FIELDS OF G_{a} INVARIANTS ARE RULED

JAMES K. DEVENEY AND DAVID R. FINSTON

Abstract

The quotient field of the ring of invariants of a rational G_{a} action on \mathbf{C}^{n} is shown to be ruled. As a consequence, all rational G_{a} actions on \mathbf{C}^{4} are rationally triangulable. Moreover, if an arbitrary rational G_{a} action on \mathbf{C}^{n} is doubled to an action of $G_{a} \times G_{a}$ on $\mathbf{C}^{2 n}$, then the doubled action is rationally triangulable.

1. Introduction. Let $G A_{n}(\mathbf{C})$ denote the group of automorphisms of $\mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$, the polynomial ring in n variables over the complex field. Since an automorphism is determined by the images, say F_{i}, of the x_{i}, we can describe the affine subgroup $A f_{n}(\mathbf{C})$ of $G A_{n}(\mathbf{C})$ as $\left\{\left(F_{1}, \ldots, F_{n}\right): \operatorname{deg}\left(F_{i}\right) \leq 1\right.$ for each $\left.i\right\}$, and the triangular subgroup as $\left\{\left(F_{1}, \ldots, F_{n}\right): F_{i} \in \mathbf{C}\left[x_{1}, \ldots, x_{i}\right]\right\}$. The "generation gap" question of Bass [1] asks whether $G A_{n}(\mathbf{C})$ is generated by these two subgroups. The answer if yes for $n \leq 2$, but the question remains open for all larger n. Nagata has suggested a particular automorphism of $\mathbf{C}\left[x_{1}, x_{2}, x_{3}\right]$ as a possible counterexample and in [1] Bass was able to embed this example in an action of G_{a}, the additive group of complex numbers, on $\mathbf{C}\left[x_{1}, x_{2}, x_{3}\right]$, and to show that the G_{a} action is not conjugate to a subgroup of the triangular group.

As an approximation to triangulability, a G_{a} action is called rationally triangulable if there are generators y_{1}, \ldots, y_{n} of the field of rational functions so that each of the subfields $\mathbf{C}\left(y_{1}, \ldots, y_{i}\right)$ is stable under the group of \mathbf{C} automorphisms of the rational function field induced by the G_{a} action on the polynomial ring. It was asked in [1] whether every rational action of a unipotent group on affine space is rationally triangulable. In [2] the authors showed that a G_{a} action is rationally triangulable if and only if the quotient field of the ring of G_{a} invariants of the polynomial ring is a pure transcendental extension of C. It was shown, moreover, that all G_{a} actions on $\mathbf{C}\left[x_{1}, x_{2}, x_{3}\right]$ are rationally triangulable, including, of course, those designed by Bass [1] and Popov [4]. The natural conjecture is that all G_{a} actions on polynomial rings are rationally triangulable.

As an indication of the importance of this conjecture consider its connection with the following version of the "affine cancellation problem": Given a ring R containing \mathbf{C} and an indeterminate x for which $R[x] \equiv \mathbf{C}\left[x_{1}, \ldots, x_{n+1}\right]$, is R isomorphic to a polynomial ring in n variables? The existence of such stable polynomial rings which aren't polynomial rings is an open problem, while the corresponding problem for fields has a negative answer (i.e., there exist stably rational nonrational field extensions). Given such a stable polynomial ring R, the derivation $D=d / d x$ on $R[x]$ is locally nilpotent and can therefore

Received by the editors April 23, 1992.
AMS subject classification: Primary: 14L30; secondary: 20G20, 12F20.
(c) Canadian Mathematical Society, 1994.
be exponentiated to a G_{a} action on $\mathbf{C}\left[x_{1}, \ldots, x_{n+1}\right]$: for $t \in G_{a}, p \in \mathbf{C}\left[x_{1}, \ldots, x_{n+1}\right]$

