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Abstract

The flexibacters are a form of gliding bacteria which are often found on the surfaces of
solid bodies in fresh and salt water. An individual organism lacks motility in the bulk
aqueous phase but glides over a solid surface with its rod-like body aligned with and
nearly touching the surface. It has been suggested that this gliding motion in Flexibacter
strain BH3 may be caused by waves moving down the outer surface of the rod-shaped
cell [2]. This paper is concerned with the fluid mechanical aspects of this form of
propulsion.

Formulae for the velocity of the organism and for the power dissipation are obtained
by using a lubrication theory analysis in the small gap between the bacterium and the
wall. It is found that for any progressive waveform there is an optimum distance from
the wall at which the flexibacter may maximize its speed for a given power output.
Assuming that the flexibacter sits at this optimum distance and taking the waveform to
be sinusoidal we calculate the power required for the flexibacter to move at the
maximum observed speed. It is found that this power requirement represents only a
small fraction of the power available to the cell.

1. Introduction

Although a considerable amount of research has been undertaken on the mode
of motility in gliding bacteria, little is known about the mechanism of propulsion
and the need for the organism to be near a surface for motility to occur. This
paper examines one method of propulsion proposed for the gliding bacterium,
Flexibacter strain BH 3 [2].

The organism has a rod-like body of approximately circular cross-section with
an average length of 5um and a diameter of the order of 0.5um. The body
appears from a distance to be quite rigid, and there are no flagellar or cilia on
the surface, so the usual forms of low-Reynolds’ number propulsion are absent.
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2] The gliding motion of a bacterium 3

Fig. 1 Electron micrographs of the Flexibacter strain BH3 showing wave-like undulations on the
surface of the organisms. Fig. 1(a) is a cross-sectional view of the flexibacter near a solid boundary,

and Fig. 1(b) is a top-view. The organism is of the order of Sun long with a cross-sectional diameter
of 0.5um.

The flexibacter is unable to propel itself through the water unless it is near a
solid boundary where it moves in the direction of its axis at speeds of up to
1.5um/sec. As it glides over the surface, the flexibacter leaves a trail of sticky
liquid, or “slime” in its wake. In Fig. 1(a) we show a cross-sectional view of a
flexibacter, sectioned along its length!. From this electron micrograph it can be

t Fig. 1(a) is reproduced from [2} and Fig. 1(b) was kindly supplied by Dr. M. R. Dickson of the
Biomedical Electron Microscope Unit, University of N.S.W.
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4 R. W. O’Brien (3]

seen that the flexibacter has an undulating surface (that is, the outer cell
envelope membrane) which is separated from the wall by a thin layer of liquid.
The wave-like undulations of the surface can also be seen in top-view in Fig.
1(b). The undulations are fairly irregular, having an average amplitude of about
0.03um and a wavelength of 0.07wm. The thin layer of slime between flexibacter
and wall has a minimum thickness of the order of 0.01pum.

It is observations such as these which have given rise to the theory that the
flexibacter moves by sending waves down its body [2]. Unfortunately there is no
means of testing this observation experimentally, for the undulations can only
be seen under an electron microscope, and the organisms must be killed in order
to be studied in this apparatus.

The aim of this study is to examine the feasibility of this form of propulsion
from a fluid mechanical point of view.

2. The velocity and pressure fields in the thin liquid layer
between the flexibacter and the wall

When two nearly-touching bodies in a liquid are in relative motion, the
stresses developed in the thin liquid layer between the bodies may make a
significant contribution to the force on each body. For this reason we begin our
analysis by looking at the flow in the thin lubrication layer between the
flexibacter and the wall. In Section 3 it will be shown that to leading order the
force-balance equation for the flexibacter is dominated by the contribution from
the stresses on the surface of the body in the neighbourhood of the wall. Hence
we can determine the velocity of the organism and the power dissipation without
the need for calculating the flow field beyond the lubrication layer.

Assuming that the flexibacter is gliding over a flat surface, we set up cartesian
coordinates (x, y, z) with the x-axis lying on the surface parallel to, and directly
beneath the axis of the flexibacter, and with the y-axis perpendicular to the
surface, which will be referred to as “the wall”. This coordinate system is
illustrated in Fig. 2. As in previous studies of wave-like motions of micro-
organisms [5]-[7], we let our axes move along the body with the waves, which
are assumed to be regular and periodic. In this frame of reference the local
surface profile and flow field does not vary with time.

