated in the spectrum of x.

2.3 Calculation of ‖∆λ(p)‖λ

Lemma 2.4 One has ‖∆λ(p)‖λ = 0.

Proof Set H ′
=

⊕
∞

i=1 H and let i∞ : B → L(H ′) be the infinite sum of copies of the
inclusion B ⊆ L(H). Then ‖c‖λ = supϕ ‖ϕ⊙ i∞(c)‖ for all c ∈ A⊙B by Lemma 2.2.

Let ε ∈ (0, 1
100

). There is then an asymptotic representation ϕ : A → L(H1) and an
equi-continuous asymptotic representation Φ : A ⊗λ B → L(H1 ⊗ H ′) such that

lim sup
t→∞

‖Φt (∆λ(p))‖ ≥ ‖∆λ(p)‖λ − ε,(2.5)

lim
t→∞

‖Φt (c) −

m∑

i=1

ϕt (ai) ⊗ i∞(bi)‖ = 0(2.6)
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for all c =
∑m

i=1 ai ⊗ bi ∈ A ⊙ B. For each k, let q ′

k be the orthogonal projection
onto the support in H of the representation πk, and let qk =

∏
∞

i=1 q ′

k ∈ L(H ′) be the

infinite repeat of q ′

k. Note that each 1H1
⊗ qk commutes with

∑m
i=1 ϕt (ai) ⊗ i∞(bi)

for all t and all c =
∑m

i=1 ai ⊗ bi ∈ A ⊙ B. By approximating ∆λ(p) with elements
from A ⊙ B, we can find an element z =

∑m
i=1 ai ⊗ bi ∈ A ⊙ B such that

(2.7) lim sup
t→∞

‖Φt (∆λ(p)) −

m∑

i=1

ϕt (ai) ⊗ i∞(bi)‖ < ε.

To simplify notation, set zt =
∑m

i=1 ϕt (ai) ⊗ i∞(bi), and yt =
1
2
(zt + z∗t ). Since Φ is

an asymptotic homomorphism and ∆λ(p) a projection, it follows from (2.7) that for
some T > 0,

(2.8) ‖y2
t − yt‖ ≤ 5ε

when t ≥ T. It follows that

∥∥ ((1H1
⊗ qk)yt )

2 − (1H1
⊗ qk)yt

∥∥ ≤ 5ε

for all t > T. Since 5ε < 1/4, we find that the characteristic function h = 1[1/2,∞)

is continuous on the spectrum of yt and on the spectrum of each (1H1
⊗ qk)yt when

t > T. It follows that h(yt ) and h((1H1
⊗qk)yt ) are projections for all k and all t > T.

We claim that

(2.9) h(yt ) = 0

for all t > T. If not, there is some t0 > T such that h(yt0
) 6= 0. There must then be a

k, which we now fix, such that h((1H1
⊗ qk)yt0

) 6= 0 since
∑

i 1H1
⊗ qi = 1. But then

(2.10) ‖h((1H1
⊗ qk)yt )‖ = 1

for all t > T, since h(t(1H1
⊗ qk)yt ) varies norm-continuously with t and is a projec-

tion for all t > T. Let ρk : B → C∗(πk(G)) be the finite-dimensional representation
of B obtained by restricting the elements of B to the subspace of H supporting the
representation πk of G. There is then a representation µ : C∗(πk(G)) → L(H ′) such
that

(2.11) µ ◦ ρk(b) = qki∞(b)

for all b ∈ B. Furthermore, there is an equi-continuous asymptotic homomorphism
ψ : A ⊗C∗(πk(G)) → L(H1 ⊗ H ′) such that

(2.12) lim
t→∞

∥∥ψt (c) −

m∑

i=1

ϕt (ai) ⊗ µ(xi)
∥∥ = 0

https://doi.org/10.4153/CMB-2007-027-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2007-027-1


274 V. Manuilov and K. Thomsen

for all c =
∑m

i=1 ai⊗xi ∈ A⊙C∗(πk(G)). Note that idA ⊗ρk : A⊙B → A⊙C∗ (πk(G))
extends to a ∗-homomorphism κ : A ⊗λ B → A ⊗C∗ (πk(G)). It follows from (2.6),

(2.11) and (2.12) that

(2.13) lim
t→∞

‖ψt ◦ κ(d) − (1H1
⊗ qk)Φt (d)‖ = 0

for all d ∈ A ⊗λ B. Since κ factors through A ⊗min B, we know from [19] that

‖κ((∆λ(p)))‖ = 0. It follows therefore from (2.13) that

lim sup
t→∞

∥∥ (1H1
⊗ qk)Φt

(
(∆λ(p))

)∥∥ = 0,

and then by use of (2.7) that

lim sup
t→∞

‖(1H1
⊗ qk)yt‖ ≤ ε.