$$
t p \equiv \sum_{j=0}^{\infty} \frac{(t d)^{j}}{j!}(p) .
$$

The ring of invariants for this action is clearly R, therefore the validity of the conjecture would imply that the quotient field of such a stable polynomial ring is purely transcendental.
2. Ruled invariants. Every rational G_{a} action on $\mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$ is obtained as the exponential of a locally nilpotent derivation and it is clear that the ring of G_{a} invariants is equal to the ring of constants of the derivation. Let D be a locally nilpotent derivation of $\mathbf{C}\left[x_{1}, \ldots, x_{n}\right], C_{0}$ its ring of constants, and $D(g)=f \in C_{0} . D$ extends to a locally nilpotent derivation of $\mathbf{C}\left[x_{1}, \ldots, x_{n}\right][1 / f]$ with ring of constants equal to $C_{0}[1 / f]$. Since $D(g / f)=$ 1, setting $s=g / f$ and applying [7] Proposition 2.1, yields that $\mathbf{C}\left[x_{1}, \ldots, x_{n}\right][1 / f]=$ $C_{0}[1 / f, s]$, and on this ring $D=d / d s$.

Lemma 2.1. Define $F: \mathbf{C}\left[x_{1}, \ldots, x_{n}\right][1 / f] \rightarrow C_{0}[1 / f]$ by

$$
F(x)=\sum_{i=0}^{\infty} \frac{(-1)^{i}}{i!} s^{i} D^{i}(x) .
$$

Then the expression of any $x \in \mathbf{C}\left[x_{1}, \ldots, x_{n}\right][1 / f]$, as a polynomial in sis, with $D^{0}(x)=x$,

$$
x=\sum_{i=0}^{\infty} \frac{s^{i}}{i!} F\left(D^{i}(x)\right) .
$$

Proof. Apply D to $F(x)$ to see that $F(x)$ is a constant. To verify that $x \in$ $\mathbf{C}\left[x_{1}, \ldots, x_{n}\right][1 / f]$ has the stated form, argue by induction on the least power of D that annihilates x. The assertion is clear if x is a constant. For general x, the induction hypothesis yields $D(x)=F(D(x))+s F\left(D^{2}(x)\right)+s^{2} / 2!F\left(D^{3}(x)\right)+\cdots$. Note that $x=F(x)+s D(x)-\frac{s^{2}}{2!} D^{2}(x)+\cdots$ so that the constant term of x with respect to s is $F(x)$. Now integration with respect to s gives the desired expression.

Denote by $\mathrm{qf}\left(C_{0}\right)$ the quotient field of C_{0}.
Corollary 2.2. Let $h \in \mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$ satisfy $D(h) \neq 0$. Then the least power of D which annihilates h is exactly $\left[\mathbf{C}\left(x_{1}, \ldots, x_{n}\right): \mathrm{qf}\left(C_{0}\right)(h)\right]-1$.

Proof. Since s generates $\mathbf{C}\left(x_{1}, \ldots, x_{n}\right)$ as a simple transcendental extension of $\mathrm{qf}\left(C_{0}\right)$, the expression of h as a polynomial in s yields the result.

Define an element w of $\mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$ to be a variable if there exist

$$
w_{2}, \ldots, w_{n} \in \mathbf{C}\left[x_{1}, \ldots, x_{n}\right]
$$

for which

$$
\mathbf{C}\left[x_{1}, \ldots, x_{n}\right]=\mathbf{C}\left[w, w_{2}, \ldots, w_{n}\right]
$$

Theorem 2.3. If $\mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$ has a variable w for which $D(w) \neq 0=D^{2}(w)$, then the G_{a} action associated to D is rationally triangulable.

Proof. By Corollary 2.2, $\mathbf{C}\left(x_{1}, \ldots, x_{n}\right)=\mathrm{qf}\left(C_{0}\right)(w)$. Since w is a variable $\mathbf{C}\left(x_{1}, \ldots, x_{n}\right)=\mathbf{C}\left(w_{2}, \ldots, w_{n}\right)(w)$. Although the general cancellation problem for function fields is false, in the present context we have the same variable w in the equality $\left.\mathbf{C}\left(w_{2}, \ldots, w_{n}\right)(w)=\operatorname{qf}\left(C_{0}\right)\right)(w)$. A result of Samuel [5] shows that $\mathrm{qf}\left(C_{0}\right) \equiv$ $\mathbf{C}\left(w_{2}, \ldots, x_{n}\right)$ and thus that the G_{a} action is rationally triangulable by [2] Theorem 3.1.