We let U, denote the speed of the wave relative to the body and U, denote
the speed of the body relative to the wall; the wave is assumed to be moving to
the left in Fig. 2, relative to the body, and the speed of the body is taken to be
positive if the body moves to the right, relative to the wall. In the frame of
reference moving with the wave the wave is stationary, and the wall appears to
be moving in the direction of increasing x with speed U,, — U,,.
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Fig. 2(a) A sketch of the thin liquid layer between the surface of the flexibacter and the wall, The
(x, y)coordinate axes are taken to be moving with the waves which travel down the surface of the
organism. The arrows on the upper and lower surfaces indicate the direction of motion of the
flexibacter and the wall relative to this moving coordinate system.

2(b) A sketch of the pressure variation p in the liquid layer, for the waveform shown in Fig. 2(a) (see
Section 3).

As the waves pass down the flexibacter they cause the surface of the cell to
deform; in order to specify the velocity of the surface we must make an
additional assumption about the way in which the surface deforms. Following
Taylor [7], we assume that the surface is inextensible; in the frame of reference
moving with the waves the material on the cell surface therefore moves tangen-
tial to the surface of the wave, with uniform speed given by [7], equation (20), to
be

U
T“' X (the arclength of a wave), @.1)

where A is the wavelength.

In the absence of any information to the contrary, we assume that the layer of
slime between the flexibacter and the wall behaves as a Newtonian liquid. Since
the intertial forces in the liquid are negligible in this case, the velocity u and
pressure p satisfy the Stokes’ equations

pVu=vp, (22)
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and
V.ou=0, (2.3)
where p is the viscosity of the liquid.

To determine the flow field in the lubrication layer we must solve these
equations subject to the boundary condition that the fluid on the flexibacter
surface moves with speed given by (2.1) and the fluid at the wall moves with
speed U, — U, in the direction of increasing x.

The pressure and velocity in the lubrication layer vary in the z- and x-direc-
tions on length scales of the order of the cross-section radius of the organism
(= 0.25um) and the wavelength (=~ 0.07um) respectively. Since we are attempt-
ing only a very approximate analysis here, we shall assume that the gradients in
the x-direction are much larger than those in the z-direction and that as a result
the flow in the lubrication layer is approximately two-dimensional; that is, the
local velocity and pressure depend only on x and y, and the fluid flow is parallel
to the (x, y)-plane.

We are therefore faced with the problem of determining the two-dimensional
flow between a wavy sheet and a wall. Two approximate solutions to this
problem have appeared in the literature, both concerned with sinusoidal waves.
The earlier analysis, by Reynolds [6], is not relevant here, since it is valid only if
the wave amplitude is small compared with the minimum film thickness, in
which case there is only a weak interaction between the wall and the sheet. The
second approximate solution, obtained by Katz [5] using lubrication theory, is
valid if the slope of the wave relative to the wall is small.

Although this assumption is not strictly valid for the flexibacter (see Fig. 1(a))
we shall employ lubrication theory here in the hope of obtaining rough estimates
of the speed of the organism and power dissipation for a wave of arbitrary
shape.

The lubrication theory approach to this problem is based on the observation
that, if the slope of the wavy surface is everywhere small, the flow in the thin
liquid layer is locally the same as the flow between two parallel flat plates
separated by the local film thickness ([1), page 219). In this case the equation
(2.2) reduces to ([5], page 40)

u_ap
”'ayl— dx
and
p _
3y~

where u is the component of the liquid velocity in the x-direction. The arclength
of a wave of small slope is, to leading order, equal to the wavelength, and thus
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the boundary condition (2.1) reduces to
u=U,
on the upper plate (which represents the flexibacter surface) and, on the wall
(y=0),to
u=U, - U,

The solution to the above equations and boundary conditions is
1
L (y - ny, (2.4)

u=U, + Ub(—— 1)+—
where h(x,z) is the local film thickness. The pressure gradient dp/dx is
determined from the incompressibility constraint (2.3), which in this case can be
written in the form

f "wdy = 0, 25)

where Q is a constant representing the rate of fluid flow in the gap (relative to
axes moving with the wave) per unit width in the z-direction.

Substituting the expression (2.4) for u in (2.5) and integrating, we find that the
pressure gradient is given by

b _ 682U, — Up) _ 1240

dx 1 W (2.6)
and hence the pressure drop over one wavelength is
A dx A dx
Ap = 6p(2U, — U,) fo - f . @.7)

With the aid of this expression we now determine the flow rate Q.

The total pressure drop over the body is ApL /A, where L is the length of the
organism; in principle, Ap must be determined by matching this inner solution
to the outer solution for the flow fluid beyond the lubrication layer. This outer
flow field may be regarded as the superposition of two flows:

(i) a local flow which decays to zero at distances of order A from the
surface, caused by the wavelike motion of the surface, and

(i) a “long range” flow field due to the motion of the body as a whole.