Since ε < 1/2, this contradicts (2.10), and we conclude that (2.9) must hold. Com-

bined with (2.8) we find that the spectrum of yt is contained in [−1/2, 1/2], and
hence that ‖yt‖ ≤ 1/2. It follows then from (2.7) that

lim sup
t→∞

‖Φt (∆λ(p))‖ ≤ 1/2 + ε < 1.

Since ∆λ(p) is a projection, we deduce first that lim supt→∞
‖Φt (∆λ(p))‖ = 0, and

then from (2.5) that ‖∆λ(p)‖λ = 0.

2.4 Some Remarks

Theorem 2.1 means that it is not possible to add an extension of A by K to (2.1)
such that the resulting extension admits an asymptotic homomorphism consisting of
sections for the quotient map. In particular, the extension (2.1) itself does not admit

such a family of sections. This fact may seem slightly surprising because the extension
is clearly quasi-diagonal and there is an obvious sequence sn : A → E, n = 1, 2, . . . of
maps, each of which is a section for the quotient map such that they form a discrete

asymptotic homomorphism. It was therefore no coincidence that the connectedness

of the parameter space [0,∞) was used at a crucial point in the proof above.

In [12] we raised the question, if the left asymptotic tensor product is associative.

It follows from Lemma 2.4 that the answer is negative.

We have looked through all examples known to us of non-invertible extensions to

check if they are semi-invertible or not. Kirchberg’s examples [9]are semi-invertible
by results of [11]. Another example by Wassermann [18] can be shown not to be
semi-invertible by the same method as here. Unfortunately, we know nothing about
semi-invertibility of other examples.
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3 Homotopy Non-Invertibility

3.1 A Modification of the Wassermann’s Extension

To give an example of an extension which is not only not semi-invertible, but also
not even homotopy invertible, we modify the extension (2.1) as follows. Let di be the

dimension of the Hilbert space Hi on which the representation πi acts. Let ni be a
sequence of integers such that limi→∞

ni

di
= ∞. For each i we let ni · πi be the direct

sum of ni copies of the representation πi , and let π ′
=

⊕
∞

i=1 ni · πi be the direct sum
of the resulting sequence of representations acting on the Hilbert space H. Let E ′

be the C∗-subalgebra of L(H) generated by {π ′(g) : g ∈ G} and by K, the compact

operators on H. Set A ′
= E ′/K. Note that A ′ is isomorphic to the C∗-algebra A from

the Wassermann’s example, as both can be defined as completions of the group ring
C[G] with respect to the same (semi)norm ‖ · ‖ = lim supi→∞

‖πi(·)‖.

By Exth(A,B) we denote the semigroup of homotopy classes of extensions of the
form (1.1).

Theorem 3.1 The extension

(3.1) 0 // K // E ′ // A ′ // 0

is not invertible in Exth(A ′,K).

Proof To show that (3.1) is not invertible up to homotopy, let ϕ : A ′ → Q(K) be
the Busby invariant of (3.1), and assume to reach a contradiction that ψ : A ′ → Q(K)
is an extension such that ϕ ⊕ ψ is homotopic to 0. Let V1,V2 be isometries in L(H)
such that V1V ∗

1 + V2V ∗

2 = 1, and set λ(a) = Ad q(V1) ◦ ϕ(a) + Ad q(V2) ◦ ψ(a),

a ∈ A ′, where q : L(H) → Q(K) is the quotient map. There is then a commuting
diagram

(3.2) 0 // K // E // A ′ // 0

0 // IK

ev1

OO

ev0

��

//
E
′

OO

��

// A ′ // 0

0 // K // K ⊕ A ′ // A ′ // 0,

where λ is a the Busby invariant of the upper extension IK = C[0, 1] ⊗ K and
evs : IK → K is evaluation at s ∈ [0, 1]. Set D =

