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Joint Mean Oscillation and Local Ideals in
the Toeplitz Algebra II: Local Commutivity
and Essential Commutant
Jingbo Xia

Abstract. A well-known theorem of Sarason [11] asserts that if [T f ,Th] is compact for every h ∈ H∞,
then f ∈ H∞ + C(T). Using local analysis in the full Toeplitz algebra T = T(L∞), we show that the
membership f ∈ H∞ + C(T) can be inferred from the compactness of a much smaller collection of
commutators [T f ,Th]. Using this strengthened result and a theorem of Davidson [2], we construct a
proper C∗-subalgebra T(L) of T which has the same essential commutant as that of T. Thus the image
of T(L) in the Calkin algebra does not satisfy the double commutant relation [12], [1]. We will also
show that no separable subalgebra S of T is capable of conferring the membership f ∈ H∞ + C(T)
through the compactness of the commutators {[T f , S] : S ∈ S}.

1 Introduction

In this sequel to our earlier work [13], we continue to explore the C∗-algebraic im-
plications of various local oscillatory behaviors of functions. As it is a sequel, we
will follow the notation of [13]. Thus T denotes the unit circle and dm the Lebesgue
measure on T normalized so that m(T) = 1. We write Lp for Lp(T, dm) and H p for
the Hardy subspace of Lp, 1 ≤ p ≤ ∞. Let P : L2 → H2 denote the orthogonal
projection. Given f ∈ L∞, the Toeplitz operator T f and the Hankel operator H f are
defined by the formulas T fϕ = P fϕ and H fϕ = (1 − P) fϕ respectively, ϕ ∈ H2.
We have Tḡ f − TḡT f = H∗g H f . Let T denote the full Toeplitz algebra. That is, T is
the C∗-algebra generated by {T f : f ∈ L∞}. Let K be the collection of compact
operators on H2. It is well known that K ⊂ T.

For each τ ∈ T, let Kτ denote the ideal in T generated by K and {Tη : η ∈ C(T),
η(τ ) = 0}. Recall that the usual localization in T is simply the fact that

⋂
τ∈T Kτ = K

[3, p. 198].
Recall from [9] that, for f ∈ BMO and τ ∈ T, the local mean oscillation of f at τ

is

LMO( f )(τ ) = lim
δ↓0

sup

{
1

|I|

∫
I
| f − fI | dm : |λ− τ | ≤ δ for all λ ∈ I

}
.

Here and in what follows, I always denotes an arc in T with |I| = m(I) > 0, and
fI =

∫
I f dm/|I|. Recall from [13] that, given f , g ∈ BMO and τ ∈ T, the joint local
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mean oscillation of f and g at τ is defined to be

LMO( f , g)(τ )

= lim
δ↓0

sup

{
1

|I|

∫
I
| f − fI | dm

1

|I|

∫
I
|g − gI | dm : |λ− τ | ≤ δ for all λ ∈ I

}
.

Both LMO( f ) and LMO( f , g) are useful invariants in the study of T [9], [13].
Given any τ ∈ T, we let L(τ ) denote the collection of bounded functions ξ on T

which are continuous on T \{τ}. For any such τ , we also define H(τ ) = H∞∩L(τ ).
If G is a subset of L∞, T(G) denotes the norm-closed operator algebra generated by
{Tg : g ∈ G}. In the case G is L∞ itself, we will simply write T instead of T(L∞).

The results contained in this paper are motivated by, and can be viewed as a nat-
ural extension of, a number of previous investigations [2], [7], [9], [11], [13]. Recall
that a well-known theorem of Sarason [11] asserts that, if f ∈ L∞ and if [T f ,Th] is
compact for every h ∈ H∞, then f ∈ H∞ + C(T). Throughout the paper, we will
write Q = 1 − P. It is well known that Qη ∈ VMO if η ∈ C(T). Also, because T is
compact, for any f ∈ BMO, we have f ∈ VMO if and only if LMO( f )(τ ) = 0 for
every τ ∈ T. Thus our first result is a local version of Sarason’s theorem:

Theorem 1 Let f ∈ L∞ and let τ ∈ T.

