FIELDS OF G_a INVARIANTS ARE RULED

JAMES K. DEVENEY AND DAVID R. FINSTON

ABSTRACT. The quotient field of the ring of invariants of a rational G_a action on \mathbb{C}^n is shown to be ruled. As a consequence, all rational G_a actions on \mathbb{C}^4 are rationally triangulable. Moreover, if an arbitrary rational G_a action on \mathbb{C}^n is doubled to an action of $G_a \times G_a$ on \mathbb{C}^{2n} , then the doubled action is rationally triangulable.

1. Introduction. Let $GA_n(\mathbb{C})$ denote the group of automorphisms of $\mathbb{C}[x_1, \ldots, x_n]$, the polynomial ring in *n* variables over the complex field. Since an automorphism is determined by the images, say F_i , of the x_i , we can describe the affine subgroup $Af_n(\mathbb{C})$ of $GA_n(\mathbb{C})$ as $\{(F_1, \ldots, F_n) : \deg(F_i) \leq 1 \text{ for each } i\}$, and the triangular subgroup as $\{(F_1, \ldots, F_n) : F_i \in \mathbb{C}[x_1, \ldots, x_i]\}$. The "generation gap" question of Bass [1] asks whether $GA_n(\mathbb{C})$ is generated by these two subgroups. The answer if yes for $n \leq 2$, but the question remains open for all larger *n*. Nagata has suggested a particular automorphism of $\mathbb{C}[x_1, x_2, x_3]$ as a possible counterexample and in [1] Bass was able to embed this example in an action of G_a , the additive group of complex numbers, on $\mathbb{C}[x_1, x_2, x_3]$, and to show that the G_a action is not conjugate to a subgroup of the triangular group.

As an approximation to triangulability, a G_a action is called *rationally triangulable* if there are generators y_1, \ldots, y_n of the field of rational functions so that each of the subfields $C(y_1, \ldots, y_i)$ is stable under the group of **C** automorphisms of the rational function field induced by the G_a action on the polynomial ring. It was asked in [1] whether every rational action of a unipotent group on affine space is rationally triangulable. In [2] the authors showed that a G_a action is rationally triangulable if and only if the quotient field of the ring of G_a invariants of the polynomial ring is a pure transcendental extension of **C**. It was shown, moreover, that all G_a actions on $C[x_1, x_2, x_3]$ are rationally triangulable, including, of course, those designed by Bass [1] and Popov [4]. The natural conjecture is that all G_a actions on polynomial rings are rationally triangulable.

As an indication of the importance of this conjecture consider its connection with the following version of the "affine cancellation problem": Given a ring *R* containing **C** and an indeterminate *x* for which $R[x] \equiv \mathbf{C}[x_1, \ldots, x_{n+1}]$, is *R* isomorphic to a polynomial ring in *n* variables? The existence of such stable polynomial rings which aren't polynomial rings is an open problem, while the corresponding problem for fields has a negative answer (*i.e.*, there exist stably rational nonrational field extensions). Given such a stable polynomial ring *R*, the derivation D = d/dx on R[x] is locally nilpotent and can therefore

Received by the editors April 23, 1992.

AMS subject classification: Primary: 14L30; secondary: 20G20, 12F20.

[©] Canadian Mathematical Society, 1994.

be exponentiated to a G_a action on $\mathbb{C}[x_1, \ldots, x_{n+1}]$: for $t \in G_a, p \in \mathbb{C}[x_1, \ldots, x_{n+1}]$

$$tp \equiv \sum_{j=0}^{\infty} \frac{(td)^j}{j!}(p).$$

The ring of invariants for this action is clearly R, therefore the validity of the conjecture would imply that the quotient field of such a stable polynomial ring is purely transcendental.

2. Ruled invariants. Every rational G_a action on $\mathbb{C}[x_1, \ldots, x_n]$ is obtained as the exponential of a locally nilpotent derivation and it is clear that the ring of G_a invariants is equal to the ring of constants of the derivation. Let D be a locally nilpotent derivation of $\mathbb{C}[x_1, \ldots, x_n]$, C_0 its ring of constants, and $D(g) = f \in C_0$. D extends to a locally nilpotent derivation of $\mathbb{C}[x_1, \ldots, x_n][1/f]$ with ring of constants equal to $C_0[1/f]$. Since D(g/f) = 1, setting s = g/f and applying [7] Proposition 2.1, yields that $\mathbb{C}[x_1, \ldots, x_n][1/f] = C_0[1/f, s]$, and on this ring D = d/ds.

