
PRICING LONGEVITY-LINKED SECURITIES IN THE PRESENCE OF
MORTALITY TREND CHANGES

BY

ARNE FREIMANN

ABSTRACT

Even though the trend in mortality improvements has experienced several per-
manent changes in the past, the uncertainty regarding future mortality trends is
often left unmodeled when pricing longevity-linked securities. In this paper, we
present a stochastic modeling framework for the valuation of longevity-linked
securities which explicitly considers the risk of random future changes in the
long-term mortality trend. We construct a set of meaningful probability distor-
tions which imply equivalent risk-adjusted pricing measures under which the
basic model structure is preserved. Inspired by risk-based capital requirements
for (re)insurers, we also establish a cost-of-capital pricing approach which then
serves as the appropriate reference framework for finding a reasonable range
for the market price of longevity risk. In a numerical application, we demon-
strate that our model produces plausible risk loadings and show that a greater
proportion of the risk loading is allocated to longer maturities when the risk of
random future mortality trend changes is adequately modeled.
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1. INTRODUCTION

The risk that future mortality trends imply stronger mortality improvements
than anticipated is commonly referred to as longevity risk and constitutes a
major risk for life insurers and pension funds. For its modeling, measure-
ment, and management, academics have proposed a variety of stochastic
mortality models. The majority of these models, including the widely used

Astin Bulletin 51(2), 411-447. doi:10.1017/asb.2021.5 c© 2021 by Astin Bulletin. All rights reserved. This is an Open Access
article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/asb.2021.5 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.5
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/asb.2021.5


412 A. FREIMANN

1850 1900 1950 2000

–2
.5

–2
.0

–1
.5

–1
.0

1850 1900 1950 2000

0.
07

0.
08

0.
09

0.
10

0.
11

0.
12

(a) (b)

FIGURE 1: Historical period effects for English and Welsh males in the Cairns-Blake-Dowd (CBD) model.

Lee–Carter and Cairns–Blake–Dowd (CBD) model, decompose mortality
across the dimensions age, period, and sometimes cohort. For stochastic mor-
tality projections, often a random walk with drift (RWD) is used to project the
time-dependent parameters (also called period effects) into the future.

However, historical mortality patterns often reveal structural breaks which
are highly unlikely to be generated from a RWD. Figure 1 shows, exemplarily,
the historical period effects in the CBD model for English and Welsh males
(the model calibration is provided in the appendix). While the first time series
clearly exhibits a significant improvement in mortality over the last century,
the annual rate of improvement does not appear to be constant over time. This
observation can be further substantiated by a Chow test, which provides strong
statistical evidence for several break points in both time series (see Appendix
A.4). Permanent trend changes in mortality have also been identified by other
researchers including Li et al. (2011), who uses Zivot and Andrew’s test, and
Sweeting (2011), who also relies on the Chow test. Therefore, several authors
have proposed mortality models that can detect mortality trend changes in the
past including Li et al. (2011), O’hare and Li (2015), and Van Berkum et al.
(2016). However, these models have in common that they solely extrapolate
the most recent trend into the future without allowing it to change again at
future points in time.

However, the fact that the mortality trend has changed occasionally in the
past implies the risk of further trend changes in the future. Therefore, some
authors have developed stochastic mortality models that explicitly capture the
risk of random future mortality trend changes. In their locally linear CBD
model, Liu and Li (2016) incorporate ‘drift risk’ into the widely used RWD set-
ting by assuming the drifts themselves to follow another random walk. Hence,
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the prevailing mortality trends, which are represented by the drift terms, grad-
ually vary from year to year according to the realizations of this underlying
random walk. They show that their approach yields wider prediction inter-
vals in the long run compared to the original CBD model with fixed drifts
reflecting the uncertainty arising from potential future mortality trend changes.
Another attempt was made by Sweeting (2011) who argues that the time-
dependent parameters in the CBDmodel for England andWales do not follow
a difference-stationary RWD but appear to be trend-stationary. Therefore, he
proposes to model them as random fluctuations around piecewise linear and
continuous trends with changing slopes over time. While future trend changes
are also assumed to be normally distributed, they do not occur gradually from
year to year but only occasionally according to a fixed trend change probabil-
ity. The latter assumption is arguably more in line with the nature of detected
mortality trend changes in the past, which serve as the basis for his model cali-
bration. However, as pointed out by Börger and Schupp (2018), the assumption
of normally distributed trend change magnitudes is inconsistent with a calibra-
tion approach that only identifies material trend changes in the past. Since the
normal distribution has significant probability mass around zero, a rather high
variance is required to achieve that simulated trend changes are on average sim-
ilar in size to historical ones which leads to an overestimation of the variability
in future trend changes. Hence, Börger and Schupp (2018) propose a struc-
turally similar model by drawing the absolute trend change magnitudes from a
lognormal distribution while assuming the trend change signs to be positive or
negative with equal probability. Similarly to Liu and Li (2016), both Sweeting
(2011) and Börger and Schupp (2018) demonstrate that their approaches yield
wider predictions intervals in the long run compared to the RWD. However, as
shown by Börger and Schupp (2018), using normally distributed trend change
magnitudes for a trend-stationary model with changing slopes typically results
in wider prediction intervals compared to a lognormal distribution for reasons
discussed above.