Corollary 2.4. For any nonconstant variable w,

$$
\mathbf{C}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{qf}\left(C_{0}\right)(w, D(w))
$$

PROOF. Let $n \geq 2$ be the least power of D which annihilates w. If $n=2$, then w itself generates by the remarks preceding Lemma 2.1. If $n>2$, Corollary 2.2 yields

$$
\left[\mathbf{C}\left(x_{1}, \ldots, x_{n}\right): \operatorname{qf}\left(C_{0}\right)(w)\right]=n-1
$$

while

$$
\left[\mathbf{C}\left(x_{1}, \ldots, x_{n}\right): \operatorname{qf}\left(C_{0}\right)(D(w))\right]=n-2
$$

Since $\left[\mathbf{C}\left(x_{1}, \ldots, x_{n}\right): \mathrm{qf}\left(C_{0}\right)(w, D(w))\right]$ divides both $n-1$ and $n-2$, this number is equal to 1 .

A field extension K of \mathbf{C} is called ruled provided $K=F(Z)$ where $\mathbf{C} \subset F$ and Z is transcendental over F.

Theorem 2.5. Let D be a locally nilpotent derivation of $\mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$ with ring of constants C_{0}. Then $\mathrm{q}\left(C_{0}\right)$ is ruled.

Proof. If $D=0$ the result is clear. Assume then that $D\left(x_{1}\right) \neq 0$ and let $D(s)=1$ with s as in Lemma 2.1. The residue field of the place associated to the $1 / s$-adic valuation on $\mathbf{C}\left(x_{1}, \ldots, x_{n}\right)$ is $\mathrm{qf}\left(C_{0}\right)$ (see again the remarks preceding Lemma 2.1). Observe that as a polynomial of positive degree in s, x_{1} has strictly negative value, so that $1 / x_{1}$ is in the maximal ideal of the valuation ring. This holds as well for the restriction of the place to $\mathbf{C}\left(x_{1}, \ldots, x_{n-1}\right)$, so that the residue field has transcendence degree $n-2$ over \mathbf{C}. In particular, $\mathrm{qf}\left(C_{0}\right)$ is not algebraic over the residue field. An application of the ruled residue theorem [3] to $\mathbf{C}\left(x_{1}, \ldots, x_{n-1}\right)\left(x_{n}\right)$ yields that $\mathrm{q} \mathrm{f}\left(C_{0}\right)$ is ruled.

COROLLARY 2.6. Every rational G_{a} action on $\mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$ is rationally triangulable for $n \leq 4$.

Proof. By Theorem 2.5, qf $\left(C_{0}\right)=F(Z)$ where F is a unirational extension of \mathbf{C} of transcendence degree $n-2$. If $n \leq 4$, the transcendence degree of F is at most 2 , so

Castelnuovo's Criterion [6] implies that F, hence also $\mathrm{qf}\left(C_{0}\right)$, is rational.
Corollary 2.7. Given any G_{a} action on $\mathbf{C}\left[x_{1}, \ldots, x_{n}\right] \mathrm{qf}\left(C_{0} \otimes_{\mathbf{C}} C_{0}\right)$ is a pure transcendental extension of \mathbf{C}.