LEMMA 2.1. Define $F: \mathbb{C}[x_1, \ldots, x_n][1/f] \rightarrow C_0[1/f]$ by

$$F(x) = \sum_{i=0}^{\infty} \frac{(-1)^{i}}{i!} s^{i} D^{i}(x).$$

Then the expression of any $x \in \mathbb{C}[x_1, \ldots, x_n][1/f]$, as a polynomial in s is, with $D^0(x) = x$,

$$x = \sum_{i=0}^{\infty} \frac{s^i}{i!} F(D^i(x)).$$

PROOF. Apply *D* to F(x) to see that F(x) is a constant. To verify that $x \in C[x_1, \ldots, x_n][1/f]$ has the stated form, argue by induction on the least power of *D* that annihilates *x*. The assertion is clear if *x* is a constant. For general *x*, the induction hypothesis yields $D(x) = F(D(x)) + sF(D^2(x)) + s^2/2! F(D^3(x)) + \cdots$. Note that $x = F(x) + sD(x) - \frac{s^2}{2!}D^2(x) + \cdots$ so that the constant term of *x* with respect to *s* is F(x). Now integration with respect to *s* gives the desired expression.

Denote by $qf(C_0)$ the quotient field of C_0 .

COROLLARY 2.2. Let $h \in \mathbb{C}[x_1, ..., x_n]$ satisfy $D(h) \neq 0$. Then the least power of D which annihilates h is exactly $[\mathbb{C}(x_1, ..., x_n) : qf(C_0)(h)] - 1$.

PROOF. Since *s* generates $C(x_1, ..., x_n)$ as a simple transcendental extension of $qf(C_0)$, the expression of *h* as a polynomial in *s* yields the result.

Define an element *w* of $C[x_1, \ldots, x_n]$ to be a variable if there exist

$$w_2,\ldots,w_n\in \mathbb{C}[x_1,\ldots,x_n]$$

for which

$$\mathbf{C}[x_1,\ldots,x_n] = \mathbf{C}[w,w_2,\ldots,w_n].$$

THEOREM 2.3. If $C[x_1, ..., x_n]$ has a variable w for which $D(w) \neq 0 = D^2(w)$, then the G_a action associated to D is rationally triangulable. PROOF. By Corollary 2.2, $C(x_1, ..., x_n) = qf(C_0)(w)$. Since *w* is a variable $C(x_1, ..., x_n) = C(w_2, ..., w_n)(w)$. Although the general cancellation problem for function fields is false, in the present context we have the same variable *w* in the equality $C(w_2, ..., w_n)(w) = qf(C_0)(w)$. A result of Samuel [5] shows that $qf(C_0) \equiv C(w_2, ..., x_n)$ and thus that the G_a action is rationally triangulable by [2] Theorem 3.1.

COROLLARY 2.4. For any nonconstant variable w,

$$\mathbf{C}(x_1,\ldots,x_n) = \mathbf{qf}(C_0)\big(w,D(w)\big).$$

PROOF. Let $n \ge 2$ be the least power of *D* which annihilates *w*. If n = 2, then *w* itself generates by the remarks preceding Lemma 2.1. If n > 2, Corollary 2.2 yields

$$[\mathbf{C}(x_1, \ldots, x_n) : qf(C_0)(w)] = n - 1$$

while

$$[\mathbf{C}(x_1,...,x_n): qf(C_0)(D(w))] = n-2.$$

Since $[C(x_1, ..., x_n) : qf(C_0)(w, D(w))]$ divides both n - 1 and n - 2, this number is equal to 1.

A field extension *K* of **C** is called *ruled* provided K = F(Z) where $C \subset F$ and *Z* is transcendental over *F*.

THEOREM 2.5. Let D be a locally nilpotent derivation of $C[x_1, ..., x_n]$ with ring of constants C_0 . Then $qf(C_0)$ is ruled.

PROOF. If D = 0 the result is clear. Assume then that $D(x_1) \neq 0$ and let D(s) = 1 with s as in Lemma 2.1. The residue field of the place associated to the 1/s-adic valuation on $\mathbf{C}(x_1, \ldots, x_n)$ is $qf(C_0)$ (see again the remarks preceding Lemma 2.1). Observe that as a polynomial of positive degree in s, x_1 has strictly negative value, so that $1/x_1$ is in the maximal ideal of the valuation ring. This holds as well for the restriction of the place to $\mathbf{C}(x_1, \ldots, x_{n-1})$, so that the residue field has transcendence degree n - 2 over \mathbf{C} . In particular, $qf(C_0)$ is not algebraic over the residue field. An application of the ruled residue theorem [3] to $\mathbf{C}(x_1, \ldots, x_{n-1})(x_n)$ yields that $qf(C_0)$ is ruled.

COROLLARY 2.6. Every rational G_a action on $\mathbb{C}[x_1, \ldots, x_n]$ is rationally triangulable for $n \leq 4$.