∏
∞

k=1 L(Hk). By tensoring with

https://doi.org/10.4153/CMB-2007-027-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2007-027-1


276 V. Manuilov and K. Thomsen

D we obtain from (3.2) the commuting diagram

(3.3) 0 //K ⊗ D //E ⊗min D //E ⊗min D/K ⊗ D //0

0 // IK ⊗ D

ev1

OO

ev0

��

//E ′ ⊗min D

OO

��

//E ′ ⊗min D/IK ⊗ D //

p0

OO

p1

��

0

0 //K ⊗ D //(K ⊗ D) ⊕ (A ′ ⊗min D) //A ′ ⊗min D //0.

Let evs : M(IK) → M(K) and êvs : Q(IK) → Q(K) be the ∗-homomorphisms

induced by evs. Denote E ⊗min D/K ⊗ D and E
′ ⊗min D/IK ⊗ D by A ′ ⊗E D and

A ′ ⊗E ′ D, respectively. The Busby invariant of the middle extension of (3.3) is a
∗-homomorphism ϕ ′ : A ′ ⊗E ′ D → Q(IK ⊗ D) such that êv1 ◦ ϕ

′
= µ ◦ p0, where

µ : A ′ ⊗E D → Q(IK ⊗ D) is the Busby invariant of the upper extension in (3.3),

while êv0 ◦ ϕ
′
= 0.

By the Bartle–Graves selection theorem there are continuous sections

χ : Q(IK ⊗ D) → M(IK ⊗ D) and χk : Q(IK ⊗ Dk) → M(IK ⊗ Dk)

for the quotient maps M(IK ⊗ D) → Q(IK ⊗ D) and M(IK ⊗ Dk) → Q(IK ⊗ Dk),

respectively, for all k = 1, 2, 3, . . . . We can choose these maps to be self-adjoint and
such that ‖χ(x)‖ ≤ 2‖x‖, x ∈ Q(IK ⊗ D), and ‖χk(y)‖ ≤ 2‖y‖, y ∈ Q(IK ⊗ Dk),
for all k. Set Dk = L(Hk), and let

pk : D =

∞∏

k=1

Dk → Dk

be the canonical projection. The map idA ⊗pk : A ′ ⊙ D → A ′ ⊙ Dk extends to a

∗-homomorphism idA ⊗pk : A ′ ⊗E ′ D → A ′ ⊗ Dk. Let

idIK ⊗pk : M(IK ⊗ D) → M(IK ⊗ Dk)

be the unique ∗-homomorphism extending idIK ⊗pk : IK ⊗ D → IK ⊗ Dk, and

̂idIK ⊗pk : Q(IK ⊗ D) → Q(IK ⊗ Dk)

the resulting ∗-homomorphism. Let Φ : A ′ → Q(IK) be the Busby invariant of the
middle extension of (3.2).

We denote by Φ⊗̂ idDk
the ∗-homomorphism

Φ⊗̂ idDk
: A ′ ⊗ Dk → Q(IK ⊗ Dk)

obtained by composing Φ ⊗ idDk
: A ′ ⊗ Dk → Q(IK) ⊗ Dk with the canonical em-

bedding Q(IK) ⊗ Dk ⊆ Q(IK ⊗ Dk). By checking on simple tensors one finds that

̂idIK ⊗pk ◦ ϕ
′
=

(
Φ⊗̂ idDk

)
◦ (idA ′ ⊗pk),
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which implies that

(3.4)
(
idIK ⊗pk

)
◦ χ ◦ ϕ ′(x) − χk ◦ (Φ⊗̂ idDk

) ◦ (idA ′ ⊗pk)(x) ∈ IK ⊗ Dk

for all k and all x ∈ A ′ ⊗E ′ D. Let πi be the representation of G contragredient to πi .

The representation

g 7→ q
(
π ′(g)

)
⊗

( ∞∏

k=1

πk

)
(g)

of G into A ′ ⊙ D gives rise to a ∗-homomorphism ∆
′ : C∗(G) → A ′ ⊗E ′ D. Set

Q = ∆
′(p), where p, as above, is the spectral projection of the element 1

n

∑n
i=1 gi

corresponding to the set {1}. Since πi is inequivalent to πk for i 6= k and π ′ contains
only finitely many copies of each πk, it follows from [19, Lemma 1] that

(3.5) idA ′ ⊗pk(Q) = 0 for all k.