(a) If [T f ,Th] ∈ Kτ for every h ∈ H(τ ), then LMO(Q f )(τ ) = 0.
(b) If LMO(Q f )(τ ) = 0, then [T f ,Tg] ∈ Kτ for every g ∈ H∞.

An immediate consequence of this is a stronger version of Sarason’s theorem: The
membership f ∈ H∞+C(T) can be inferred from the compactness of a much smaller
collection of commutators [T f ,Th].

Corollary 2 Let H denote the subalgbra of H∞ generated by
⋃
τ∈T H(τ ). If f ∈ L∞

is such that [T f ,Th] is compact for every h ∈ H, then f ∈ H∞ + C(T).

A key motivating factor for our consideration of the subalgebras H(τ ) of H∞ is
the following remarkable result of Davidson [2].

Theorem 3 [2] If S is a bounded operator on H2 which is not the sum of a bounded
Toeplitz operator and a compact operator, then there is an h ∈ H∞ such that [S,Th] is
not compact. Furthermore, h may be required to have at most one discontinuity.

In other words, one may require the h in Theorem 3 to belong to some H(τ ) in
the notation of the present paper.

Let H be a Hilbert space and let S be a subset of B(H). Recall that the essential
commutant of S is the subalgebra {T ∈ B(H) : [T, S] is compact for every S ∈ S} of
B(H). Using Theorem 3 and Sarason’s theorem mentioned earlier, Davidson proved
in [2] that the essential commutant of T is T(QC), where QC =

(
H∞ + C(T)

)
∩(

H∞ + C(T)
)

= VMO ∩L∞. Using Theorem 3 and Corollary 2 in place of Sarason’s
theorem, we can produce an algebra smaller than T whose essential commutant also
equals T(QC).

Corollary 4 Let L be the norm-closed subalgebra of L∞ generated by
⋃
τ∈T L(τ ). Then

the essential commutant of T(L) equals T(QC).
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As we will show in Section 3, T(L) is strictly contained in T. It is well known that
T is contained in the essential commutant of T(QC). Thus it follows from Corol-
lary 4 that the second essential commutant of T(L) differs from T(L). This brings
Voiculescu’s double commutant relation [12] into the picture.

Given a separable Hilbert space H, let Q denote the Calkin algebra B(H)/K(H)
and let π : B(H)→ Q denote the quotient map. Voiculescu proved in [12] that if A is
a separable unital C∗-subalgebra of Q, then A coincides with its double commutant
in Q, i.e., A = A ′ ′. The same is also true if A = π(N), where N is any von Neumann
algebra [8], [10]. In [1], Berger and Coburn constructed a simple, non-separable,
unital C∗-subalgebra A of Q for which the double commutant relation fails, i.e.,
A 6= A ′ ′. Their construction used Toeplitz operators on the Segal-Bargmann space.
Corollary 4 leads to another example of a C∗-subalgebra A of Q with the property
A 6= A ′ ′. Whereas the A in the Berger-Coburn example is a simple C∗-algebra, the
A in our example below obviously has a non-trivial ideal.1

Theorem 5 Let π : B(H2)→ Q = B(H2)/K denote the quotient homomorphism and
let L be the same as in Corollary 4. Then A = π

(
T(L)

)
is a unital C∗-subalgebra of Q

for which the double commutant relation fails, i.e., A 6= A ′ ′.

Let us now consider a separable unital C∗-subalgebra S of T. Since, by Voiculescu’s
theorem, the double essential commutant of S must coincide with S + K and since
T is contained in the essential commutant of T(QC), the essential commutant of S

must properly contain T(QC). That is, there is a bounded operator A on H2 such that
A /∈ T(QC) and such that [A, S] is compact for every S ∈ S. This naturally invites the
question, can such an A be found within the Toeplitz algebra T? Better yet, is there
such an A in the form of a Toeplitz operator T f with some f /∈ H∞ + C(T)?

Another look at Sarason’s original theorem and its improved version, Corollary 2,
also leads to the same questions. That is, now that we know there is a closed proper
subalgebra H of H∞ such that the compactness of the commutators {[T f ,Th] : h ∈
H} implies f ∈ H∞+C(T), is there a separable subalgebra of H∞ which has the same
property? More generally, does there exist a separable subalgebra S of T which has the
property that the compactness of the commutators {[T f , S] : S ∈ S} necessitates the
membership f ∈ H∞+C(T)? Our last theorem answers these very natural questions.

