POSTERS

A 200 km/s Molecular Wind in the Carbon Star V Hya

GILLIAN KNAPP¹, ALAIN JORISSEN², and KEN YOUNG³

¹ Princeton University, Princeton NJ, U.S.A.

² Institut d'Astronomie, Université Libre de Bruxelles, Belgium

³ Caltech Submillimeter Observatory, Hilo HI, U.S.A.

The carbon star V Hya is remarkable for having a bipolar outflow resolved in observations of the CO (1–0) and (2–1) rotational lines (e.g. Kahane, Maizels & Jura 1988, ApJ, 328, L25). Observations of the CO (2–1) and (3– 2) lines in this star using the 10.4-m telescope of the Caltech Submillimeter Observatory (Mauna Kea, Hawaii) now reveal a fast wind with an outflow velocity of about 200 km s⁻¹. Several distinct kinematic components can be identified in the V Hya wind, all of them having the same central velocity as the star: (i) a strong central component with an outflow velocity V_e of about 45 km s⁻¹, (ii) a bipolar flow with $V_e = 7$ km s⁻¹, and (iii) a fast wind ($V_e = 200$ km s⁻¹), possibly bipolar as well. These features are unique among C stars, though they are reminiscent of proto-planetary nebulae like CRL 618 or CRL 2688. The C star V Hya may therefore be in the first stages of its transition to a planetary nebula.