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MINIMAX INEQUALITIES IN G-CONVEX SPACES

MIRCEA BaLAlJ

In this paper we establish two minimax theorems of Sion-type in G-convex spaces.
As applications we obtain generalisations of some theorems concerning compatibility
of some systems of inequalities.

1. INTRODUCTION AND PRELIMINARIES

Motivated by Nash equilibrium and the theory of non-cooperative games, Fan [4]
generalised Sion’s minimax theorem obtaining the following two-function minimax in-
equality:

THEOREM 1. Let X and Y be compact convex subsets of topological vector
spaces and f,g : X x Y — R. Suppose that f is lower semicontinuous on Y and
quasiconcave on X, g is upper semicontinuous on X and quasiconvex onY, and f < g
on X xY. Then minsup f(z,y) < max inf g(z,y).

n yela’r‘,e,‘if( y) < ma yeyg( 'Y)

Granas and Liu [6, 7] obtained generalisations and versions of Theorem 1 involving
three real functions f,g,h. On the other hand Park [14] extended Ky Fan’s result to
G-convex spaces. In this paper we obtain a unified generalisation of all these results. Also
we give a version of our main result for the case when X is a convex subset of a topological
vector space. As applications we obtain generalisations of some theorems of Granas and
Liu {6, 7] and Liu [11] concerning compatibility of some systems of inequalities.

Let us recall some notions necessary in our paper. .

A generalised convezr space or a G-convez space (X, D;T") consists of a topological
space X and a nonempty set D such that for each A € {D) with the cardinality |A| = n+1,
there exist a subset I'(A) of X and a continuous function &, : A, — I['(A) such that
J € (A) implies ®4(A ;) C T'(J).

Here (D) denotes the set of all nonempty finite subsets of D, A, any n-simplex
with vertices {e;}, and A; the face of A, corresponding to J € (A); that is, if
A= {ug,uy,...,ua} and J = {ui5, vy, ..., u;, } C A, then A; = co{e;y, €, ..., €}

In case D C X then (X, D;T) will be denoted by (X > D;T). For (X D D;TI), a
subset C of X is said to be G-convez if I'(A) C C whenever A € (C N D).
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The main example of G-convex space corresponds to the case when X = D is a
convex subset of a Hausdorff topological vector space and for each A € (X}, ['(A) is the
convex hull of A. For other major examples of G-convex spaces see [15, 16].

Let (X D D;T) be a G-convex space. A function f: X — R = RU {#o00} is said

to be G-quasiconcave (respectively, G-quasiconvez) if for any finite set {uy,...,u,} C D
and for each z € T({,u1,...,ua}) we have f(z) > min f(u;) (respectively, f(z)
<ign

< 112%‘ f(u;)). We note that f is G-quasiconcave (respectively, G-quasiconvex) if and
only if, for each A € R the set {z € X : f(z) > A} (respectively, {z € X : f(z) < A})
is G-convex. A function f : X x Y — R (Y nonempty set) is said to be G-quasiconcave
(respectively, G-quasiconver) on X if for each y € Y the function z — f(z,y) is
G-quasiconcave (respectively, G-quasiconvex). Inspirated by [1] and [9] we shall in-
troduce two more general concepts.

Let (X, D;T) be a G-convex space, Y be a nonempty set and f : DxY - R, g:
X xY — R. We say that g is G-f-quasiconcave on X if for any finite set {ur,...,us} C D
and for each y € Y we have

g(z,y) = lgxiisrlnf(ui,y) for all z € T ({uy,...,ua}).
Note that the notion introduced above coincides with the corresponding notion in [9,
Definition 2] only when D = X.

When X is a convex subset of a topological vector space the concept of
G- f-quasiconcavity reduces to that of f-quasiconcavity introduced by Chang and Yen
in [1). More precisely, in this case, if f,g : X x Y — R we say that g is f-quasiconcave
on X if for any {z1,...,z,} € (X) and each y € Y we have

g(z,y) 2 1rsniisnnf(x,',y) for all z € co{z,,...,z.}.
Similarly, if X is a nonempty set, (Y, D;T") a G-convex space and

g: X xY R,
h:XxD-R

two functions, we say that g is G-h-quasiconvez on Y if for any {v;,...,v,} € (D) and
each £ € X we have

g(z,y) < max h(z,v;) for all y € T'({vy, ..., vn}).

<t
REMARK 1. It is easy to see that if D C Y, g is G-h-quasiconvex on Y whenever there
exists a function k : X x Y — R such that:
(i) g<konXxY;
(i) k< honX xD;
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{(iii) k is G-quasiconvex on Y.