Theorem 6 Suppose that S is a subset of T and suppose that S is separable in the
operator-norm topology. Then there is a real-valued f ∈ L∞ such that f /∈ H∞ +C(T)
and such that [T f , S] is compact for every S ∈ S. Moreover, given such an S, there is a
τ = τ (S) ∈ T such that there is an f ∈ L(τ ) which satisfies the above requirements.

The rest of the paper consists of the proofs of these results. More specifically,
the proofs of Theorems 1 and 6 and Corollaries 2 and 4 will be given in Section 2.
Section 3 contains the proof of Theorem 5 along with some remarks.

1Since the initial submission of this paper, the author has learned a great deal more about the relation
A 6= A′′ for C∗-subalgebras A of Q. First of all, in the literature there is an example of a C∗-subalgebra A
of Q with A 6= A′′ dating back to 1972, namely Example 2.4 in [8]. Furthermore, the relation A 6= A′′

appears to be ubiquitous among non-separable C∗-subalgebras of Q in at least the following sense: The
author has managed to show that if B is any von Neumann algebra whose dimension as a linear space is
infinite, then B contains a C∗-subalgebra A such that π(A) 6= π(B) and {π(A)}′′ = π(B) [14].

https://doi.org/10.4153/CMB-2002-034-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2002-034-9


312 Jingbo Xia

2 Local Commutivity

To prove Theorem 1, we need to recall a result from our earlier work [13].

Theorem 7 [13, Theorem 2] Let f , g ∈ BMO and τ ∈ T. Then H∗g H f ∈ Kτ

if and only if LMO(Q f ,Qg)(τ ) = 0. If, in addition, f and g are real-valued, then
H∗g H f ∈ Kτ if and only if LMO( f , g)(τ ) = 0.

Theorem 7 takes care of the operator-theoretical portion of the proof of Theo-
rem 1; what remains is a function-theoretical construction.

Proposition 8 Suppose that f ∈ BMO and that τ is a point in T such that
LMO( f )(τ ) > 0. Then there exists an h ∈ H(τ ) such that LMO( f , h)(τ ) > 0.

Proof By the obvious circular symmetry, it suffices to consider the case where τ =
1. That is, assuming LMO( f )(1) > 0, we need to find an h ∈ H(1) such that
LMO( f , h)(1) > 0.

We start by picking a C∞-function ζ on R with the properties that 0 ≤ ζ ≤ 1 on
R, that ζ = 1 on [1/3, 2/3], and that ζ = 0 on R\(1/6, 5/6). Since LMO( f )(1) > 0,
there is a sequence {In} of open arcs in T and a δ > 0 such that limn→∞ sup{|1−λ| :
λ ∈ In} = 0 and such that

(2.1)
1

|In|

∫
In

| f − fIn | dm ≥ δ for every n ≥ 1.

Because |In| → 0, passing to a subsequence if necessary, we may further assume

(i) In = {eit : αn < t < βn}, where−π/2 < αn < βn < π/2;
(ii) |In+1| ≤ 2−n · 10−1 · ‖ζ ′‖−1

∞ · |In| for every n ≥ 1.

(By the definition of ζ , it is obvious that ‖ζ ′‖∞ ≥ 1.) Now, for each n ≥ 1, define
the function ξn on T by the formula

ξn(eit ) = ζ

(
t − αn

βn − αn

)
, |t| ≤ π.

Thus each ξn is a C∞-function on T and vanishes outside In.
Next we use induction to produce a sequence {sn}, where each sn is either 1 or−1,

such that

(2.2) −2 ≤
n∑

j=1

s jξ j(λ) ≤ 2 for all λ ∈ T and n ≥ 1.

We start by picking s1 = 1. Suppose that n ≥ 1 and that s1, . . . , sn ∈ {1,−1} have
been chosen such that

−2 ≤
m∑

j=1

s jξ j(λ) ≤ 2 for all λ ∈ T and 1 ≤ m ≤ n.
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Then define sn+1 as follows. If
∑n

j=1 s jξ j(λ) ≥ 0 for every λ ∈ In+1, then we set sn+1 =
−1. Otherwise, i.e., if

∑n
j=1 s jξ j(λ) < 0 for at least one λ ∈ In+1, we set sn+1 = 1.