In addition to the question of how to model longevity risk, its securitiza-
tion and the recent development of the global longevity risk transfer market
have attracted huge attention among both academics and practitioners. For
this emerging market, a great variety of longevity-linked securities, also called
longevity hedges or longevity derivatives, have been proposed in the literature,
see Blake et al. (2019) for an overview. However, the longevity risk transfer
market is still in an early state and illiquid and incomplete. Hence, longevity-
linked instruments cannot be priced based on observable market prices, that
is, mark-to-market, and the question arises how to put a ‘reasonable’ value on
them. Since stochastic mortality models are normally calibrated to historical
mortality data, they do not readily include a risk loading beyond best-estimate
values, and further steps in the form of risk adjustments are required to arrive
at reasonable and consistent (mark-to-model) prices, which are required under
modern risk-based solvency guidelines, see for example Wüthrich (2016). To
this end, several pricing techniques have been proposed in the literature, and
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we refer to Bauer et al. (2010) and Leung et al. (2018) for an overview. In this
work, we focus on two promising approaches:

• Inspired by risk-neutral valuation of financial derivatives, the risk-adjusted
pricing approach, often also referred to as risk-neutral approach, is widely
used, see among others Boyer and Stentoft (2013), Cairns et al. (2006), Chen
and Cox (2009), and Leung et al. (2018). The basic idea is to derive an
equivalent risk-adjusted measure under which prices are defined as expected
values of discounted future cash flows. Compared to the objective mea-
sure, a higher probability is assigned to scenarios of stronger mortality
improvements reflecting the risk adjustment made by longevity risk takers.

• Börger (2010) suggests to make inferences on prices for longevity-linked
securities from capital requirements for (re)insurers under modern risk-
based solvency regimes, such as Solvency II or the Swiss Solvency Test.
(Re)insurance companies are required to provide adequate regulatory cap-
ital, so-called Solvency Capital Requirements (SCRs), for all risks they are
exposed to including longevity. The so-called cost-of-capital approach pos-
tulates that a market player will only be willing to take longevity risk if the
expected return exceeds the expected additional capital charges for taking
the risk. Since the market is dominated by reinsurers, this approach seems
to be of high practical relevance. It has recently been taken up by Levantesi
andMenzietti (2017), who determine the relevant 99.5%Value at Risk (VaR)
over a multi-year horizon and by Zeddouk and Devolder (2019), who estab-
lish a setup that is more in line with the 1-year view of Solvency II and
compare the cost-of-capital approach with alternative approaches.

Naturally, mark-to-model valuation of longevity-linked securities relies
crucially on the suitability of the underlying stochastic mortality model for
the given purpose and on the adequacy of its mortality forecasts. As discussed
above, the occurrence of several mortality trend changes in the past clearly
calls for stochastic mortality trend modeling, which typically comes at the cost
of higher model complexity. However, using a more sophisticated mortality
model appears justified considering that disregarding the risk of future trend
changes seems inconsistent with historical mortality patterns, might signifi-
cantly understate the actual amount of risk taken, and might eventually lead to
insufficient risk premiums and to inadequate prices.