It follows from (3.4) and (3.5) that

(3.6) (idIK ⊗pk) ◦ χ ◦ ϕ ′(Q) ∈ IK ⊗ Dk

for all k. Let PI and P denote the ∗-homomorphisms

PI =

∞∏

k=1

idIK ⊗pk : M(IK ⊗ D) →

∞∏

k=1

M(IK ⊗ Dk),

P =

∞∏

k=1

idK ⊗pk : M (K ⊗ D) →

∞∏

k=1

M (K ⊗ Dk) ,

respectively. Put

NI = P−1
I

( ∞∏

k=1

IK ⊗ Dk

)
⊂ M(IK ⊗ D),

N = P−1
( ∞∏

k=1

K ⊗ Dk

)
⊂ M(K ⊗ D).

It follows from (3.6) that χ ◦ ϕ ′(Q) ∈ NI . Note that IK ⊗ D is an ideal in NI and
K ⊗ D is an ideal in N . We denote the quotients NI/ IK ⊗ D and N/K ⊗ D by RI

and R, respectively. Note that RI ⊆ Q (IK ⊗ D) and that ϕ ′(Q) ∈ RI . Evaluation
at s ∈ [0, 1] induces a ∗-homomorphism Es : M(IK ⊗ D) → M(K ⊗ D) with the
property that Es(NI) = N , so we get a ∗-homomorphism Ês : RI → R induced by Es

for each s ∈ [0, 1]. To proceed with the proof, we need some calculations in K-theory.
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3.2 K-Theory Calculations

Consider the extensions

0 // IK ⊗ D // NI
// RI

// 0,(3.7)

0 // K ⊗ D // N // R // 0.(3.8)

The map

∞∏

k=1

pk∗ : K0(IK ⊗ D) →

∞∏

k=1

K0(IK ⊗ Dk)

is injective by [4, Lemma 3.2] and the map

∞∏

k=1

pk∗ : K1(IK ⊗ D) →

∞∏

k=1

K1(IK ⊗ Dk)

is injective by [4, Lemma 3.3]. In particular, K1(IK⊗D) = 0. Therefore the extension
(3.7) gives us a commuting diagram

0

��

0

��
K0 (IK ⊗ D)

��

K0 (IK ⊗ D)

��

K0 (NI)
PI∗

//

��

∏
∞

k=1 K0 (IK ⊗ Dk)

��

K0 (RI) //

��

(∏
∞

k=1 K0 (IK ⊗ Dk)
)
/K0 (IK ⊗ D)

��
0 0
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Throwing away the interval, we also get a commuting diagram

0

��

0

��
K0 (K ⊗ D)

��

K0 (K ⊗ D)

��

K0 (N)
P∗

//

��

∏
∞

k=1 K0 (K ⊗ Dk)

��

K0 (R) //

��

(∏
∞

k=1 K0 (K ⊗ Dk)
)
/K0 (K ⊗ D)

��
0 0

Evaluation at any s ∈ [0, 1] induces an isomorphism

( ∞∏

k=1

K0 (IK ⊗ Dk)
)
/K0 (IK ⊗ D) →

( ∞∏

k=1

K0 (K ⊗ Dk)
)
/K0 (K ⊗ D)

in the obvious way, and the diagram

K0 (RI)
Ês∗

//

��

K0(R)

��
(∏

∞

k=1 K0 (IK ⊗ Dk)
)
/K0 (IK ⊗ D) //

(∏
∞

k=1 K0 (K ⊗ Dk)
)
/K0 (K ⊗ D)

commutes for every s ∈ [0, 1]. Let x be the image in

( ∞∏

k=1

K0 (K ⊗ Dk)
)
/K0 (K ⊗ D)

of the element [ϕ ′(Q)] ∈ K0 (RI). Since êv0 ◦ ϕ
′
= 0, we get that Ê0(ϕ ′(Q)) = 0,

which leads to the conclusion that

(3.9) x = 0.

