BI-POSITIVE SEQUENCES THE BILATERAL MOMENT PROBLEM

BY
JAIME VINUESA \& RAFAEL GUADALUPE

Abstract

We pose a "moment problem" in a more general setting than the classical one. Then we find a necessary and sufficient condition for a sequence $\left\{s_{k}\right\}_{-x}^{+\infty}$ to have a solution of the "problem"

$$
s_{k}=\int_{-x}^{+x} x^{k} \mathrm{~d} \sigma(x) \quad(k=0, \pm 1, \pm 2, \ldots)
$$

where σ is a "distribution function".

1. Preliminaries. The Classical Moment Problem is well known: Given a sequence $\left\{s_{k}\right\}_{0}$, of real numbers, the necessary and sufficient condition for the existence of a distribution function σ in R (i.e. a function which is non-decreasing, bounded and with an infinite set of points of effective growth) such that

$$
s_{k}=\int_{-\infty}^{+\infty} x^{k} \mathrm{~d} \sigma(x) \quad(k=0,1,2, \ldots)
$$

is that the given sequence should be positive in the sense that the determinants

$$
\Delta_{k}=\left|\begin{array}{cccc}
s_{0} & s_{1} & \cdots & \cdots \\
\cdots & s_{k} \\
\cdots & \cdots & \cdots & \cdots \\
s_{k} & s_{k+1} & \cdots & s_{2 k}
\end{array}\right|
$$

should be positive for all k. (see [1], [6])
This problem is very closely related to the theories of Orthogonal Polynomials and Continued Fractions. As a matter of fact, the answer can be obtained as a limit of step functions with jumps at the zeros of the Orthogonal Polynomials corresponding to $\left\{s_{n}\right\}_{0}^{\infty}$.

In this note we pose a generalization of that problem to the case of sequences of the type $\left\{s_{k}\right\}_{-\infty}^{+\infty}$ (of moments with either positive or negative exponents). It may be worth to remark that the truncated sequences $\left\{s_{2 k+n}\right\}_{n=0}^{\infty}$ of a bi-positive sequence such as the one in Definition 2 below, generate, for each integer value of k, a family of Orthogonal Polynomials $\left\{P_{n}^{(k)}(x)\right\}_{n=0}^{\infty}$. The idea of the answer we give to our problem is a peculiar "passing to the limit" of those families as $k \rightarrow-\infty$ (see for instance that the polynomial $P(x)$ in the proof of Theorem 3 is the nth orthogonal polynomial of one of them).

[^0]A partial result was found by Jones and Thron in connection with their development of the theory of T-fractions (see [4], Chapter 9 and [5]). Their result answers what they call the "strong Stieltjes moment problem", which corresponds, in our setting, to the classical Stieltjes problem (i.e., for distribution functions supported in $(0,+\infty))$. The condition that they find for their case is obviously equivalent to ours, taking into account the sign change for the odd terms in the sequence $\left\{s_{k}\right\}_{-\infty}^{+\infty}$, due to the fact that they pose the problem with powers of $-x$ instead of powers of x (see our Corollary 4 and their Theorem 6.3 in page 527 of [5], where a characterization of the uniqueness of the solution can also be found; we will not study uniqueness here).
2. Definition (Bi-positive sequences). Given a sequence of real numbers of the type $\left\{s_{k}\right\}_{-\infty}^{+\infty}$, we say that it is bi-positive if each of the determinants

$$
\begin{aligned}
& \Delta_{n}^{(k)}=\left|\begin{array}{cccc}
s_{2 k} & s_{2 k+1} & \cdots & s_{2 k+n} \\
s_{2 k+1} & s_{2 k+2} & \cdots & s_{2 k+n+1} \\
\cdots \cdots \cdots & \cdots \cdots & \cdots \cdots \cdots \cdots \\
s_{2 k+n} & s_{2 k+n+1} & \cdots & s_{2 k+2 n}
\end{array}\right| \\
& (k=0, \pm 1, \pm 2, \ldots n=0,1,2, \ldots)
\end{aligned}
$$

is positive.
3. Theorem (Bilateral Moment Problem). "Let $\left\{s_{k}\right\}_{-\infty}^{+\infty}$ be a sequence of real numbers. The necessary and sufficient condition for the existence of a distribution function $\sigma: R \rightarrow R$ such that

$$
s_{k}=\int_{-\infty}^{+\infty} x^{k} \mathrm{~d} \sigma(x) \quad(k=0, \pm 1, \pm 2, \ldots)
$$

is that the given sequence should be bi-positive".
Proof.
i) The condition is necessary.