Since ξn+1 = 0 on T \ In+1, it is clear that we still have−2 ≤
∑n+1

j=1 s jξ j(λ) ≤ 2 for all
λ ∈ T in the case that sn+1 is chosen to be−1. On the other hand, we claim that

n∑
j=1

s jξ j(λ) <
1

10
for every λ ∈ In+1 if

n∑
j=1

s jξ j(λ
∗) < 0 for some λ∗ ∈ In+1.

Indeed from the definition of ξ j it is easy to see that |ξ j(λ)−ξ j(λ∗)| ≤ (‖ζ ′‖∞/|I j |) ·
|In+1| for all λ ∈ In+1. By condition (ii), (‖ζ ′‖∞/|I j |) · |In+1| ≤ 2−n · 10−1 for every
j ≤ n. Since

∑n
j=1 s jξ j(λ) ≤

∑n
j=1 s jξ j(λ∗) +

∑n
j=1 |ξ j(λ) − ξ j(λ∗)|, our claim is

verified. Thus, in the case sn+1 is chosen to be 1, we also have−2 ≤
∑n+1

j=1 s jξ j(λ) ≤ 2
for all λ ∈ T. By induction, we have the desired sequence {sn}.

Define ξ = 3 +
∑∞

j=1 s jξ j . It is obvious that, if U is an open arc containing 1,

then all but a finite number of terms in
∑∞

j=1 s jξ j vanish on T \ U . Hence ξ is a
C∞-function on T \ {1}. Furthermore, it follows from (2.2) that

(2.3) 1 ≤ ξ(λ) ≤ 5 for every λ ∈ T \ {1}.

Next we show that

(2.4) lim inf
n→∞

1

|In|

∫
In

|ξ − ξIn | dm ≥ 1

3
.

Indeed, because |s j | = 1, for any n ≥ 2, we have

(2.5) |ξ − ξIn | ≥ |ξn − (ξn)In | −
∑
k>n

(|ξk| + |ξk|In )−
∑

1≤ j<n

|ξ j − (ξ j)In |.

When k > n,
∫

In
|ξk| dm/|In| ≤ |Ik|/|In| ≤ 2−k by condition (ii). Thus

(2.6)
1

|In|

∫
In

∑
k>n

(|ξk| + |ξk|In ) dm ≤
∑
k>n

2−k · 2 = 2−n+1.

Now, if j < n and λ ∈ In, then |ξ j(λ) − (ξ j)In | ≤
∫

In
|ξ j(λ) − ξ j(w)| dm(w)/|In| ≤

supw∈In
|ξ j(λ) − ξ j(w)| ≤ (‖ζ ′‖∞/|I j |) · |In| ≤ (‖ζ ′‖∞/|In−1|) · |In| ≤ 2−n by the

definition of ξ j and (ii). Therefore

(2.7)
1

|In|

∫
In

∑
1≤ j<n

|ξ j − (ξ j)In | dm ≤ (n− 1)2−n.

Finally, by the definition of ζ and ξn, we can write In = E ∪ F ∪ G such that |E| =
|F| = |G| = |In|/3 and such that ξn = 0 on E and ξn = 1 on F. Hence

(2.8)
1

|In|

∫
In

|ξn− ξIn | dm ≥ |E|
|In|
|0− ξIn |+

|F|
|In|
|1− ξIn | =

1

3
{|ξIn |+ |1− ξIn |} ≥

1

3
.
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Obviously, (2.4) follows from (2.5)–(2.8).
Let u be the harmonic extension of log ξ to the unit disc D by the Poisson formula

and let v be the harmonic conjugate of u define by the conjugate formula. That is,

u(z) + iv(z) =
1

2π

∫ π

−π

eit + z

eit − z
log ξ(eit ) dt, z ∈ D.