The pressure field associated with the flow field (i) will, like the flow itself, be
a periodic function of distance along the surface of the body, and consequently
the net pressure drop along the body due to this flow is zero.

At distances of more than a few cross-sectional radii R from the ends of the
body the flow field (ii)) will be similar in form to the flow generated by an
infinite cylinder, of cross-sectional radius R, moving along its axis, parallel to
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and nearly touching the wall. This two-dimensional flow does not result in any
pressure gradients, and thus the only place where significant pressure drops can
occur is in the neighbourhood of the front and rear of the organism.

To estimate these pressure drops we note that, since the flow field in these
regions varies on a length scale of order R, the pressure gradients required to
balance the viscous force term pV? u in the Stokes’ equation (2.2) will be of
order pU,/R> The regions of non-uniform pressure extend a distance of O(R)
from the ends of the body and thus, with the aid of the above estimate for the
pressure gradient in these regions, we find that the magnitude of the pressure
drop over the length of the organism is pU,/R; hence the pressure drop per
wave Ap is of order uU,A/ RL.

Assuming that the body speed U, and wave speed U, are of the same order of
magnitude, we find that the first term on the right hand side of (2.7) is of order
pU,A/ h?, where h is a measure of the film thickness; the ratio of this term to Ap
is therefore O(RL/h*. Thus we may neglect the pressure drop term in (2.7),

which yields
1 Adx Adx
o= (w-zu) [/ L) ¢

With the aid of this result we can write the formulae (2.4) and (2.6) for the
velocity and pressure gradient in the lubrication layer in terms of U,, U, and A.

3. Calculating the speed of the flexibacter

The speed of the flexibacter is determined from the requirement that the net
horizontal force on the body is zero. From our lubrication layer analysis we can
calculate the contribution to the force-balance equation from the stresses on the
surface of the organism close to the wall:

The horizontal component of the stress on the flexibacter surface in this
region is given by

Although the wave slope 0h/dx is assumed to be small, the pressure in the
lubrication layer may be quite large, and consequently we cannot neglect the
product p(dh/9x) in (3.1).

The net force per wavelength acting on the surface of the flexibacter close to

the wall is given by
A Ou dh
—_[zl:j(; ([.Lg +p5;) dx] dz 3.2)

y=h
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where the integral extends in the z-direction over the portion of the surface in
the vicinity of the wall. Integrating the term involving p(dh/dx) in (3.2) by parts,
and substituting the expressions (2.4), (2.6) and (2.8) for u, dp/dx and Q, we
find that the square-bracketed term in (3.2) becomes

6uU, [1 (z) — Ifg)) ] - ;LU,,{4I,(Z) - 31:(2) (3.3)
where
I(z) = fo 3 (.4)

We shall assume that the flexibacter surface is locally parabolic in the
z-direction; that is,

h(x, z) = ho(x) + ;—R, (3.5)

in the neighbourhood of the wall. In this case, the expression (3.3) decays like
z7% at large z and hence, if the thickness of the lubrication layer is much smaller
than the cross-sectional radius R, the integral expression (3.2) for the force will
be dominated by the contribution from the portion of the surface in the
neighbourhood of z = 0. Assuming that this is the case we extend the limits of
integration in (3.2) to z = * co. Substitution of the formula (3.3) for the square
bracketed term in the integral (3.2) then yields

;1,(6UW[K1 — K,] — U,[4K, - 3K2]), (3.6)
where
_[® _ ) ]2(2)
K, = f_ Ni()d: and K, = f_ ) 123(2) (3.7)

The formula (3.6) gives the force per wavelength acting on the flexibacter
surface in the neighbourhood of the wall. By the usual order of magnitude
arguments it can be shown that the force per wavelength due to stresses over the
remainder of the flexibacter surface is of order pAU,. From calculations of the
asymptotic forms of 1,(z) for small and large z we find K| and K, are of order
A(R/h)'/?, where h is a typical film thickness. Thus the terms in the formula
(3.6) for the force from the lubrication layer are of order pAU, (R/ h)'/? and
pAU,(R/h)'/?, and therefore the contribution to the force balance from the
stresses on the surface of the flexibacter beyond the lubrication layer is negligi-
ble provided (R/h)'/? > 1. We shall assume here that this constraint is satisfied.
In this case, the expression (3.6) gives the total force per unit wavelength acting
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on the flexibacter. In order for this quantity to be zero the body must move with
speed U, given by

_ 6(K| — Kz) U,

T (4K, - 3Ky) (38)

U,

It can be shown that the coefficient of U, in this expression is positive for an
arbitrary waveform; hence the body moves in the opposite direction to the
waves with a speed which, for a given U,, does not depend on the viscosity of
the slime or the length of the body.