In the current paper, we address the valuation of longevity-linked securi-
ties in a stochastic modeling framework which explicitly considers the risk of
permanent random future mortality trend changes. At the core of our frame-
work is a simulation model for the underlying long-term mortality trend of
a reference population (typically the national population) that builds on pre-
vious works of Börger and Schupp (2018) and Schupp (2019). Furthermore,
we allow for portfolio-specific mortality characteristics by considering system-
atic mortality differentials between selected subpopulations and the reference
population as well as unsystematic fluctuations in portfolios of limited size.
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The model is therefore applicable to customized as well as to standardized
instruments that are linked to the mortality indices of the reference popula-
tion. Within this framework, we establish the above-introduced approaches
for determining adequate longevity risk premiums: first, we apply the tech-
nique of multivariate normalized exponential tilting, which is based on the
widely used Wang distortion operator, to construct a set of stochastic discount
factors, also called deflators, which imply equivalent risk-adjusted pricing mea-
sures under which the basic model structure is preserved. In the second step,
we rely on the cost-of-capital approach to find a reasonable range for the
market price of longevity risk. The associated derivation of longevity SCRs
consistently with regulatory requirements under Solvency II requires to model
the impact of new mortality information on best-estimate mortality assump-
tions over a 1-year horizon. To this end, we follow Börger et al. (2019b)
and clearly distinguish between two mortality trends: the actual but unob-
servable mortality trend prevailing at a certain point in time and the trend
an observer would estimate given the observed mortality patterns in previous
years. Best-estimate mortality assumptions for Solvency Capital Requirement
(SCR) computations are derived with the latter, whereas the former is used
to generate sample paths of future mortality. We discuss, calibrate, and apply
the presented approaches to price longevity swaps as examples for widely used
longevity-linked instruments.

Our work contributes to the literature on longevity risk pricing in the fol-
lowing ways: first and foremost, we explicitly include the major risk of random
permanent future mortality trend changes in the mark-to-model valuation of
longevity hedges. In light of the potential threat posed by an unprecedented
change in the long-term mortality trend to the solvency of longevity risk bear-
ers, our modeling framework constitutes a valuable alternative to existing
approaches. Second, we contribute to the ongoing debate of how to find rea-
sonable market prices of longevity risk in an incomplete market by relying
on regulatory capital charges for longevity risk as an appropriate reference
framework. In particular, we derive (future) capital charges for longevity risk
consistently with regulatory capital requirements under Solvency II and prop-
erly account for its stochastic nature. This approach has the key advantage of
giving a reasonable range for the market price of longevity risk without the
need for market price data, which are currently not publicly available.

The remainder of this paper is organized as follows. Section 2 introduces
our stochastic modeling framework. In particular, we describe the simula-
tion of future mortality trends and the pathwise derivation of best-estimate
mortality assumptions at future valuation dates for SCR computations. The
calibration of the model to the historical mortality experience of English and
Welsh males is provided in the appendix. In Section 3, we construct a set of
equivalent pricing measures and establish the cost-of-capital approach in the
context of a regulatory capital model under Solvency II. In a numerical appli-
cation in Section 4, we calibrate both pricing approaches, derive risk-adjusted
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forward rates for customized and index-based longevity swaps, and compare
our results with alternative modeling and pricing approaches. Finally, Section 5
concludes.

2. STOCHASTIC MORTALITY TREND MODEL

As outlined in the introduction, we now describe a stochastic modeling frame-
work which explicitly accounts for random future changes in the long-term
mortality trend. Following Börger et al. (2019b), we clearly distinguish between
the actual (but unobservable) mortality trend (AMT) prevailing at a certain
point in time and the estimated mortality trend (EMT) that an observer would
estimate given the observed mortality evolution up to that point in time.
Hence, our model consists of two components: a model for the stochastic
development of the AMT, which is presented in Section 2.2, and a model for
the derivation of the EMT, which is presented in Section 2.3. The latter is
required for deriving best-estimate mortality assumptions for SCR computa-
tions, whereas the former is used to generate sample paths of future mortality.
To account for portfolio-specific mortality characteristics, we extend the
combined AMT/EMT setup of Börger et al. (2019b) to multiple populations.