Indeed, let us choose a fixed $k \in Z$ and prove by induction on n that $\Delta_{n}^{(k)}>0$. It is of course evident that

$$
\Delta_{0}^{(k)}=s_{2 k}=\int_{-\infty}^{+\infty} x^{2 k} \mathrm{~d} \sigma(x)>0 .
$$

Let us suppose then that $\Delta_{n-1}^{(k)}>0$ and write

$$
P(x)=\left|\begin{array}{cccc}
s_{2 k} & s_{2 k+1} & \cdots & s_{2 k+n} \\
\cdots \cdots & \cdots & \cdots & \cdots \\
s_{2 k+n-1} & s_{2 k+n} & \cdots & s_{2 k+2 n-1} \\
x^{k} & x^{k+1} & \cdots & x^{k+n}
\end{array}\right|=\Delta_{n-1}^{(k)} x^{k+n}+\ldots .
$$

It is easy to see that

$$
\int_{-\infty}^{+\infty} P(x) x^{k+m} \mathrm{~d} \sigma(x)=0 \quad(m=0,1, \ldots, n-1)
$$

and that

$$
\int_{-\infty}^{+\infty} P(x) x^{k+n} \mathrm{~d} \sigma(x)=\Delta_{n}^{(k)}
$$

Therefore

$$
\Delta_{n}^{(k)}=\frac{1}{\Delta_{n-1}^{(k)}} \int_{-\infty}^{+\infty}|P(x)|^{2} \mathrm{~d} \sigma(x)>0
$$

ii) The condition is sufficient.

If $\left\{s_{k}\right\}_{-\infty}^{+\infty}$ is bi-positive, then, for each $h \geq 0$, the sequence

$$
\left\{s_{n}^{(-h)}\right\}_{n=0}^{\infty}
$$

where

$$
s_{n}^{(-h)}=s_{n-2 h} \quad(n=0,1,2, \ldots)
$$

is "positive" in the above-mentioned sense. Therefore, there exists a solution of the classical moment problem, i.e., a distribution function σ_{h} such that:

$$
s_{n}^{(-h)}=s_{n-2 h}=\int_{-\infty}^{+\infty} x^{n} \mathrm{~d}_{h}(x) \quad(n=0,1,2, \ldots)
$$

Let us write

$$
\Phi_{h}(x)=\int_{-\infty}^{x} t^{2 h} \mathrm{~d} \sigma_{h}(t)(x \in R)
$$

which is clearly a distribution function satisfying moreover

$$
\mathrm{d} \Phi_{h}(x)=x^{2 h} \mathrm{~d} \sigma_{h}(x)
$$

and thus,

$$
s_{m}=s_{2 h+m}^{(-h)}=\int_{-\infty}^{+\infty} x^{2 h+m} \mathrm{~d} \sigma_{h}(x)=\int_{-\infty}^{+\infty} x^{m} \mathrm{~d} \Phi_{h}(x)
$$

(valid for $m \geq-2 h$).

The sequence of functions $\left\{\Phi_{h}\right\}_{h=0}^{\infty}$ satisfies the conditions of Helly's Selection Principle (see [2] or [3]), since

$$
\Phi_{h}(x)=\int_{-\infty}^{x} \mathrm{~d} \Phi_{h}(t) \leq \int_{-\infty}^{+\infty} \mathrm{d} \Phi_{h}(t)=s_{0} \quad \forall x \in R, \forall h \geq 0 ;
$$

therefore it has a subsequence $\left\{\psi_{i}(x)\right\}$ converging in R to a distribution function $\sigma(x)$. We shall prove that $\sigma(x)=\lim _{i \rightarrow \infty} \psi_{i}(x)$ satisfies the conditions of the theorem, i.e., that

$$
\int_{-\infty}^{+\infty} x^{n} \mathrm{~d} \sigma(x)=s_{n} \quad(n=0, \pm 1, \pm 2, \ldots)
$$

We will consider the following cases:
a) $n>0$:

Given $\epsilon>0$, let us take $A=\left(2 s_{2 n} / \epsilon\right)^{1 / n}$.
If $A_{1}, A_{2}>A$ we have because of Helly's Second Theorem (see [2], [3])

$$
\lim _{i \rightarrow \infty} \int_{-A_{1}}^{A_{2}} x^{n} \mathrm{~d} \psi_{i}(x)=\int_{-A_{1}}^{A_{2}} x^{n} \mathrm{~d} \sigma(x)
$$

thus we can take i such that

$$
\left|\int_{-A_{1}}^{A_{2}} x^{n} \mathrm{~d} \psi_{i}(x)-\int_{-A_{1}}^{A_{2}} x^{n} \mathrm{~d} \sigma(x)\right|<\epsilon / 2
$$

and it results:

$$
\begin{aligned}
\mid s_{n} & -\int_{-A_{1}}^{A_{2}} x^{n} \mathrm{~d} \sigma(x)\left|=\left|\int_{-\infty}^{+\infty} x^{n} \mathrm{~d} \psi_{i}(x)-\int_{-A_{1}}^{A_{2}} x^{n} \mathrm{~d} \sigma(x)\right|\right. \\
& \leq\left|\int_{-A_{1}}^{A_{2}} x^{n} \mathrm{~d} \psi_{i}(x)-\int_{-A_{1}}^{A_{2}} x^{n} \mathrm{~d} \sigma(x)\right|+\left|\left(\int_{A_{2}}^{+\infty}+\int_{-\infty}^{-A_{1}}\right) x^{n} \mathrm{~d} \psi_{i}(x)\right| \\
& <\epsilon / 2+\frac{1}{A^{n}}\left(\int_{A_{2}}^{+\infty}+\int_{-\infty}^{-A_{1}}\right) x^{2 n} \mathrm{~d} \psi_{i}(x) \leq \epsilon / 2+\frac{1}{A^{n}} \int_{-\infty}^{+\infty} x^{2 n} \mathrm{~d} \psi_{i}(x) \\
& =\epsilon / 2+\frac{s_{2 n}}{A^{n}}=\epsilon / 2+\epsilon / 2=\epsilon
\end{aligned}
$$

Therefore the integral

$$
\int_{-\infty}^{+\infty} x^{n} \mathrm{~d} \sigma(x)
$$

converges to s_{n}.
b) $n<0$:

Given $\epsilon>0$, let

$$
\begin{aligned}
a & =\left(3 s_{2 n} / \epsilon\right)^{1 / n}=\left(\epsilon / 3 s_{2 n}\right)^{-1 / n} \\
A & =\left(\epsilon / 3 s_{0}\right)^{1 / n}=\left(3 s_{0} / \epsilon\right)^{-1 / n}
\end{aligned}
$$

(note that now $-1 / n>0$).
If $A_{1}, A_{2}>A ; 0<a_{1}, a_{2}<a$, because of Helly's Second Theorem, being x^{n} continuous in $\left[-A_{1},-a_{1}\right]$ and $\left[a_{2}, A_{2}\right]$, we have

$$
\lim _{i \rightarrow \infty} \int_{-A_{1}}^{-a_{1}} x^{n} \mathrm{~d} \psi_{i}(x)=\int_{-A_{1}}^{-a_{1}} x^{n} \mathrm{~d} \sigma(x)
$$

and

$$
\lim _{i \rightarrow \infty} \int_{a_{2}}^{A_{2}} x^{n} \mathrm{~d} \psi_{i}(x)=\int_{a_{2}}^{A_{2}} x^{n} \mathrm{~d} \sigma(x)
$$

Thus, we can take i such that, on the one hand $i \geq-n$ and, on the other,

$$
\left|\int_{-A_{1}}^{-a_{1}} x^{n} \mathrm{~d} \psi_{i}(x)+\int_{a_{2}}^{A_{2}} x^{n} \mathrm{~d} \psi_{i}(x)-\int_{-A_{1}}^{-a_{1}} x^{n} \mathrm{~d} \sigma(x)-\int_{a_{2}}^{A_{2}} x^{n} \mathrm{~d} \sigma(x)\right|<\epsilon / 3 .
$$