(2.3) ensures that log ξ is also C∞ on T \ {1}. Thus, by a well-known theorem about
conjugate functions (see, e.g., [5, p. 106]), the boundary value of v is continuous on
T \ {1}. Therefore, if we set

h = exp(u + iv),

then the outer function h is bounded and continuous on T \ {1}. In other words,
h ∈ H(1). Since |h| = ξ on T, we have |h − hIn | ≥

∣∣ξ − |hIn |
∣∣ . Note that∫

In
|ξ − ξIn | dm ≤ 2

∫
In
|ξ − r| dm for any r ∈ R. Thus it follows from (2.4) that

(2.9) lim inf
n→∞

1

|In|

∫
In

|h− hIn | dm ≥ lim inf
n→∞

1

|In|

∫
In

∣∣ξ − |hIn |
∣∣ dm ≥ 1

2
· 1

3
=

1

6
.

Since the sequence {In} of arcs converges to the point 1, combining (2.1) and (2.9)
and recalling the definition of LMO, we now have

LMO( f , h)(1) ≥ lim inf
n→∞

1

|In|

∫
In

| f − fIn | dm
1

|In|

∫
In

|h− hIn | dm ≥ δ

6
> 0

as desired. This completes the proof.

Proof of Theorem 1 (a) Let f ∈ L∞ and τ ∈ T be such that [T f ,Th] ∈ Kτ for every
h ∈ H(τ ). By the analyticity of h, we have [T f ,Th] = T f h − ThT f = H∗

h̄
H f . Thus

Theorem 7 tells us that LMO(Q f ,Qh̄)(τ ) = 0 for every h ∈ H(τ ). The analyticity
of h also means that Qh̄ = h̄ − h̄(0). By the definition of LMO, it is clear that
LMO(Q f , h)(τ ) = LMO

(
Q f , h̄ − h̄(0)

)
(τ ). That is, the condition [T f ,Th] ∈ Kτ

implies LMO(Q f , h)(τ ) = 0 for every h ∈ H(τ ). Proposition 8 now tells us that
LMO(Q f )(τ ) = 0.

(b) Suppose that LMO(Q f )(τ ) = 0. For any g ∈ H∞, it follows from the def-
inition of LMO and the boundedness of g that LMO(Q f ,Qḡ)(τ ) = 0. Thus, by
Theorem 7, [T f ,Tg] = H∗ḡ H f ∈ Kτ . This completes the proof.

Proof of Corollary 2 If f ∈ L∞ is such that [T f ,Th] ∈ K for every h ∈ H, then it
follows from Theorem 1 that LMO(Q f )(τ ) = 0 for every τ ∈ T. By the compactness
of T, this means that Q f ∈ VMO. Thus the Hankel operator H f = HQ f is compact,
which implies that f ∈ H∞ + C(T) (see [4] or [15, p. 198]).

Proof of Corollary 4 Let S be an operator in the essential commutant of T(L). Since
L contains every H(τ ), Theorem 3 tells us that S = T f + K with f ∈ L∞ and K ∈ K.
Since T(QC) ⊃ K, it suffices to show that f ∈ QC. Because L ⊃ H, it follows
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from Corollary 2 that f ∈ H∞ + C(T). Since T(L) is ∗-symmetric, T f̄ = T∗f also

commutes with T(L) modulo compact operators. Thus f̄ also belongs to H∞+C(T).
Hence f ∈ QC.

Lemma 9 For any given τ ∈ T, there is a real-valued f ∈ L(τ ) which satisfies the
following two conditions:

(i) LMO( f )(τ ) > 0.
(ii) If g ∈ L∞ and if τ is a Lebesgue point for g, then LMO( f , g)(τ ) = 0.

Proof As was the case for the proof of Proposition 8, it suffices to consider the case
that τ = 1. Define the function f on T by the formula

f (eit ) =


1 if 0 ≤ t ≤ 1/2

2(1− t) if 1/2 < t ≤ 1

0 if t ∈ [−π, π] \ [0, 1].

It is obvious that f is continuous on T \ {1}, i.e., f ∈ L(1). Now if we set In =
{eit : −2−n ≤ t ≤ 2−n} for n ≥ 1, then it is also obvious that

∫
In
| f − fIn | dm/|In| =

1/2. Since the sequence {In} of arcs converges to 1, it follows that LMO( f )(1) ≥ 1/2,
which verifies property (i).