2.1. Multi-population model structure

Our modeling framework builds on a multi-population extension of the CBD
model structure as originally proposed by Cairns et al. (2006). We assume
a reference population for which the logit of the 1-year death probabilities is
parametrized as:

logit
(
q[R]x,t

)
:= log

(
q[R]x,t

1− q[R]x,t

)
= κ

(1)[R]
t + (x− x̄) κ (2)[R]t ,

where x̄ denotes the average age of the calibration age range. The first period
effect κ (1)[R]t captures the general level of mortality over time, while the second
time-dependent parameter κ (2)[R]t describes the slope of the mortality line in the
logit plot.

Relative to the reference population, we model mortality differentials
for NSub ≥ 1 distinct subpopulations, for example of different socioeconomic
status, also in logit-bilinear form, that is,

logit
(
q[p]x,t
)

− logit
(
q[R]x,t

)
= κ

(1)[p]
t + (x− x̄) κ (2)[p]t , p ∈ {1, . . . ,NSub},

where x̄ is the same for all subpopulations and chosen analogously to the
reference population. While the time-dependent parameters for the reference
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population represent the common long-term mortality trend of all (sub-)
populations, κ (1)[p]t and κ

(2)[p]
t account for subpopulation-specific mortality

differentials. Relative modeling approaches of this kind are widely used in the
field of multi-population mortality modeling, see for example Villegas et al.
(2017).

2.2. AMT model component

For stochastic mortality projections, we clearly distinguish between the fol-
lowing components of longevity risk: the long-term mortality trend risk of the
overall population, systematic subpopulation-specific mortality differentials,
and unsystematic small sample risk in portfolios of limited size. This rigorous
differentiation between the three risk drivers will later allow to assign a risk
premium to each longevity risk component, which in turn allows to price index-
based instruments that solely cover the risk originating from the reference
population.

2.2.1. Long-term mortality trend risk
For the projection of the time-dependent parameters of the reference popu-
lation, we follow Börger and Schupp (2018) and rely on a trend-stationary
stochastic process with changing slopes over time. The assumption of trend-
stationarity (as opposed to difference-stationarity) for the reference population
is further substantiated by a Dickey–Fuller test in Appendix A.4. Hence,
the observable period effects are modeled as random fluctuations around an
underlying unobservable piecewise linear mortality process, that is,

κ
(i)[R]
t = κ̂

(i)[R]
t + ε

(i)[R]
t , i= 1, 2,

where ε [R]t := (ε(1)[R]t , ε(2)[R]t )
′
follows a two-dimensional normal distribution with

mean zero and constant covariance matrix�[R]. It accounts for systematic fluc-
tuations in mortality, for example due to a mild winter or a flue wave. More
sophisticated techniques to account for transitory mortality shocks (e.g., due
to a pandemic) are proposed by Chen and Cox (2009) but do not seem justified
for our purposes. The actual underlying mortality processes are then projected
linearly as:

κ̂
(i)[R]
t = κ̂

(i)[R]
t−1 + d̂(i)[R]

t , i= 1, 2,

where the slope d̂(i)[R]
t , i= 1, 2 is interpreted as the AMT prevailing at time t.

We follow Börger and Schupp (2018) and update the AMTs independently of
each other as follows:

d̂(i)[R]
t = d̂(i)[R]

t−1 +O(i)[R]
t S(i)[R]

t M (i)[R]
t , i= 1, 2
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based on the following mutually independent random variables:

• The Bernoulli-distributed random variableO(i)[R]
t ∈ {0, 1} indicates whether a

permanent trend change occurs between t− 1 and t or not. The trend change
probability is denoted as p(i)[R] > 0.

• Given a trend change occurs, S(i)[R]
t ∈ {−1, 1} determines its sign, where we

assume positive or negative trend changes to be equally likely under the
objective measure.

• Finally, M (i)[R]
t > 0 denotes the absolute trend change magnitude, which is

modeled by a lognormal distribution with parameters μ(i)[R]
M and σ (i)[R]

M

2
.

Once a trend change occurs, the AMT changes permanently according to the
realized trend change sign and the lognormally distributed trend change mag-
nitude. As argued by Börger and Schupp (2018), the above decomposition of
the trend change intensities offers some desirable properties. Analogously to
the models of Liu and Li (2016) and Sweeting (2011), a symmetric distribution
for the trend change intensities assures that the prevailing AMT (even though
unobservable) always represents the best-estimate trend for any future point
in time. However, using a heavy-tailed lognormal distribution (instead of a
normal distribution with significant mass around zero) produces rather signifi-
cant trend changes, which is arguably in line with the nature of material trend
changes in the past.