Let X be a nonempty set, (Y, D;T') be a G-convex space and G : ¥ — X, H :
D —o X be two mappings (that is, set-valued functions). We say that H is a generalised
G-KKM mapping with respect to G if for each A € (D), G(I'(A)) Cc H(A). f X is a
topological space, G : Y —o X is said to have the G-KKM property if for any mapping
H : D —o X generalised G-KKM with respect to G, the family {H(v) : v € D} has the
finite intersection property (where H(v) denotes the closure of H(v)).

Let X be a topological space and Y be a nonempty set. A function f: X xY — Ris
said to be A-transfer upper semicontinuous (respectively A-transfer lower semicontinuous)
on X for some A € R (2] if for all z € X, y € Y with f(z,y) < A (respectively f(z,y)
> )A) there exist a neighbourhood V(z) of z and a point y' € Y such that f(z,y') < A
(respectively f(z,y’) > A) for all z € V(z). If f is A-transfer upper (respectively lower)
semicontinuous on X for any A € R, we say that f is transfer upper (respectively lower)
semicontinous on X.

It is clear that every function upper semicontinuous (respectively, lower semicontin-
uous) on X is A-transfer upper semicontinuous (respectively, A-transfer lower semicon-
tinuous) on X for any real A, but the converse is not true (see [2]).

2. MAIN RESULTS
First we state three results from the literature which will be used in this section.
The following continuous selection theorem is well-known (see [10, 13, 17]).

LEMMA 2. Let (X,D;T') be a G-convex space and Y be a compact topological
space. Let F:Y — D, G : Y — X be two mappings satisfying the following conditions:
(a) foreachy €Y, A€ (F(y)) implies T(A) C G(y);
(b) Y =u{int F~'(u): v € D}.
Then G has a continuous selection; that is, there exists a continuous functionp:Y — X
such that p(y) € G(y) foreachy €Y.
The next result is a particular case of Corollary in [12].

LEMMA 3. Let X be a topological space and (Y, D;T) be a G-convex space,
Then any continuous function p: Y — X has the G-KKM property.
Combining assertions (ii) and (iii) in Lemma 3 and assertion (ii) in Lemma 4 in [8]
one obtains

LEMMA 4. Let X be a topological space and D a nonempty set. If h: X x D

— R is A-transfer upper semicontinuous, then () H(v) = (| H(v), where
veD veD

H(v) = {z € X : h(z,v) 2 A}.

The main result of the paper is as shown in the following theorem.
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THEOREM 5. Let (X,D;T)) and (Y,D;T';) be two compact G-convex spaces
andlet f: Dy xY R, g: XxY =R, h: X xDy > R be three functions such that:
(i) ¢ is G-f-quasiconcave on X;
(ii) g is G-h-quasiconvex onY;
(iii) f is transfer lower semicontinuous on Y';
(iv) h is transfer upper semicontinuous on X;

Then inf sup f(u,y) < sup inf h(z,v).

y€Y ueD, z€X vED,
Proo¥r: We may suppose that inf sup f(u,y) > —oo. It suffices to prove that for
yeY ueD,
any real A < inf sup f(u,y) we have A < sup inf h(z,v). Fix such a ) and define the
yEY uehy z€X vED?

mappings F:Y — D, G:Y — X, H: D; — X by

Fly)={ue D : flu,y) 22}, Gly)={z€ X :g(z,y) 2 A} and
H(v) = {z € X : h(z,v) 2 A\}.

First we show that G and F satisfy the conditions of Lemma 2. Let y € Y,
{ur,...,un} C F(y) and z € T1({u,...,us}). Since g is f-quasiconcave on X,
g(z,y) 2 1rgl(n f(ui,y) 2 A, hence z € G(y). Thus Fl({u,, .. .,un}) C G(y).

For each y € Y there exists u € D, such that f(u,y) > A (as consequence of

A < inf sup f(u,y)). By (iii) there exist ' € D; and a neighbourhood V (y) of y such
yeY ueDy

that
u' € ﬂ {ue D : flu,2) >} C m F(z)

zeV(y) z€V(y)
hence y € int F~'(«'). Thus condition (b) in Lemma 2 is satisfied. By Lemma 2, there
exists a continuous function p : Y — X such that p(y) € G(y) for every y € Y.
Next we prove that H is a generalised G-KKM mapping with respect to G. Suppose
that there exist a nonempty finite set {v1,...,v,} C D, and a point z € X such that

ze G(Fg({vl, . .,v,,}))\LZJH(v,-).