Next we show that f also satisfies condition (ii). Let g ∈ L∞ be such that 1 is a
Lebesgue point for this function. Let ε > 0 be given. Then there is a 0 < δ < 1/2
such that

(2.10)
1

2r

∫ r

−r
|g(eit )− g(1)| dt ≤ ε

4
whenever 0 < r ≤ δ.

Now consider any arc I = {eit : a ≤ t ≤ b} such that−δ ≤ a < b ≤ δ. Write

L(I) =
1

|I|

∫
I
| f − fI | dm

1

|I|

∫
I
|g − g(1)| dm.

Since f (eit ) = 1 when 0 ≤ t ≤ 1/2 and f (eit ) = 0 when −1/2 ≤ t < 0, it is clear
that L(I) = 0 if either 0 ≤ a or b ≤ 0. Thus it suffices to consider the case where
a < 0 < b. But, when a < 0 < b, it is clear from (2.10) that

∫
I |g − g(1)| dm/|I| ≤

2 · (ε/4) = ε/2. Obviously, | f − fI | ≤ 1. Therefore

(2.11) L(I) ≤ ε/2 whenever − δ ≤ a < b ≤ δ.

Note that
∫

I |g− gI | dm/|I| ≤ 2
∫

I |g− c| dm/|I| for any c ∈ C. Hence it follows from
(2.11) that, if I = {eit : a ≤ t ≤ b} and−δ ≤ a < b ≤ δ, then

1

|I|

∫
I
| f − fI | dm

1

|I|

∫
I
|g − gI | dm ≤ 2L(I) ≤ ε.

This proves that LMO( f , g)(1) = 0 if 1 is a Lebesgue point for g.
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Proof of Theorem 6 The separability of S means that S is contained in the operator-
norm closure of a countable subset {A1, . . . ,A j , . . . } of T. Now each A j is the limit in

operator norm of a sequence of operators of the form
∑K

k=1 Tgk1 · · ·TgkM , where gkm ∈
L∞. Hence there is a countable set G = {g1, . . . , gn, . . . } of real-valued functions in
L∞ such that S ⊂ T(G).

For each gn, almost every point in T is a Lebesgue point. Therefore there is a
τ ∈ T which is a Lebesgue point for every gn, n = 1, 2, . . . . For this τ , let f ∈
L(τ ) be the real-valued function provided by Lemma 9. The membership in L(τ )
means that LMO( f )(u) = 0 when u ∈ T \ {τ}. Thus LMO( f , gn)(u) = 0 for
all n and u ∈ T \ {τ}. Since τ is a Lebesgue point for every gn, Lemma 9 yields
that LMO( f , gn)(τ ) = 0, n = 1, 2,. . . . Therefore LMO( f , gn)(u) = 0 for all n and
u ∈ T. Thus Theorem 7 tells us that H∗gn

H f ∈
⋂

u∈T Ku = K. That is, for every n,
H∗gn

H f is compact, which clearly implies the compactness of [T f ,Tgn ]. Hence [T f , S]
is compact for every S ∈ T(G). Now Lemma 9 also yields that LMO( f )(τ ) > 0,
which obviously implies f /∈ VMO. Since f is real-valued, we have f /∈ H∞ + C(T)
as promised.

3 The Double Commutant Relation

Recall that L is the norm-closed subalgebra of L∞ generated by
⋃
τ∈T L(τ ), where

L(τ ) is the collection of functions on T which are bounded and continuous on
T \ {τ}. The proof of Theorem 5 starts in the obvious way.

Lemma 10 L 6= L∞. More specifically, if E is a measurable, nowhere dense set in T
such that |E| > 0, then χE /∈ L.

Proof Let L0 be the collection of functions of the form
∑n

j=1 f1 j · · · fm j , where fi j ∈
L(τi j). Then L is the closure of L0 with respect to the essential-supremum norm
‖.‖∞. To show that χE /∈ L, it suffices to show that ‖χE − f ‖∞ ≥ 1/3 for any
f ∈ L0. That is, it suffices to show that

(3.1) sup
τ∈T\N

|χE(τ )− f (τ )| ≥ 1/3 whenever |N| = 0 and f ∈ L0.