As we shall see, we get a different result when we consider the case s = 1. Let
r : N → R be the quotient map. Set W j = V j ⊗ 1D ∈ M(K ⊗ D), j = 1, 2. Then

(3.10) Ê1 ◦ ϕ
′(Q) = r

(
W1eW ∗

1 + W2aW ∗

2

)
,
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where e is the spectral projection of 1
n

∑n
i=1 π

′(gi)⊗
(⊕

∞

k=1 πk

)
(gi) corresponding to

{1}, and a ≥ 0 is some lift in N of a projection in R ⊂ Q (K ⊗ D). Since W jN ⊂ N

and W ∗

j N ⊂ N , the W j ’s define multipliers, first of N , and then of R. It follows

therefore from (3.10) that [Ê1 ◦ ϕ
′(Q)] = [r(e)] + [r(a)] in K0(R).

Consider the extension

(3.11) 0 // K ⊗ D // N+
r+

// R+ // 0

obtained from the extension (3.8) by unitalizing. It follows from [5, Lemma 9.6] that

there are natural numbers n,m such that r(a) ⊕ 1n ⊕ 0m ∈ M1+n+m(R+) can be lifted
to a projection f1 ∈ M1+n+m(N+). Note that the image of f1 in M1+n+m(C) under
the canonical surjection M1+n+m(N+) → M1+n+m(C) is a projection of rank n. (We
use here that the proof in [5] works equally well when the assumption that the ideal

is AF is replaced by the weaker assumption, valid in (3.11), that the ideal has trivial
K1-group.) There is a commuting diagram

0

��

0

��
K0 (K ⊗ D)

��

K0 (K ⊗ D)

��

K0 (N+)
P+

∗

//

��

∏
∞

k=1 K0

(
(K ⊗ Dk)+

)

��

K0 (R+) //

��

(∏
∞

k=1 K0

(
(K ⊗ Dk)+

))
/K0 (K ⊗ D)

��
0 0

with exact columns. Thus the image of x in
(∏

∞

k=1 K0

(
(K ⊗ Dk)+

))
/K0 (K ⊗ D)

under the inclusion

( ∞∏

k=1

K0 (K ⊗ Dk)
)
/K0(K ⊗ D) ⊆

( ∞∏

k=1

K0((K ⊗ Dk)+)
)
/K0 (K ⊗ D)

is also the image of P+
∗

(
[e] + [ f1] − [1n]

)
∈

∏
∞

k=1 K0((K ⊗ Dk)+) under the quotient
map

∞∏

k=1

K0((K ⊗ Dk)+) →
( ∞∏

k=1

K0

(
(K ⊗ Dk)+

))
/K0(K ⊗ D).
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Write P+( f1) = (hk), where hk ∈ M1+n+m

(
(K ⊗ Dk)+

)
for each k is a projection

whose image in M1+n+m (C) under the canonical surjection M1+n+m

(
(K ⊗ Dk)+

)
→

M1+n+m (C) is a projection of rank n. Since
⋃

j M1+n+m((M j(C) ⊗ Dk)+) is dense in

M1+n+m((K ⊗ Dk)+), there is a j ∈ N and a projection f k
2 ∈ M1+n+m((M j(C) ⊗ Dk)+)

which is unitarily equivalent to hk. Since

M1+n+m((M j(C) ⊗ Dk)+) = M1+n+m

(
M j(C) ⊗ Dk

)
⊕ M1+n+m(C),

we get f k
2 = f k

3 + f k
4 , with f k

3 and f k
4 orthogonal projections in M1+n+m((K ⊗ Dk)+),

f k
3 ∈ M1+n+m(K ⊗ Dk), and [ f k

4 ] = [1n] in K0((K ⊗ Dk)+). It follows that

P+
∗

(
[e] + [ f1] − [1n]

)
= P∗[e] +

(
[ f k

3 ]
)∞

k=1
∈

∞∏

k=1

K0 (K ⊗ Dk) .