Proof. Since $\operatorname{qf}\left(C_{0}\right)(s)=\mathbf{C}\left(x_{1}, \ldots, x_{n}\right)$ for some (actually any) $s \in \mathbf{C}\left(x_{1}, \ldots x_{n}\right)$ with $D(s)=1, \mathrm{qf}\left(C_{0}\right)$ is stably rational. From Theorem 2.5 , we have $\mathrm{qf}\left(C_{0}\right)=F(Z)$ so that

$$
\begin{aligned}
\operatorname{qf}\left(C_{0} \otimes_{\mathbf{C}} C_{0}\right) & =\mathrm{qf}\left(F(Z) \otimes_{\mathbf{C}} C_{0}\right) \\
& =\operatorname{qf}\left(F \otimes_{\mathbf{c}} \mathrm{qf}\left(C_{0}(Z)\right)\right) \\
& =\operatorname{qf}\left(F \otimes_{\mathbf{C}} \mathbf{C}\left(x_{1} \ldots, x_{n}\right)\right) \\
& =\operatorname{qf}\left(F\left(x_{1}, x_{2}\right) \otimes_{\mathbf{C}} \mathbf{C}\left(x_{3}, \ldots, x_{n}\right)\right) \\
& =\mathbf{C}\left(y_{1}, \ldots, y_{n}\right) \otimes_{\mathbf{C}} \mathbf{C}\left(x_{3}, \ldots, x_{n}\right) \\
& =\mathbf{C}\left(y_{1}, \ldots, y_{n}, x_{3}, \ldots, x_{n}\right)
\end{aligned}
$$

for certain algebraically independent elements $y_{1}, \ldots, y_{n}, x_{3} \ldots, x_{n}$.
Corollary 2.8. Let G_{a} act rationally on \mathbf{C}^{n} with $\sigma: G_{a} \times \mathbf{C}^{n} \rightarrow \mathbf{C}^{n}$ denoting the action. Then the "doubled" action $\sigma^{2}:\left(G_{a} \times G_{a}\right) \times \mathbf{C}^{2 n} \longrightarrow \mathbf{C}^{2 n}$ given by $\sigma^{2}:(\bar{a}, \bar{b}) \longmapsto$ $(\sigma(\bar{a}), \sigma(\bar{b})), \bar{a}, \bar{b} \in \mathbf{C}^{n}$, is rationally triangulable.

Proof. The associated $G_{a} \times G_{a}$ action on the coordinate ring

$$
\mathbf{C}\left[y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right]
$$

has $C_{0} \otimes_{\mathrm{C}} C_{0}^{\prime}$ as its ring of invariants, where $C_{0} \cong C_{0}^{\prime}$ is the ring of invariants of the action on $\mathbf{C}\left[y_{1}, \ldots, y_{n}\right]$. In particular, the quotient field of the ring of the $G_{a} \times G_{a}$ invariants is a pure transcendental extension of \mathbf{C} by Corollary 2.7. Finally, $\mathbf{C}\left(y_{1}, \ldots, y_{n}\right)=C_{0}(y)$ where the action on y is translation by complex numbers $\left(\operatorname{resp} . \mathbf{C}\left(x_{1}, \ldots, x_{n}\right)=C_{0}^{\prime}(x)\right)$ so that the action is rationally triangulable.

References

1. H. Bass, A non-triangularaction of G_{a} on A^{3}, J. Pure and Appl. Alg. 33(1984) 1-5.
2. J. K. Deveney and D. R. Finston, Rationally triangulable automorphisms, J. Pure and Appl. Alg. 72(1991) 1-4.
3. J. Ohm, The ruled residue theorem for simple transcendental extensions of valued fields. Proc. Amer. Math. Soc. 89(1983) 16-18
4. V. Popov, On actions of G_{a} on A^{n}, Algebraic Groups (Utrecht 1986), Lecture Notes in Math. 1271, Berlin, Heidelberg, Springer 1987.
5. P. Samuel, Some remarks on Luroth's theorem, Memoirs of Coll. Sci. Univ. Kyoto 27(1953) 223-224; J. Pure and Appl. Alg. 58(1989) 209-212.
6. J.-P. Serre, Critère de rationalité pour les surfaces algébriques, (d'après K. Kodaira), Sém, Bourbaki 146(1957).
7. D. Wright: On the Jacobian Conjecture, Illinois J. Math. 25(1981), 423-440.

Department of Mathematical Sciences Virginia Commonwealth University
1015 W. Main Street
Richmond, Virginia 23284
U.S.A.

Department of Mathematical Sciences
New Mexico State University
Las Cruces, New Mexico 88003
U.S.A.