We have:

$$
\begin{aligned}
& \left|s_{n}-\int_{-A_{1}}^{-a_{1}} x^{n} \mathrm{~d} \sigma(x)-\int_{a_{2}}^{A_{2}} x^{n} \mathrm{~d} \sigma(x)\right| \\
& \quad \leq \epsilon / 3+\left|\left(\int_{-\infty}^{-A_{1}}+\int_{A_{2}}^{+\infty}\right) x^{n} \mathrm{~d} \psi_{i}(x)+\int_{-a_{1}}^{a_{2}} x^{n} \mathrm{~d} \psi_{i}(x)\right| \\
& \quad \leq \epsilon / 3+A^{n} \int_{-\infty}^{+\infty} \mathrm{d} \psi_{i}(x)+a^{-n} \int_{-a_{1}}^{a_{2}} x^{2 n} \mathrm{~d} \psi_{i}(x) \\
& \quad \leq \epsilon / 3+A^{n} s_{0}+s_{2 n} a^{-n}=\epsilon / 3+\epsilon / 3+\epsilon / 3=\epsilon
\end{aligned}
$$

which proves that

$$
\int_{-\infty}^{+\infty} x^{n} \operatorname{d\sigma }(x)=s_{n}
$$

c) $n=0$. Evident.
4. Corollary. (Stieltjes's Condition). Given a sequence $\left\{s_{k}\right\}_{-\infty}^{+\infty}$ of real numbers, the necessary and sufficient condition for the existence of a distribution function $\sigma: R^{+}=[0,+\infty) \rightarrow R$ satisfying

$$
s_{k}=\int_{0}^{+\infty} x^{k} \mathrm{~d} \sigma(x) \quad(k=0, \pm 1, \pm 2, \ldots)
$$

is that both $\left\{s_{k}\right\}_{-\infty}^{+\infty}$ and $\left\{s_{k+1}\right\}_{-\infty}^{+\infty}$ should be bi-positive. (Note that the condition is equivalent to asking that all the minors of the matrix $\left[s_{i+j}\right]_{i, j=-\infty}^{+\infty}$ should be positive).

Proof. The condition is obviously necessary, since both $\sigma(x)$ and $\zeta(x)=\int_{0}^{x} t \mathrm{~d} \sigma(t)$ satisfy the conditions of the theorem and thus $\left\{s_{k}\right\}_{-\infty}^{+\infty}$ and $\left\{s_{k+1}\right\}_{-\infty}^{+\infty}$ are bi-positive.
In order to prove sufficiency it is enough to bear in mind that all the distributions appearing in the proof of the theorem have, in this case, their support in $[0,+\infty)$. (see [6]).
5. Corollary. Let $\left\{s_{k}\right\}_{-\infty}^{+\infty} \subset R$ be arbitrary. Then there exists a function $\sigma: R \rightarrow R$ of bounded variation such that

$$
s_{k}=\int_{-\infty}^{+\infty} x^{k} \mathrm{~d} \sigma(x),(k=0, \pm 1, \pm 2, \ldots)
$$

Proof. We shall prove that there exist two bi-positive sequences $\left\{s_{k}^{\prime}\right\}_{-\infty}^{+\infty},\left\{s_{k}^{\prime \prime}\right\}_{-\infty}^{+\infty}$ such that

$$
s_{k}=s_{k}^{\prime}-s_{k}^{\prime \prime} \quad(k=0, \pm 1, \pm 2, \ldots) .
$$

It is enough then to write $\sigma=\sigma^{\prime}-\sigma^{\prime \prime}$, being σ^{\prime} and $\sigma^{\prime \prime}$ the corresponding distribution functions.

We begin by taking $s_{0}^{\prime}, s_{0}^{\prime \prime}$ positive such that $s_{0}^{\prime}-s_{0}^{\prime \prime}=s_{0}$. If we assume that $\left\{s_{k}^{\prime \prime}\right\}_{-2 n}^{+2 n}$ $\left\{s_{k}^{\prime}\right\}_{k=-2 n}^{2 n}$ are already built in such a way that $s_{k}=s_{k}^{\prime}-s_{k}^{\prime \prime}$ and both truncated sequences be bi-positive, we take:
i) $s_{2 n+1}^{\prime}, s_{2 n+1}^{\prime \prime}$ arbitrary, except that $s_{2 n+1}^{\prime}-s_{2 n+1}^{\prime \prime}=s_{2 n+1}$.
ii) Then $s_{2 n+2}^{\prime}, s_{2 n+2}^{\prime \prime}$ such that