Since data on historical mortality trend changes are sparse, the calibra-
tion of stochastic mortality trend processes typically involves a considerable
amount of parameter uncertainty. Unlike Liu and Li (2016) and Sweeting
(2011), we explicitly account for parameter uncertainty in the starting values
of the simulation as well as in the trend change parameters by sampling them
at the start of each simulation from suitable distributions, see Appendix A.3
for details.

2.2.2. Subpopulation-specific mortality differentials
In the field of multi-population mortality modeling, vector autoregressive inte-
grated moving average (VARIMA) models are commonly used to project
mortality differentials between closely related populations. In Appendix A.5,
we find that the first-order integrated VARIMA model is suitable for our data
set and that a multivariate RWD in particular provides the best compromise
between a satisfactory fit and a parsimonious model structure in terms of the
Bayesian information criterion (BIC). Hence, we jointly model the vectors of
subpopulation-specific period effects κ [p]t := (κ (1)[p]t , κ (2)[p]t )

′
, p ∈ {1, . . . ,NSub} as:

κ
[p]
t+1 =μ[p] + κ

[p]
t + ε

[p]
t , p ∈ {1, . . . ,NSub},

where μ[p] ∈R2 denotes the drift and ε
[p]
t ∈R2 denotes the annual random

innovations for subpopulation p ∈ {1, . . . ,NSub}. The joint vector ε [Sub]t :=
(ε [1]t , . . . , ε [NSub]

t )
′ ∈R2NSub of annual innovations follows a multivariate normal
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distribution with mean zero and covariance matrix �[Sub] ∈R(2NSub)×(2NSub). We
follow Villegas et al. (2017) and model these subpopulation-specific mortality
differentials independently of the stochastic trend processes for the reference
population. The latter serve as the long-term mortality trend for all subpopu-
lations, which, by construction, implies a reasonable correlation between the
subpopulations. Note that a multivariate RWD has already been used in pre-
vious studies for modeling socioeconomic mortality differentials for England,
see for example Villegas and Haberman (2014).

We would like to stress that the RWD can easily be replaced by alterna-
tive time series processes if desired for other data sets or model purposes. For
instance, often mean-reverting processes (such as the first-order vector autore-
gressive (VAR) process) are used to enforce ‘coherent’, that is, non-diverging,
mortality rates between closely related populations in the long run, see for
example Villegas et al. (2017). For a comparison of different modeling assump-
tions and a critical discussion on the concept of ‘coherence’, we refer to Li et al.
(2017).

2.2.3. Unsystematic small sample risk
Finally, idiosyncratic risk in a portfolio of limited size is accounted for by
sampling survivors over time from a Binomial distribution. In each model
path, we draw realizations for survivors aged x+ 1 at time t+ 1 coming from
subpopulation p from the following Binomial distribution:

B[p]
x+1,t+1 ∼Binom

(
B[p]
x,t, 1− q[p]x,t+1

)
, p ∈ {1, . . . ,NSub},

given B[p]
x,t survivors aged x still alive at time t.

2.3. EMT model component

For deriving longevity SCRs consistently with regulatory requirements under
Solvency II, the framework needs to model the impact of new mortality infor-
mation on best-estimate mortality assumptions at future points in time (see
Section 3.2 for details). As argued by Börger et al. (2019b), an observer at
some future point in time T is generally not able to clearly distinguish between
a recent change in the AMT and a ‘normal’ random fluctuation around it. For
the best-estimate mortality projection starting at time T , an actuary would
calibrate a mortality model to the most recent available mortality data. For
simplicity, we assume recalibration of the same CBD model structure to suf-
ficiently large populations, so that unsystematic variations in the data are
negligible. When an additional year of data becomes available, recalibrating
the multi-population CBD model to the extended data set would not affect
the period effects in previous years. This is also known as ‘new-data-invariant
property’ (cf. Tan et al., 2014) and allows to directly derive the updated best-
estimate mortality assumptions based on the realized time processes up to time
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T , which makes the modeling framework highly efficient in practical applica-
tions. Note that for many other models, for instance for the Lee–Carter model,
a full computationally expensive model recalibration would be required.

