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A LATTICE ISOMORPHISM THEOREM 
FOR NONSINGULAR RETRACTABLE MODULES 

ZHOU ZHENGPING 

ABSTRACT. Let RM be a nonsingular module such that B = EndR(M) is left nonsin-
gular and has A = EndR(M) as its maximal left quotient ring, where M is the injective 
hull of RM. Then it is shown that there is a lattice isomorphism between the lattice C(M) 
of all complement submodules of RM and the lattice C(B) of all complement left ideals 
of B, and that RM is a CS module if and only if B is a left CS ring. In particular, this is 
the case if RM is nonsingular and retractable. 

1. Introduction. Let RM be a left module over the associative ring R with identity. 
M is said to be retractable if Hom#(M, U) ^ 0 for every nonzero submodule U of M. M 
is said to be e-retractable if Hom#(M, U) ^ 0 for every nonzero complement submodule 
U of M. M is said to be nondegenerate if Tm ^ 0 for every nonzero m G M, where T is 
the trace of M in R. M is called a CS module if every complement submodule of Misa 
direct summand of M. A ring B is called a left CS ring if BB is a CS module [6]. 

In [5], 1989, S. M. Khuri showed that if M is nonsingular and nondegenerate, then the 
maps U i—> IB(U) and H i—> (MH)e determine a projectivity (that is, an order-preserving 
bijection) between C(M) and C(B) [5, Theorem 3.10], where IB(U) = {beB,MbÇ U} 
mà{MH)e is the essential closure (cf. [l,p. 61 Proposition?]) of MH inM, and therefore 
that B is a left CS ring if and only if M is a CS module [5, Corollary 3.11 ]. It is also known 
that any nondegenerate module is retractable [5, Proposition 3.2], but not conversely (for 
example, let M be the Z-module Z/p"Z). 

As the main result in [6], 1991, Khuri successfully generalized the second result above 
to the case where M is nonsingular and retractable [6, Theorem 3.2], and gave a necessary 
and sufficient condition so that the maps U i—> h(U) and H \—> (MH)e determine a 
projectivity between C(M) and C(B) under this weaker condition [6, Theorem 3.1]. 

In this paper, more generally, let RM be a nonsingular module such that B — Ex\<\R(M) 
is left nonsingular and has A = End/?(M) as its maximal left quotient ring, where M 
is the injective hull of #M, then the maps U \—> h(U) and H \—> (MH)e determine a 
lattice isomorphism between the lattice C(M) and the lattice C(B) (Theorem 2.4), and 
that RM is a CS module if and only if B is a left CS ring (Theorem 2.5). In particular, 
if RM is nonsingular and retractable, the maps U \—> IB(U) and H \—> (MH)e determine 
a lattice isomorphism between C(M) and C(B) already (Theorem 2.6), which contains 
[5, Theorem 3.10] as a special case, and we get the result of [6, Theorem 3.2] again in a 
simpler and more explicit way (Corollary 2.7). 
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2. A Lattice isomorphism theorem and applications. Throughout this paper, 

modules, unless otherwise specified, are consistently left modules, U Qe V will mean 

that U is an essential submodule of V, that is, U has nonzero intersection with every 

nonzero submodule of V, while U Ç V will mean that U is a submodule or subset of 

V when V is a module or just a set. Û denotes the injective hull of U, Ue the essential 

closure of U. Finally, B = End(M), A = End(M). 

Recall that M is nonsingular if for any / Çe R, m G M, Im = 0 implies m = 0. A 

submodule t/ of M is called a complement in Af if £/ has no proper essential extension 

inM. 

LEMMA 2.1. If M is nonsingular, then the maps U i—> IA(U), H I—> MR determine a 
lattice isomorphism between C(M) and C(AA). 

PROOF. Since M is nonsingular, so is M ; then C(M) is a complete modular lattice 

[8, p. 251 Corollary 4.4]. Since M is nonsingular, A = Hom(M,M) is regular and left 

self-injective (cf [3] or [1, p. 44 Theorem 1]); therefore AA is also nonsingular as left 

A-module, and C(AA) is a complete modular lattice. So it remains to show that the maps 

determine a projectivity between C(M) and C(AA). First let U G C(M); then U is a direct 

summand of M since U is a complement submodule of M and M is injective. Therefore 

U = Me for some ^2 = e G A, and /^(LO = I^Me) = {a G A, Ma Ç Me) = Ae G 

CCiA). Similarly, since AA is nonsingular and injective, C(AA) = {A^, e2 = e £ A}, 

then MA^ = Me G C(M). Secondly, if M^ G C(M), then MIA{Me) = MAe = Me; if 

Ae G CC4A), IA(MAe) — IA(MC) = Ae, i.e. the two maps are inverses of each other. 