$$
\Delta_{2 n+1}^{\prime(-n)}=\left|\begin{array}{ccc}
s_{-2 n}^{\prime} & \cdots & s_{1}^{\prime} \\
\cdots & \cdots & \cdots
\end{array}\right|>0 ; \Delta_{2 n+1}^{\prime \prime(-n)}=\left|\begin{array}{ccc}
s_{-2 n}^{\prime \prime} & \cdots & s_{1}^{\prime \prime} \\
\cdots \cdots & \cdots & \cdots \\
s_{1}^{\prime} & \cdots & s_{2 n+2}^{\prime}
\end{array}\right|>0
$$

and $s_{2 n+2}^{\prime}-s_{2 n+2}^{\prime \prime}=s_{2 n+2}$.
iii) $s_{-2 n-1}^{\prime}, s_{-2 n-1}^{\prime \prime}$ again arbitrary except that $s_{-2 n-1}^{\prime}-s_{-2 n-1}^{\prime \prime}=s_{-2 n-1}$
iv) Finally $s_{-2 n-2}^{\prime}, s_{-2 n-2}^{\prime \prime}$ verifying $\Delta_{2 n+2}^{\prime(-n-1)}>0, \Delta_{2 n+2}^{\prime \prime(-n-1)}>0 ; s_{-2 n-2}^{\prime}-s_{-2 n-2}^{\prime \prime}$ $=s_{-2 n-2}$.
The sequences $\left\{s_{k}^{\prime}\right\}_{-\infty}^{+\infty}\left\{s_{k}^{\prime \prime}\right\}_{-\infty}^{+\infty}$ built in this way are bi-positive.
6. Corollary. The function σ of the last corollary can be built with support in $R^{+}=[0,+\infty)$.

Proof. It is enough to take in the construction just made the moments of odd subindex subject to the condition that the corresponding determinants should be positive:

$$
\begin{aligned}
& \left|\begin{array}{c}
s_{-2 n+1}^{\prime} \cdots \cdot s_{1}^{\prime} \\
\cdots \cdots \cdots \cdots \cdots \cdot \\
s_{1}^{\prime} \cdots \cdots \cdot s_{2 n+1}
\end{array}\right|>0 \quad\left|\begin{array}{l}
s_{-2 n+1}^{\prime \prime} \cdots \cdots \\
\cdots \cdots \cdots \\
s_{1}^{\prime \prime} \cdots \cdots \\
s_{1}^{\prime \prime} \cdots \\
s_{2 n+1}^{\prime \prime}
\end{array}\right|>0 \\
& \left|\begin{array}{c}
s_{-2 n-1}^{\prime} \cdots \cdots s_{0}^{\prime} \\
\cdots s_{0}^{\prime} \cdots \cdots \cdots s_{2 n+1}^{\prime}
\end{array}\right|>0 \quad\left|\begin{array}{l}
s_{-2 n-1}^{\prime \prime} \cdots \cdots \\
\cdots \cdots \cdots \\
s_{0}^{\prime \prime} \cdots \cdots \cdots \\
s_{0}^{\prime \prime} \cdots \\
s_{2 n+1}^{\prime \prime}
\end{array}\right|>0
\end{aligned}
$$

7. Trivial observation. Given a sequence $\left\{w_{k}\right\}_{-\infty}^{+\infty}$ of complex numbers, there exists a function $\Omega:(-\infty,+\infty) \rightarrow C$ (resp. $\Omega:[0,+\infty) \rightarrow C)$ of bounded variation, such that

$$
w_{k}=\int_{-\infty}^{+\infty} x^{k} \mathrm{~d} \Omega(x) \quad(k=0, \pm 1, \pm 2, \ldots) .
$$

References

1. N. I. Akhiezer, The Classical Moment Problem, Univ. Math. Monog., Oliver \& Boyd Ltd. (1965).
2. T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach - Science Publishers (1978).
3. G. Freud, Orthogonal Polynomials, Pergamon Press (1971).
4. W. B. Jones and W. J. Thron, Continued Fractions, Encyclopedia of Mathematics and its applications, vol. 11, Addison-Wesley (1980).
5. W. B. Jones, W. J. Thron and H. Waadeland, A Strong Stieltjes Moment Problem, Trans. Am. Math. Soc. (1980), pp. 503-528.
6. J. A. Shohat and J. D. Tamarkin, The Problem of Moments, Am. Math. Soc. - Revised Edition (1963).

Dpto. de Teoría de Funciones
Facultad de Ciencias
Santander, Spain

[^0]: Received by the editors 13 February 1985, and, in revised form, 10 June 1985.
 AMS Subject Classification (1980): 30 E 05.
 © Canadian Mathematical Society 1985.