Now we identify K0 (K ⊗ Dk) with Z as ordered groups, and consequently

∞∏

k=1

K0 (K ⊗ Dk)

with
∏

∞

k=1 Z. Then P∗ ([e]) = (ak)∞k=1 and
(
[ f k

3 ]
)∞

k=1
= (bk)

∞

k=1, where bk ≥ 0 for
all k, and ak is greater or equal to the multiplicity of the trivial representation of G in
π ′ ⊗ πk which equals nk. Since K0 (K ⊗ D) is the subgroup of

∏
∞

k=1 Z consisting of

the sequences (ck) in Z for which supk

∣∣ ck

dk

∣∣ <∞ by [4, Lemma 3.2], we conclude that

x 6= 0 because limk→∞

nk

dk

= ∞. This contradicts (3.9).

3.3 The Connes–Higson Construction Is Not Faithful

Let E( · , · ) denote E-theory group of Connes and Higson [3]. The Connes–Higson
construction produces asymptotic homomorphisms out of extensions and defines an
additive map CH : Exth(A,B) → E(SA,B), where SA = C0(0, 1) ⊗ A is the suspen-
sion of A. It was shown in [11] that the map CH is an isomorphism when A is already

a suspension.

Lemma 3.2 The image of the extension (3.1) under the Connes–Higson construction

is homotopy trivial.

Proof For the extension (3.1), consider the six-term exact sequence in E-theory,

E(A ′,K) // E(E ′,K) // E(K,K)

∂

��

E(SK,K)

OO

E(SE ′,K)oo E(SA ′,K)oo
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Let ϕ : A ′ → Q(K) be the Busby invariant of the extension (3.1). Then the image
of the class [CH(ϕ)] ∈ E(SA ′,K) under the map E(SA ′,K) → E(SE ′,K) is zero

because the composition E ′ → A ′ → Q(K) of ϕ and of the quotient map defines a
split (hence trivial) extension of E ′. Thus, [ϕ] ∈ im(∂).

To show that ∂ = 0, one has to show that the map E(E ′,K) → E(K,K) = Z (or,
equivalently, the map Exth(SE ′,K) → Exth(SK,K)) is surjective. Let us construct an
extension SE ′ → Q(K ⊗ K), whose restriction onto SK generates Exth(SK,K).

Let Hi be the Hilbert space of the representation π ′

i = ni · πi . We can assume that
π ′

1 is the one-dimensional trivial representation of G of multiplicity 1. Put Hm
i = Hi

for m ∈ N and H =
⊕

i,m Hm
i . Let g ∈ G act on H as

⊕
i π

′

i (g) on each
⊕

i Hm
i ,

m ∈ N. If we identify K with K(
⊕

i Hm
i ), let k ∈ K act similarly on H as

⊕
m km,

where km = k acts on
⊕

i Hm
i . This gives us a ∗-homomorphism from E ′ to B(H).

Let us also define a Fredholm operator F on H by setting F|Hm

i
= id for all i,m except

i = 1 and F(Hm
1 ) = Hm+1

1 (shift with respect to the superscript). This operator
defines a map from C(T) to B(H), which is a ∗-homomorphism modulo compacts.

Since the two maps, from E ′ and from C(T), commute modulo compacts, we have a
map from C(T) ⊗ E ′ to B(H), which becomes a ∗-homomorphism after composing
it with the quotient map B(H) → Q(K). Restrict this map to SE ′ and denote the
resulting extension by Φ, Φ ∈ Exth(SE ′,K). Let also ι : C → K be the standard

homomorphism given by ι(1) = e11. Then the diagram

Exth(SC,K)

Exth(SE ′,K)
r

//

j∗
88ppppppppppp

Exth(SK,K)

ι∗
ffNNNNNNNNNNN

commutes, where arrows are induced by inclusions. One easily sees that j∗(Φ) coin-
cides with the Toeplitz extension. Since ι∗ is an isomorphism, r is surjective, hence

∂ = 0. Since [CH(ϕ)] lies in the image of ∂, one has [CH(ϕ)] = 0.

Note that ϕ is not trivial in Exth(A ′,K) (otherwise it would be invertible, which is

not true). Thus we can conclude that the assertion of Connes and Higson in [3] that
“La E-théorie est ainsi le quotient par homotopie de la théorie des extensions” should
not be taken too literally. In fact, the exact relation between C∗-algebra extensions
and asymptotic homomorphisms is still not fully uncovered, although our previous

work on the subject contains much detailed information.
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[8] P. de la Harpe and A. Valette, La propriété (T) de Kazhdan pour les groupes localement compacts.
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