Finally, they are clearly order-preserving maps. 

LEMMA 2.2. Let B be a left nonsingular ring with the maximal left quotient ring A. 

Then C(AA) = C(BA). 

PROOF. By [8, p. 247 Proposition 2.1(i)], AA is regular and left self-injective, and 

therefore C{AA) — {Ae,e2 = e G A}. Since A is the maximal left quotient ring of B, 

any A-submodule of AA is clearly a Z?-submodule of BA and hence C(AA) Ç C(BA). On 

the other hand, BA is also a nonsingular injective ^-module; in fact, BA is the injective 

hull of BB. So C(BA) consists of the nonsingular injective submodules of BA, which are 

actually injective A-modules again by [8, p. 247 Proposition 2.1(H)]. Hence they are all 

direct summands of A. Therefore C(BA) Ç C(AA), i.e. C(BA) = C(AA). 

We also need the following known result from [1]. 

LEMMA 2.3 [1, P. 61 COROLLARY 8]. If M is nonsingular and M Çe M' then the 

maps U' 1—> U' PlM and U »—> Ue form a lattice isomorphism between C(M') and C(M), 

where U' G C(M') and Ue is the unique essential closure of U in M'. 

Now we are able to show our isomorphism theorem. 

THEOREM 2.4. Let M be a nonsingular module such that B = Hom(M,M) is left 

nonsingular and has A = Hom(M, M) as its maximal left quotient ring. Then the maps 

F:U^IA(0)nB, F~]:H^(MH)nM 
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form a lattice isomorphism between C(M) and C(B). Moreover IA{U)ÏM$ = IB(U) for 

U G C(M), and (MH) DM = (MHfforH G C(B). 

PROOF. The desired isomorphism follows immediately from Lemmas 2.1, 2.2, and 

2.3. Now we show that IA(0) n B = IB(U). We identify IB(U) with Hom(M, U), IA{V) 

with Hom(M, 0) and B = Hom(M,M) with {f G AJ(M) Ç M}. Then it is clear that 

Hom(M, U) Ç B. L e t / G A,f(M) Ç U. Then/(M) Ç 0. Notice that Û is injective, so 

there exists an extension/7 oïf\M such that f'(M) Ç V. Therefore/ = f G Hom(M, (7) 

s ince/(M) = f'{M), M Çe M and M is nonsingular. This shows that Hom(M, U) Ç 

Hom(M, 0), also. Hence Hom(M, U) Ç B H Hom(M,//). On the other hand, if/ G 

5 H Hom(M, £/), then / (M) Ç M H 0, which is exactly U, i.e. f G Hom(M, U). So 

^ HHom(M, Û) = Hom(M, U). That is, IA(D) HB = lB{U). 

Next we show that (MH)C\M - (MH)e. It suffices to show that (MF(U))e = U. Since 

F is a lattice isomorphism, if 0 ^ U G C(M), then F(f/) = /fl([/) = Hom(M, U) ^ 0, 

i.^. M is ^-retractable. Hence by [6, Theorem 2.4], MIB(U) Ce U for any £/ G C(M). So 

(MF(U))e = (MIB(U))e = U, i.e. F [(H) = (MH)e for any H G C(B). 

THEOREM 2.5. Under the assumptions above, M is a CS module if and only ifB is 

a left CS ring. 

PROOF. Let M be a CS module. Then for any U G C(M), U = Me for some e2 = e G 

B, and F(U) = IB(U) = h(Me) = Be, which is a direct summand of /? and in C(B). But 

by Theorem 2.4, F i s a lattice isomorphism between C(M) and C(B). This implies B is a 

left CS ring. Conversely if B is a left CS ring, then for any H G C(B), H = Be for some 

e
2 = e G B Ç A. So F](Be) = (MBef = (M<?f = Afe, which is a direct summand of 

M and in C(M). F l is also a lattice isomorphism between C(B) and C(M). Therefore M 

is a CS module. 

In [6], it is shown that for a nonsingular and retractable module M, the maps U \—> 

IB(U) and H i—> (MH)e determine a projectivity between C(M) and C(^) if and only if 

H Ce IB(MH) for every H Ç B [6, Theorem 3.1]. Here we have, as a consequence of 

Theorem 2.4, that the maps above determine a projectivity (in fact, a lattice isomorphism) 

already, provided M is nonsingular and retractable. 