PROOF. By Theorem 2.5, $qf(C_0) = F(Z)$ where *F* is a unirational extension of **C** of transcendence degree n - 2. If $n \le 4$, the transcendence degree of *F* is at most 2, so

Castelnuovo's Criterion [6] implies that F, hence also $qf(C_0)$, is rational.

COROLLARY 2.7. Given any G_a action on $\mathbb{C}[x_1, \ldots, x_n] \operatorname{qf}(C_0 \otimes_{\mathbb{C}} C_0)$ is a pure transcendental extension of \mathbb{C} .

PROOF. Since $qf(C_0)(s) = C(x_1, ..., x_n)$ for some (actually any) $s \in C(x_1, ..., x_n)$ with D(s) = 1, $qf(C_0)$ is stably rational. From Theorem 2.5, we have $qf(C_0) = F(Z)$ so that

$$qf(C_0 \bigotimes_{\mathbf{C}} C_0) = qf\left(F(Z) \bigotimes_{\mathbf{C}} C_0\right)$$
$$= qf\left(F \bigotimes_{\mathbf{C}} qf\left(C_0(Z)\right)\right)$$
$$= qf\left(F \bigotimes_{\mathbf{C}} \mathbf{C}(x_1, \dots, x_n)\right)$$
$$= qf\left(F(x_1, x_2) \bigotimes_{\mathbf{C}} \mathbf{C}(x_3, \dots, x_n)\right)$$
$$= \mathbf{C}(y_1, \dots, y_n) \bigotimes_{\mathbf{C}} \mathbf{C}(x_3, \dots, x_n)$$
$$= \mathbf{C}(y_1, \dots, y_n, x_3, \dots, x_n)$$

for certain algebraically independent elements $y_1, \ldots, y_n, x_3, \ldots, x_n$.

COROLLARY 2.8. Let G_a act rationally on \mathbb{C}^n with $\sigma: G_a \times \mathbb{C}^n \to \mathbb{C}^n$ denoting the action. Then the "doubled" action $\sigma^2: (G_a \times G_a) \times \mathbb{C}^{2n} \to \mathbb{C}^{2n}$ given by $\sigma^2: (\bar{a}, \bar{b}) \mapsto (\sigma(\bar{a}), \sigma(\bar{b})), \bar{a}, \bar{b} \in \mathbb{C}^n$, is rationally triangulable.

PROOF. The associated $G_a \times G_a$ action on the coordinate ring

$$\mathbf{C}[y_1,\ldots,y_n,x_1,\ldots,x_n]$$

has $C_0 \otimes_{\mathbf{C}} C'_0$ as its ring of invariants, where $C_0 \cong C'_0$ is the ring of invariants of the action on $\mathbf{C}[y_1, \ldots, y_n]$. In particular, the quotient field of the ring of the $G_a \times G_a$ invariants is a pure transcendental extension of \mathbf{C} by Corollary 2.7. Finally, $\mathbf{C}(y_1, \ldots, y_n) = C_0(y)$ where the action on y is translation by complex numbers (resp. $\mathbf{C}(x_1, \ldots, x_n) = C'_0(x)$) so that the action is rationally triangulable.

REFERENCES

- **1.** H. Bass, A non-triangular action of G_a on A^3 , J. Pure and Appl. Alg. **33**(1984) 1–5.
- 2. J. K. Deveney and D. R. Finston, *Rationally triangulable automorphisms*, J. Pure and Appl. Alg. **72**(1991) 1–4.
- **3.** J. Ohm, *The ruled residue theorem for simple transcendental extensions of valued fields.* Proc. Amer. Math. Soc. **89**(1983) 16–18.
- **4.** V. Popov, *On actions of* G_a *on* A^n , Algebraic Groups (Utrecht 1986), Lecture Notes in Math. **1271**, Berlin, Heidelberg, Springer 1987.
- 5. P. Samuel, *Some remarks on Luroth's theorem*, Memoirs of Coll. Sci. Univ. Kyoto 27(1953) 223–224; J. Pure and Appl. Alg. 58(1989) 209–212.

40

FIELDS OF G_a INVARIANTS ARE RULED

- 6. J.-P. Serre, *Critère de rationalité pour les surfaces algébriques*, (d'après K. Kodaira), Sém, Bourbaki 146(1957).
- 7. D. Wright: On the Jacobian Conjecture, Illinois J. Math. 25(1981), 423-440.

Department of Mathematical Sciences Virginia Commonwealth University 1015 W. Main Street Richmond, Virginia 23284 U.S.A.

Department of Mathematical Sciences New Mexico State University Las Cruces, New Mexico 88003 U.S.A.