Since z € G(Fg({vl, .. .,vn})), there exists y € T2({v1,...,va}) such that g(z,y) > A
By z ¢ LnJ H(v;) we get h(z,v;) < A for each ¢ € {1,...,n}. Taking into account (ii) we

i=1
obtain the following contradiction

A < g(z,y) € max h(z,v) < A

1<ign

Thus H is a generalised G-KKM mappings with respect to G, and consequently it
is generalised G-KKM mapping with respect to p, too. By Lemma 3, the family of sets
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{H(v) : v € D} has the finite intersection property. Since for each v € Dy, H(v) is a
closed subset of compact space Y, by Lemma 4 we infer that ("} H(v) = [} H(v) # 0,

that is, sup inf h(z,v) = A vEDZ vED,
z€X veED,

REMARK 2. Following the proof of Theorem 5 it seems that if inf sup f{u,y) > —oo0,
yeY ueDy
instead of conditions (iii) and (iv) it would be sufficient to put the following conditions:

(iii') f is A-transfer lower semicontinuous on Y for any A < inf sup f(u,y);
y€Y ueD,

(iv') his A-transfer upper semicontinuous on X for any A < inf sup f(u,y).
yeY ueD,

But this clearly less demanding conditions make really no difference. In fact, assume

a = inf sup f(u,y) > —o0
yeY ueDy

and define the functions

f(u,y) = min(f (v, y), a),
¢'(z,y) = min(g(z,y), a),

k(z,v) = min(h(z,v), a).

We observe that:

(a) if conditions (i), (ii) in Theorem 5 hold for f, g, h, then they hold also for
flg K,

(b) if f is A-transfer lower semicontinuous on Y (respectively, h is A-transfer
upper semicontinuous on X) whenever A < a, then f' is transfer lower
semicontinuous on Y (respectively, A’ is transfer upper semicontinuous on

X)
(c) inf sup f'(u,y) < sup inf A'(z,v)implies inf sup f(u,y) € sup inf A(z,v).
y€Y ueD, 2€X v€ED2 y€Y uehDy z€X vED,

A mapping F : Y — X (X nonempty set, Y topological space) is said to have the
local intersection property (see [18]) if for each y € Y with F(y) # 0, there exists an

open neighbourhood V(y) of y such that () F(z) # 0.
z€V(y)
The following continuous selection theorem is [18, Theorem 1].

LEMMA 6. Let X be a nonempty subset of a topological vector space and Y bea
paracompact topological space. Suppose that F,G : Y —o X are two mappings satisfying
the following conditions:

(a) for eachy €Y, F(y) is nonempty and co F(y) C G(y);
(b) F has local intersection property.

Then G has a continuous selection.
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It can be easily prove that if D = X and F is a mapping with nonempty values,
then conditions (b) in Lemmas 2 and 6 are equivalent (see [8, Proposition 1]).

The following version of Theorem 5 shows that in the case when X is a convex subset
of a topological vector space the conclusion holds if the G-convex space (Y, D;T') is only
paracompact. The proof is similar to that of Theorem 5 using as argument Lemma 6
instead of Lemma 2.

THEOREM 7. Let X be a compact convex subset of a topological vector space
and (Y, D;T) be a paracompact G-convex space. Let f,g: XxY - Randh: XxD - R
be three functions such that:

(i) g is f-quasiconcave on X;

(i) g is G-h-quasiconvex onY;
(iii) f is transfer lower semicontinuous on Y’;
(iv) h is transfer upper semicontinuous on X.

Then inf sup f(z,y) < sup inf h(z,v).
yeY zeX rzeX veD

Let Y be an arbitrary set and D a nonempty subset of Y. Given two families of
functions G = {g: Y —» R} and X = {h: D — R} we write G < H on D if for
every g € G there is h € H such that g(v) < h(v) for all v € D. Following Ky Fan
[3] a family of functions # = {h : D — R} is said to be concave provided given any

hiy... hy, € H and z1,...,2, € R such that z; > 0 and > z; = 1 thereisan h € H
n i=1

satisfying h(v) 2 Y z;hi(v) for all v € D.
i=1

In what follows we denote by A,_; the standard (n — 1)-simplex; that is
Any = {x = (Z1,...,Z4) ER®: z; 2 0, Zzi = 1}.
i=1

The next result generalises under many aspects in {7, Theorem 9.2].
THEOREM 8. Let (Y D D;T) be a compact G-convex space and let

F={f:Y > (—o0, +o0]},
g = {g:Y—) {—o0, +OO]},
H ={h:D — (—o0,+o0]}

be three families of functions such that:
(i) F<GonY and G < HonD;
(i) for any finite subfamily {gi,...,9,} of G and for each (z1,...,z,) € Ay

the function y — Y z:gi(y) is G-quasiconvex on Y';

=

(iii) each f € F is lower semicontinuous on Y’;
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(iv) the family H is concave.
Then inf sup f(z) < sup inf h(v).

yeY feF HveD
Proor: Let 8 = sup inf h(v). We may suppose that 3 is finite. For each f € F let
heH veD

S(fi={veY: fly) <B}.