THEOREM 2.6. If M is nonsingular and retractable, then the maps U i—> h(U) and 

H i—> (MH)e determine a lattice isomorphism between C(M) and C(B). 

PROOF. Under this assumption, we have, by [4, Theorem 3.1] that B is left nonsin

gular, B Ce BA and A is the maximal left quotient ring of B. The conclusion follows 

directly from Theorem 2.4. 

COROLLARY 2.7 [6, THEOREM 3.2]. If M is nonsingular and retractable, then M is 

a CS module if and only ifB is a left CS ring. 

COROLLARY 2.8 [5, THEOREM 3.10]. Let M be nonsingular and nondegenerate. 

Then the maps U \—> IB{U) and H \—> (MH)e determine a lattice isomorphism between 

C(M) and C(B). 

Combining our Theorem 2.6 with Theorem 3.1 in [6], we immediately have 
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COROLLARY 2.9. If M is nonsingular and retractable, then H Çe IB(MH)for any 

left ideal HofB. 

Consider the following two properties: 

(I) For U C V Ç M, U Ce V if and only if 1B(U) Ce IB(V). 

(II) For H Ç J Ç B, H Çe J if and only if MH Çe MJ. 

In [5, Proposition 3.2], it was shown that when M is nondegenerate, M is retractable 

and has the properties (I) and (II). If M is nonsingular and retractable, then Khuri showed 

further that M has the property (I) [6, Theorem 2.2], and that M has the property (II) if 

and only if H Çe IB(MH) for any left ideal H of B [6, Corollary 2.6]. So it follows 

immediately from Corollary 2.9. 

COROLLARY 2.10. If M is nonsingular and retractable, then M has the properties 

(I) and (II) above. 

Let d(M) be the Goldie dimension of a module M. Then it is known that d(M) < oo 

if and only if C(M) satisfies the a. c. c. (the ascending chain condition) or the d. c. c. (the 

descending chain condition) [5], [2, p. 83]. Therefore another immediate consequence 

of Theorem 2.4 is 

COROLLARY 2.11. If M satisfies the assumptions in Theorem 2.4, then 

(1) C(M) satisfies the a. c. c. or the d. c. c. if and only ifC(B) does. 

(2) d(M) < oo if and only ifd(B) < oo, and in this case d(M) — d(B). 

In particular, this is the case when M is nonsingular and retractable. 

PROOF. ( 1 ) It is obvious from Theorem 2.4. (2) follows directly from part (v) of the 

corollary on page 52 in [7]. 

A submodule U of M is called a-closed if U = AnnM(H) = {m G M, mH = 0, H is a 

subset of B} [5]. Let L(M) denote the set of all «-closed submodules of Af, L(B) the set 

of all left annihilator ideals of B. It is known that L(M) Ç C(M) when M is nonsingular 

(cf. the proof of [5, Lemma 3.12]), and, in addition, if M is e-retractable, the maps U i—> 

IB(U) and H ^ (MH)a determine a lattice isomorphism between L(M) and L(B) [5, 

Lemma 3.12, Theorem 2.5], where (MH)a means the «-closure of MH [5, Definition 1]. 

But from Theorem 2.4, we know that if M satisfies the assumptions in Theorem 2.4, 

then for any U G C(M), U = F~lF(U), and F~l(F(U)) = (MF(U))e. Therefore if 

0 ^ U G C(M), then F(U) ^ 0, that is, M is ^-retractable, also. Consequently we have 

from Theorem 2.4 

COROLLARY 2.12. If M satisfies the assumptions in Theorem 2.4, then the maps 

FJ i—> IB(U) and H i—> (MH)a determine a lattice isomorphism between L(M) and L(B), 

and hence L(B) Ç C(B). 

In particular, this is the case when M is nonsingular and retractable. 

A ring B is a left Goldie ring if it satisfies the a. c. c. on L(B) and on C(B) [5]. So the 

last application we get is 
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COROLLARY 2.13. If M satisfies the assumptions in Theorem 2.4, then B is a left 
Goldie ring if and only if M satisfies the a. c. c. on C(M), and if and only ifd(M) < oo. 

In particular, this is the case when M is nonsingular and retractable. 
This result contains [5, Corollary 3.14] as a special case. 
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