Observe that each f ∈ L0 has at most a finite number of discontinuities. Thus for
each f ∈ L0 there is a finite set F such that T \F =

⋃
j∈ J I j , where J is countable and

where each I j is an open arc in T such that supτ ,τ ′∈I j
| f (τ ) − f (τ ′)| ≤ 1/3. Since

|F| = 0 and |E| > 0, there is a j0 ∈ J such that |E ∩ I j0 | > 0. Because E is nowhere
dense, we have |(T \ E) ∩ I j0 | > 0. Thus for any set N with |N| = 0 we also have
|E ∩ (I j0 \N)| > 0 and |(T \ E) ∩ (I j0 \N)| > 0. Now if we let τ ∈ E ∩ (I j0 \N) and
τ ′ ∈ (T \E)∩ (I j0 \N), since | f (τ )− f (τ ′)| ≤ 1/3, the inequalities |1− f (τ )| < 1/3
and |0− f (τ ′)| < 1/3 cannot hold simultaneously. This proves (3.1).

Let C1/2 denote the ideal in the C∗-algebra T generated by the semi-commutators
{T f g − T f Tg : f , g ∈ L∞} of Toeplitz operators. Now, because the linear span of
{ϕψ̄ : ϕ,ψ ∈ H∞} is dense in L∞ (see [3, p. 163]), C1/2 coincides with the ideal C in
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T generated by the commutators {[A,B] : A,B ∈ T}. Hence we have the short exact
sequence

(3.2) {0} → C1/2 → T → L∞ → {0}.

See [3, p. 179].

Proof of Theorem 5 Corollary 4 states that π
(
T(QC)

)
is the commutant of

π
(
T(L)

)
in the Calkin algebra Q = B(H2)/K. It is well known that T is contained in

the essential commutant of T(QC), i.e., π(T) ⊂
{
π
(
T(QC)

)} ′
=
{
π
(
T(L)

)} ′ ′
.

Thus it suffices to show that π(T) 6= π
(
T(L)

)
. Let s : T → L∞ be the symbol map

in (3.2), i.e., s(Tϕ) = ϕ. Since s(T) = L∞ and s
(
T(L)

)
= L, and since L 6= L∞

by Lemma 10, we must have T(L) 6= T. Since kerπ = K, this and the relation
K ⊂ T(L) ⊂ T together imply π(T) 6= π

(
T(L)

)
.

Remark 11 Let C1/2(L) be the ideal in T(L) generated by {T f g − T f Tg : f , g ∈ L}.
It is well known that, for any arc I in T with 0 < |I| < |T|, TχI − T2

χI
is not compact

[6]. Obviously, χI ∈ L. Therefore π
(
C1/2(L)

)
6= {0}. On the other hand, (3.2) tells

us that π
(
C1/2(L)

)
6= π

(
T(L)

)
. Hence π

(
C1/2(L)

)
is a proper ideal in π

(
T(L)

)
.

Remark 12 If S is an operator that essentially commutes with the essential commu-
tant of T(QC), then S essentially commutes with T. By Davidson’s theorem, such
an S belongs to T(QC). Therefore π

(
T(QC)

)
satisfies the double commutant rela-

tion A = A ′ ′ in Q. On the other hand, it is well known that π
(
T(QC)

) ∼= QC

is not separable. Therefore the fact that π
(
T(QC)

)
satisfies the double commutant

relation does not follow from Voiculescu’s theorem. Also, it is an elementary exer-
cise in measure theory to show that QC contains no projections other than 0 and 1.
In particular, π

(
T(QC)

)
is not the image of any von Neumann algebra under π.

Therefore the results of [8], [10] cannot be applied to π
(
T(QC)

)
either. Neverthe-

less, Davidson’s theorem tells us that the double commutant relation A = A ′ ′ can
also be satisfied by a subalgebra of Q which is neither separable nor close to being the
image of any von Neumann algebra.

Finally, the results of [2] and the above discussion lead to the obvious:

Problem 13 What is the essential commutant of T(QC)? In particular, does the
essential commutant of T(QC) coincide with T?
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