We have to show that [ S(f) # 0. Since Y is compact and the sets S(f) are closed
feF

it suffices to prove that the family {S( fl:feF } has the finite intersection property.
Let fi,..., fu € F; choose ¢;,...,9, € G and hy, ..., h, € H such that

fi<gionY and g; < hj on D.

Define the functions f,g: Ap_y X Y — (—00, 400}, h: Ap_y X D = (~00, +00] by
I y) thfx(y I y Zzlgl(y and
h(z,v) = Zz, s(v) forz = (z1,...,2Zn) € Ap, y€ Y, veE D.

One readily verifies that f.g.h satisfy assertions (i), (iii), (iv) in Theorem 7, for
X = An_,. Assertion (ii) of the same theorem is also proved taking into account condition
(ii) in present theorem and Remark 1.

Since A,_; and Y are compact and f is continuous on A,,_; and lower semicontinuous
on Y the conclusion of Theorem 7 becomes

min max f(z,y) < sup inf E z;h;
yEY TEAn -1 €EAn— IUED

On the other hand by (iv) we have

sup inf Zz.h (v) < sup inf h(v) = 8.

T€EAp-1 v€D heMveD

Consequently, there exists yo € Y such that for each z € A,

Zzzf: Yo) = f(z, %) <
n
thus we have necessarily f;(yo) < B for each 7 € {1,...,n}, that is, yo € () S(f)- 0
i=1
Theorem 8 can be stated for convenience in the form of an alternative, obtaining in

this way generalisations of [5, Theorem 1] and of [7, Theorem 9.1].
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THEOREM 9. Assume that Y,F,G,H satisfy conditions of Theorem 8. Then
given any A € R one of the following properties holds:

(a) thereis a h € M such that h(y) > A forally € Y;
(b) there is ayp € Y such that f(y) < A forall f € F.

The following theorem generalises under many aspects a result of Liu [11, Theorem
3] which in turn improves a well-known theorem of Ky Fan concerning compatibility of
some systems of inequalities.

THEOREM 10. Let (Y D D;T') be a compact G-convex space and let

{fi: Y = (=00, +o0}, ;s {6i:Y = (=00, +00l},,
be two families of functions such that:
(i) fi< giforeachicl;
(ii) for each i € I f; is lower semicontinuous on Y;
(iii) for each n > 1, {#1,...,ia} C I and (zi,...,7,) € A, the function
y— Zn: z;9:(y) is G-quasiconvex on Y';
(iv) for e;::}l n21, {i,...,in} C I and (zy,...,2,) € Ap_y thereisav € D
such that zn: z;9;(v) € 0.
Then there exists yg € );—;uch that fi(y) < 0.

PRrROOF: Apply Theorem 8 when

F = {fi}ieh
G = {gi}tier

n
H= {ingi n2l,g €0, (z1,...,2,) € A,,_l}.
=1 .

Our last result generalises {7, Theorem 9.3].

THEOREM 11. Let (Y D D;T) be a compact G-convex space, X an arbitrary
set and let f,g: X xY — (—o00,4+00],h: X x D = (—00, +00] be three functions such

that
(i) f(z,y) € g(z,y) for each (z,y) € X xY and g(z,y) < h{z,y) for all
(z,y) € X x D;
(ii) for any z,...,z, € X and for each (a,...,a,) € A,_, the function

n
vy — Y o;9(zi,y) is G-quasiconvex on Y;
i=1

(ii) f is lower semicontinuouson Y;
(iv) forany zi,...,z, € X and for each (a1,...,0,) € Ay thereisanz € X
n
such that h(z,y) 2 > ash(z;,y) forallyeY.
i=1
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Then

1]
(2]

(3]
4]

5]
6]
7
g
(9

10}

11

[12)

[13]

[14)

[15]

[16]

inf sup f(z,y) < sup inf h(z,y).
YEY zex f( ) = zeX VEY ( )
Proor: Apply Theorem 8 when

F= {f(z’.)}:ex’
G= {g(z")}zex’
H= {h(z,-)}zex. 0
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