On a conjecture of Mahler V.C. Dumir and R.J. Hans-Gill

Let R be the field of real numbers. For α in R, let $\|\alpha\|$ be the distance of α from the nearest integer. The following conjecture of Kurt Mahler [Bull. Austral. Math. Soc. 14 (1976), 463-465] is proved.

Let m, n be two positive integers $n \ge 2m$. Let S be a finite or infinite set of positive integers with the following properties:

 (Q_1) S contains the integers m, m+1, ..., n-m;

 (Q_2) every element of S satisfies

 $\|s/n\| \geq m/n$.

Then

 $\sup_{\alpha \in \mathbb{R}} \inf_{s \in S} \|s\alpha\| = m/n .$

1. Introduction

Let R be the field of real numbers. For $\alpha \in R$, let $\|\alpha\|$ be the distance of α from the nearest integer. Mahler [3] has proved the following:

THEOREM. Let 5 be a finite or infinite set of positive integers with the following two properties:

(i) S contains the integers $1, 2, \ldots, n-1$;

(ii) S does not contain any multiple of n.

Received 23 September 1976. Communicated by Kurt Mahler. The authors are grateful to Professor R.P. Bambah for some useful comments.

Then

126

$$\sup \inf ||s\alpha|| = 1/n .$$

$$\alpha \in R \ s \in S$$

Mahler also conjectured the following generalization.

CONJECTURE. Let m, n be two positive integers such that $2m \le n$. Let S be a finite or infinite set of positive integers with the following two properties:

 (Q_1) S contains the integers m, m+1, ..., n-m;

 (Q_2) every element of S satisfies the inequality

 $||s/n|| \ge m/n$.

Then

$$\sup \inf ||s\alpha|| = m/n$$

$$\alpha \in \mathbb{R} \ s \in S$$

Our object in this note is to prove the above conjecture.

2.

We shall use the following:

LEMMA. Let m be a positive integer. Let K be a convex body in the n-dimensional euclidean space R_n with centre 0 and volume $V(K) > 2^n m$. Then there are m non-zero points X_1, \ldots, X_m of the integral lattice such that

(i) $X_i \in K$, $1 \le i \le m$, (ii) $X_i - X_j \in K$, $1 \le i, j \le m$, (iii) $0 < X_1 < X_2 < \dots < X_m$, where < is the lexicographic ordering in R_n .

REMARK. This result is essentially due to van der Corput [1], but he did not bring out the fact that the points X_i can be chosen to satisfy (*ii*) and (*iii*) also. Here we indicate the necessary modifications to ensure (*ii*) and (*iii*).

Proof. van der Corput's result rests on the fact that $V(\frac{1}{2}K) > m$ implies the existence of a point $Z \in R_n$ and (m+1) distinct points Y_0, Y_1, \ldots, Y_m such that $Z \in \frac{1}{2}K + Y_i$, $0 \le i \le m$ (see, for example, Lekkerkerker [2], p. 44). We can suppose that the points Y_i are arranged in the lexicographic order

$$\mathbf{y}_0 < \mathbf{y}_1 < \dots < \mathbf{y}_m$$
.

Let

 $X_{i} = Y_{i} - Y_{0}, \quad 1 \le i \le m$.

Then $0 < x_1 < x_2 < \ldots < x_m$. Also since $\frac{1}{2}K$ is symmetric convex with centre 0, we have

$$X_i = 2 \frac{(Z-Y_0) - (Z-Y_i)}{2} \in K$$

and

$$X_{i} - X_{j} = Y_{i} - Y_{j} = 2 \frac{(Z - Y_{j}) - (Z - Y_{i})}{2} \in K$$

3.

This proves the lemma.

Proof of Conjecture. For $\alpha = 1/n$ the condition (Q₂) implies that $\inf_{\substack{s \in S}} ||s\alpha|| \ge m/n \ .$

Therefore

$$\sup_{\alpha \in R} \inf_{\alpha \in S} \|s_{\alpha}\| \ge m/n$$

It remains to prove that for every $\alpha \in R$,

$$\inf ||s\alpha|| \le m/n$$
.
 $s\in S$

Let $T = \{m, m+1, ..., n-m\}$.