In our multi-population setting, this pathwise derivation of best-estimate
mortality consists of two steps: estimating the AMT for the reference popu-
lation followed by an adjustment for potentially differing mortality levels and
trends for the subpopulations.

2.3.1. Reference population
For the best-estimate mortality projection for the reference population beyond
time T , we follow a deterministic central path of mortality under the CBD
model, that is,

logit
(
q̃[R]x,t (T)

)
= κ̃

(1)[R]
T + (t−T) d̃(1)[R]

T

+ (x− x̄)
(
κ̃
(2)[R]
T + (t−T) d̃(2)[R]

T

)
, t>T ,

where κ̃ (i)[R]T , i= 1, 2 denotes the prevailing mortality level and d̃(i)[R]
T , i= 1, 2

denotes the current EMT. Using a deterministic projection of mortality rates
emulates common actuarial practice and is frequently used as a pragmatic
alternative to deriving the conditional mean (which would require a computa-
tionally expensive additional layer of inner simulations), see for example Cairns
et al. (2014) or Börger et al. (2019b). The parameters κ̃ (i)[R]T and d̃(i)[R]

T , i= 1, 2
need to be estimated based on the observed mortality patterns in previous
years. To this end, we follow Börger et al. (2019b) by applying a weighted linear
regression on the most recent data points based on the following exponentially
decaying weights:

w(i)(t,T) := 1(
1+ 1/ψ (i)

)T−t , i= 1, 2, t≤T .

The weighting parameters ψ (i) ≥ 0, i= 1, 2 need to be specified to find a rea-
sonable trade-off between avoiding an overreaction of the EMT to ‘normal’
random fluctuations around the AMT on the one hand and ensuring a prompt
detection of a recent mortality trend change on the other hand. The first objec-
tive can be achieved by including enough data points, whereas the second
objective requires sufficient weight on the most recent data points, which nat-
urally contain the most relevant information. We numerically determine the
optimal weighting by minimizing the mean squared errors between the unob-
servable AMT and the derived EMT, see Appendix A.6 for details. We would
like to stress that exponential weighting guarantees that the updated EMT will
remain unchanged if the new data point realizes exactly as expected under the
previous EMT.
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2.3.2. Subpopulations
Given best-estimate mortality for the reference population, subpopulation-
specific rates are projected beyond time T by means of the following adjusted
central path of mortality:

q̃[p]x,t(T) := logit−1
(
logit

(
q̃[R]x,t (T)

)
+ κ̃

(1)[p]
T + (t−T) ν̃(1)[p]T

+ (x− x̄)
(
κ̃
(2)[p]
T + (t−T) ν̃(2)[p]T

))
for each subpopulation p ∈ {1, . . . ,NSub}, where the subpopulation-specific
adjustment terms κ̃ (i)[p]T , i= 1, 2 account for differing mortality levels and
ν̃
(i)[p]
T , i= 1, 2 capture differing mortality trends relative to the reference pop-
ulation. For the sake of consistency, we derive these quantities by applying the
same weighted linear regression (including the same weights) as for the ref-
erence population. Due to the properties of the weighted linear regression,
this ensures ‘order-invariance’ in the sense that the above two-step estima-
tion approach produces the same best-estimate mortality projection as directly
applying a weighted linear regression to the overall subpopulation-specific
period effects κ (i)[R]t + κ

(i)[p]
t , i= 1, 2.

3. PRICING APPROACHES

We consider a market participant, referred to as the risk taker, who is willing
to take on longevity risk by issuing longevity-linked securities at time zero. To
focus on longevity risk, we do not deal with operational risk or counterparty
credit risk and assume independence between mortality and interest rates.
The time-zero random present value of all future instrument cash flows to the
counterparty, also referred to as the hedger, is denoted as:

H(0) :=
τ∑
t>0

B(t)−1CFH(t),

where τ denotes the contract maturity, (B(t))t≥0 denotes the value process
of a risk-free bank account with B(0) := 1, and CFH(t), 0< t≤ τ denotes
the cash flow at time t, where a positive cash flow represents a payment
from the risk taker to the hedger. In exchange, the risk taker demands the
instrument’s objective best-estimate value plus a risk premium. Depending on
the instrument’s payout structure, either a single contract premium is charged
at inception or the risk premium is directly included in the payoff structure by
means of risk-adjusted forward rates, so that no payment exchanges hands at
inception. In either case, the risk premium demanded on top of the objective
best-estimate value needs to be determined.