In order to understand this mechanism of propulsion, it is useful to consider
the contribution to the force on the organism from the shear stresses and
pressure stresses separately. Since U, and U, are both positive the flexibacter
surface in Fig. 2 moves to the right at a greater rate than the wall. Hence the
shear stresses give rise to a retarding force in the negative x-direction.

The driving force for the motion arises from the pressure stresses. In Fig. 2(b)
we sketch the distribution of pressure over a wavelength of the flexibacter
surface. The pressure is found to be positive on the upstream side of the wave
and negative on the downstream side. The horizontal component of these
stresses give rise to a driving force in the direction of increasing x. Both the
driving force and the retarding force are proportional to the viscosity of the
slime, and thus the expression for the body speed U,, obtained by equating these
two forces is independent of slime viscosity.

For the symmetrical waveform shown in Fig. 2, the vertical components of the
pressure on the upstream and downstream portions cancel and there is no
vertical force. For other waveforms this may not be the case, and thus in general
the hydrodynamic stresses will give rise to a vertical force. In addition to this
hydrodynamic force there will be electrical repulsive and van der Waal’s
attractive forces acting on the surface of the body; by slightly adjusting its
distance from the wall and its orientation relative to the wall the flexibacter
should be able to balance any vertical hydrodynamic force or torque against
these other forces. Hence there is no reason to expect that the net vertical force
or torque due to hydrodynamic stresses will be zero.

4. The asymptotic forms of U,/ U,,

When the body is extremely close to the wall the integrals K, and K, are
dominated by the contribution from small portions of the surface surrounding
the points of minimum separation between the body and wall. Assuming that

https://doi.org/10.1017/50334270000000035 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000000035
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the thickness of the lubrication film in the (x, y)-plane, hy, has the parabolic

form

2
ho(®) = by + 7 @1

in the neighbourhood of the points of minimum separation, we find, by the
usual asymptotic methods, that

K, = 27r\/(Rb)1n(h—Ii) + o(1),
and
K, = %Ev(Rb)ln(hi) + 0(1),

m

as the minimum separation h,, —> 0. With the aid of these asymptotic forms we
find that the expression (3.8) for the flexibacter velocity reduces to

U,,=(1+o(1/1n(h£)))uw as h—lj;_m. (4.2)

m

Thus when the body is extremely close to the wall it moves in such a way that
the wave appears to be stationary relative to the wall.
At distances from the wall which are large compared to the wave amplitude,

we find
K, = 1’%’9{1 + o((a/h))), 4.3)
and
- AVCR) [y _3a/k a/h))}, 4.4
K= {1 = 3(a/h) + o((a/k)’)} (4.9)

where 4 is the mean thickness of the lubrication layer in the (x, y)-plane and a is
the mean wave amplitude. From the expression (3.8) for the speed of the
flexibacter we find that

U, = 18(a/h)U,(1 + 0(a/h)) as(a/h)—0. (4.5)
In Fig. 3 we show the form of U,/ U, for the sinusoidal waveform
ho(x) = h,, + a(l — cos 2—;‘75) (4.6)

In this case it is possible to obtain analytic expressions for K|, I, and /5. The
integral (3.7) for K, was evaluated numerically for a number of A, /a values.
This curve is similar in form to the curve obtained by Katz ([5], equation 54) for
the velocity of a wavy sheet midway between two parallel walls; in both cases

https://doi.org/10.1017/50334270000000035 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000000035

12 R. W. O’Brien (11]

U,/ U, decays monotonically with increasing separation from the wall, having a
maximum value of unity when the wave touches the wall.

10
W
u,
o5t
0 — S TS S T (;5 Ut " n 70
h
a

Fig. 3 The variation of (body speed/wave speed) for the sinusoidal waveform given by Equation
(4.6). Here a denotes the amplitude of the wave and 4, the minimum separation between the
organism and the wall.

5. The power required for this form of motion

The rate at which the organism does work on the surrounding fluid is given by

—fu.f dA, (5.1)

where 4 denotes the surface of the flexibacter and f is the stress exerted by the
fluid on the surface. For the evaluation of this integral it is convenient to use a
frame of reference which moves with the body. In this frame of reference the
motion of small amplitude waves down the body causes the surface of the
organism to move up and down in a direction perpendicular to the x-axis. Thus
the horizontal component of f does not enter into the calculation of the
expression (5.1).