Since $S \supset T$ it suffices to prove that there is a $t \in T$ such that

$$||t\alpha|| \leq m/n$$

If n = 2m, then $T = \{m\}$ and $||m\alpha|| \le \frac{1}{2} = m/n$ for every real number α .

Let n > 2m. Let $0 < \varepsilon < (n/2m) - 1$, so that $\frac{m(1+\varepsilon)}{n} < \frac{1}{2}$. Since T is a finite set it is enough to prove that for every such ε , there is a $t \in T$ such that

$$\|t\alpha\| < \frac{m(1+\varepsilon)}{n}.$$

Consider the parallelogram Π with centre 0 defined by

$$|\alpha_{x-y}| < \frac{m(1+\varepsilon)}{n},$$

$$|x| < n .$$

If (x, y) is an integral point in Π , then clearly

$$||x\alpha|| < \frac{m(1+\varepsilon)}{n} .$$

The area of Π is equal to $4m(1+\epsilon) > 4m$. By the lemma it follows that Π contains m non-zero integral points

$$X_i = (x_i, y_i)$$
, $i = 1, 2, ..., m$, $0 \le x_1 \le x_2 \le ... \le x_m$,

and

$$X_i - X_j \in \Pi$$
 for $1 \leq i, j \leq m$.

We observe that

(i)
$$x_i > 0$$
 for each i , because otherwise (2) implies that
 $|y_i| < \frac{m(1+\varepsilon)}{n} < \frac{1}{2}$ and hence $y_i = 0$;
(ii) $x_i \neq x_j$ when $i \neq j$, because $x_i = x_j$ implies, by (2),
that $|y_i - y_j| < \frac{2m(1+\varepsilon)}{n} < 1$ and hence $y_i = y_j$; that is,
 $X_i = X_j$ so that $i = j$.

Hence

$$1 \leq x_1 < x_2 < \ldots < x_m \leq n-1 .$$

If $x_i \in T$ for some i, then $||x_i \alpha|| < \frac{m(1+\epsilon)}{n}$ and the result follows. Suppose that $x_i \notin T$ for i = 1, 2, ..., m. Let

$$1 \le x_1 < x_2 < \ldots < x_{\gamma} < m < n-m < x_{\gamma+1} < \ldots < x_m \le n-1$$
.

Clearly $1 \le \gamma \le m-1$, and $1 \le i \le \gamma$. If the integers $x_i + n - m$, $1 \le i \le \gamma$ are distinct from the integers $x_{\gamma+j}$, $1 \le j < m-\gamma$, then the interval $n-m+1 \le x \le n-1$ contains at least $\gamma + (m-\gamma) = m$ integers, which is impossible because the length of the interval is m-2. Therefore there exist i and j, $1 \le i \le \gamma$, $1 \le j \le m-\gamma$, such that $x_i + n - m = x_{\gamma+j}$. Then $X_{\gamma+j} - X_i = (n-m, y)$ is an integral point in II. Therefore

$$\|(n-m)\alpha\| < \frac{m(1+\varepsilon)}{n}$$

and $n-m \in T$. Thus the conjecture is proved.

References

- J.G. van der Corput, "Verallgemeinerung einer Mordellschen Beweismethode in der Geometrie der Zahlen", Acta Arith. 1 (1936), 62-66.
- [2] C.G. Lekkerkerker, Geometry of numbers (Bibliotheca Mathematica, 8.
 Wolters-Noordhoff, Groningen; North-Holland, Amsterdam, London; 1969).
- [3] Kurt Mahler, "A theorem on diophantine approximations", Bull. Austral. Math. Soc. 14 (1976), 463-465.

```
Centre for Advanced Study in Mathematics,
Panjab University,
Chandigarh,
India.
```