We now establish two pricing methods for deriving reasonable risk pre-
miums in the previously introduced modeling framework: the risk-adjusted
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pricing approach based on a pricing measure in Section 3.1 and the cost-
of-capital approach in Section 3.2. In Section 3.3, we briefly discuss and
qualitatively compare both approaches. By way of illustration, we will price
longevity swaps in Section 4 assuming constant deterministic interest rates, that
is, B(t) := (1+ r)t , t≥ 1 for some constant interest rate r, although we avoid
any loss of generality in the approaches presented in this section.

3.1. Risk-adjusted measure

A widely used approach for pricing longevity-linked instruments is to derive
a risk-adjusted measure Q, which is equivalent to the objective (or real-world)
measure P, under which prices are defined as expected values of discounted
future cash flows. For forward-type instruments, the forward rates are typically
determined at time zero, so that no payment exchanges hands at inception,
that is, EQ (H(0))= 0. Unlike many financial assets, the underlying longevity
risk drivers are not continuously tradeable. Hence, longevity-linked payments
cannot be replicated and a unique risk-adjusted measure cannot be deduced
based on the principle of no-arbitrage. Instead, we rely on the concept of defla-
tors, also called state price densities, to construct an equivalent risk-adjusted
measure. In our incomplete market setting in discrete time, prices can be
represented in the following equivalent form:

EQ

(
τ∑
t>0

CFH(t)B(t)−1

)
=EP

(
τ∑
t>0

CFH(t)
t∏

s=1

ϕs

)
,

where the random variables ϕs � 0, s≥ 1, commonly referred to as span-
deflators, play the role of stochastic discount factors that assign a value at time
s− 1 to random cash flows that occur at time s. Hence, there is a one-to-one
correspondence between risk-adjusted valuation and stochastic discounting
and the task of constructing an appropriate pricing measure is equivalent
to specifying reasonable span-deflators. For the theoretical foundations of
market-consistent actuarial valuation, we refer to Section 2 inWüthrich (2016).

In our stochastic mortality trend model, longevity-linked payments depend
on multiple risk drivers simultaneously, namely the most prominent risks
of unpredictable occurrence (O), sign (S), and magnitude (M) of future
trend changes, as well as annual fluctuations (ε) around the AMT, and
subpopulation-specific mortality differentials (Sub). Given stochastically inde-
pendent risk drivers, we define the following multiplicative span-deflators:

ϕt := ϕrtϕ
O
t ϕ

S
t ϕ

M
t ϕ

ε
t ϕ

Sub
t , t≥ 1,

where ϕrt , t≥ 1 plays the role of interest rate discounting, for example ϕrt :=
(1+ r)−1 in a constant interest rate environment, and ϕRiskt , t≥ 1 denotes the
span-deflators for the longevity risk driverRisk ∈ {O, S,M, ε, Sub}, which need
to be carefully specified, cf. Section 2.6.2 inWüthrich (2016). Loosely speaking,
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meaningful span-deflators for longevity risk pricing should take high values in
states that are less favorable for longevity risk takers and low values in states
of higher mortality. Therefore, they imply an equivalent pricing measure that
assigns, compared to the objective measure, higher probability mass to sce-
narios of stronger mortality improvements, which typically trigger higher (or
more) payouts of longevity-linked instruments. In line with the meaning of the
period effects in the CBDmodel, the risk adjustment should aim at shifting the
distributions of both time processes downward, particularly also the second
period effect since longevity at high ages generally presents the greatest risk.
Thereby, a risk loading beyond best-estimate values is induced for pricing pur-
poses. To avoid ambiguity, the span-deflators should satisfy E

(
ϕRiskt

)= 1 for
all t≥ 1 and each longevity risk driver Risk ∈ {O, S,M, ε, Sub}.