In the neighbourhood of the wall the surface of the organism moves in the
vertical direction with speed U, (34 /9dx). The vertical component of the stress is
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simply equal to p, and thus the contribution to the power dissipation expression
(5.1) from the portion of the flexibacter surface close to the wall is given by

oh
—U,,fpa dA. (5.2)

The power transmitted to the liquid through the remainder of the surface as a
result of the wave motion will be proportional to the wave slope squared’, a
quantity which in this analysis is assumed to be negligible.

Thus the power required for this form of propulsion is approximately given by
the expression (5.2). Combining this expression with the formulae (2.6) and (2.8)
for the pressure gradient and flow rate in the lubrication layer, we find that the
power required by the organism per wavelength is

P = 6pU,Q2U, - U)K, — K)), (5.3)
or, using the expression (3.8) for U,,
U
P= 2;;(—‘”)& U2 (5.4)
Uy

With the aid of the asymptotic forms for K, and U,/ U, given in the previous
section we find that

P~ 4vrp,\/(Rb)ln(h£) U2 (5.5)
as the minimum distance between the body and the wall h,, — 0, and
2Rh,) U} h
P~ AV (2RA,) Uy as — — o0, (5.6)

9a
where, as before, a is the mean wave amplitude. For fixed U,, the power
diverges as the body approaches the wall and as it moves away from the wall.
This is quite different to the result obtained by Katz [5] for the two-dimensional
wavy sheet; in this case it was found that the power ([5], equation (5.3))
decreases monotonically with increasing distance from the wall.

For the three-dimensional case considered here, the power diverges for small
and large distances and thus there will be an optimum distance from the wall at
which power dissipation is minimized for a given body speed. The location of
this minimum will depend on the form of the wave. In Fig. 4 we have plotted the
non-dimensional power P/(uAv/(R/a)U?) as a function of distance from the
wall for the sinusoidal waveform (4.6). In this case the power curve is relatively
flat in the neighbourhood of the minimum, with the power varying by less than 5
percent as h,, /a ranges from .05 to 0.3.

t This follows from Taylor’s [7] equation (14) for power dissipation by a wavy sheet with small
amplitude waves.
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30

15

‘ 05 10
he
a
Fig. 4 The power dissipated by the organism P as a function of distance from the wall 4, for a

sinusoidal waveform. Here a is the amplitude of the wave, A the wavelength, u the viscosity of the
slime, R the cross-sectional radius of the organism and U, is the speed of the organism.

Assuming that A, /a lies in this range, we find from Fig. 4 that the power per
unit length required for this form of motion is approximately given by

18uv/(R/a) UZ. (5.7)

This quantity is independent of the length of the organism; thus if the power
output increases in proportion to the length of the organism-and this appears to
be a reasonable assumption [4]-the flexibacter speed will be independent of
length. This is in accordance with the recent observations of Humphries et al.
3]

Using the estimate of .3 gm/cm.sec for the slime viscosity given in |2}, we find
from (5.7) that the power required for an organism of length Spum to move with
the maximum observed speed of 1.5 um/sec is 2 X 107'° ergs/sec, where we
have used the values of R and a given in the introduction. From measurements
of the rate at which the flexibacters consume oxygen it is found that the power
available to a flexibacter is of the order of [4] 5 X 1077 ergs/sec. Clearly the
above estimate of power requirement is well within the organism’s capability.
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The curve in Fig. 4 may also be used to determine the speed of the organism
U, for a given power output as a function of separation from the wall. From this
curve it can be seen that the organism is virtually incapable of propulsion at
very small and very large distances from the wall and, in the optimum range,
05 < h,/a < .3, the velocity attains a maximum value of approximately
{P/(18uAv/(R/a))}"/2. This maximum decreases as the viscosity of the liquid
between the flexibacter and the wall is increased. Thus the sticky slime inhibits
motility; in return for this loss of motility the slime provides the flexibacter with
an adhesive which prevents the organism from being swept off the surface,
where it obtains its food, by the currents in the surrounding liquid [2].

The results which have been derived in this paper should be regarded as rough
estimates only, for the analysis is based on a number of assumptions which are
either not strictly valid-such as the assumption that the slope of the flexibacter
surface relative to the wall is small; or assumptions which were made in the
absence of any experimental observation—such as the assumption that the slime
is a Newtonian liquid. It seems unlikely, however, that a more exact analysis
would significantly alter those results which are in accordance with the few
experimental observations, namely, that the power required for this form of
propulsion is well within the cell’s capability, that the cell is only motile in the
neighbourhood of the wall, and that the cell speed is independent of the length
of the cell. Thus, from a hydrodynamic point of view, this form of propulsion
appears to be feasible.
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