To construct a class of meaningful span-deflators (or equivalent pric-
ing measures, respectively), we follow Chen and Cox (2009) and Boyer and
Stentoft (2013) and apply the technique of multivariate normalized expo-
nential tilting, which offers several appealing features (cf. Wang, 2007): first,
given independent risks, it is equivalent to applying the widely used (multi-
variate) Wang transform to each longevity risk driver individually, which in
turn ensures consistency between the risk drivers, and we refer to Wang (2002,
2007) for details. At this point, we would like to stress that our distortions
do not act directly on the distribution of the instrument one seeks to price,
which would be in the original spirit of Wang (2002), but on the distribu-
tions of the underlying longevity risk drivers. As pointed out by Chen and Cox
(2009), this has the advantage of giving a risk-adjusted measure that properly
accounts for correlations of mortality over time and is applicable to a wide
range of instruments. Second, the (multivariate) Wang transform preserves the
Bernoulli, normal, and lognormal distribution. Hence, the basic model struc-
ture is preserved under Q which allows to directly simulate the risk-adjusted
distribution, which is of particular importance for practical applications. In
detail, we apply the (multivariate) Wang transform based on the distortion
parameters λ(i)Risk > 0, i= 1, 2 to each risk driver Risk ∈ {O, S,M, ε, Sub} indi-
vidually and obtain the following span-deflators and implied risk-adjusted
dynamics for each year t≥ 1:

• Trend change occurrence
We define ϕOt :=∏2

i=1 ϕ
(i)O
t with span-deflators for time process i= 1, 2 of

ϕ
(i)O
t :=

⎧⎪⎨⎪⎩
�
(
�−1(p(i)[R])+λ(i)O

)
p(i)[R] ≥ 1, if O(i)[R]

t = 1 (trend change occured)

1−�
(
�−1(p(i)[R])+λ(i)O

)
1−p(i)[R] ≤ 1, if O(i)[R]

t = 0 (no trend change occured),

where � denotes the standard normal cumulative distribution function
(CDF). Under the risk-adjusted measure, the random variables O(i)[R]

t ,
i= 1, 2 indicating the occurrence of a trend change between two consecutive
years are again Bernoulli-distributed with risk-adjusted trend change
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probabilities �(�−1(p(i)[R])+ λ
(i)
O )≥ p(i)[R], i= 1, 2 (see Definition 2.3 in

Wang, 2007). Hence, the risk-adjusted measure assigns a higher probability
to scenarios with more trend changes.

• Trend change sign
Regarding the signs of future trend changes, we define ϕSt :=

∏2
i=1 ϕ

(i)S
t , where

the span-deflators for time process i= 1, 2 are given by:

ϕ
(i)S
t :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�
(
�−1(0.5)+λ(i)S

)
0.5 ≥ 1, if O(i)[R]

t = 1, S(i)[R]
t = −1 (negative trend change)

1−�
(
�−1(0.5)+λ(i)S

)
1−0.5 ≤ 1, if O(i)[R]

t = 1, S(i)[R]
t = +1 (positive trend change)

1, else (no trend change occured).

Hence, the deflators take low values in scenarios of positive trend changes in
favor of paths with negative trend changes. UnderQ, negative trend changes
then have a probability of Q(S(i)[R]

t = −1)=�(�−1(0.5)+ λ
(i)
S )≥ 0.5, i= 1, 2.

• Trend change magnitude
For the stochastic trend change magnitudes M (i)[R]

t , we choose ϕMt :=∏2
i=1 ϕ

(i)M
t based on the following span-deflators for time process i= 1, 2:

ϕ
(i)M
t :=

⎧⎨⎩exp
(
λ
(i)
M

log
(
M(i)[R]

t

)
−μ(i)[R]

M

σ
(i)[R]
M

− 1
2λ

(i)
M

2
)
, if O(i)[R]

t = 1 (trend change occured)

1, else (no trend change occured).

UnderQ, the trend change magnitudesM (i)[R]
t , i= 1, 2 are again lognormally

distributed with risk-adjusted parameters μ(i)[R]
M + λ

(i)
Mσ

(i)[R]
M ≥μ(i)[R]

M , i= 1, 2
and same volatility as under P (see Definition 2.3 in Wang, 2007).

• Annual fluctuations around the AMT
Considering the normally distributed fluctuations ε [R]t around the AMT as
risk driver, we obtain span-deflators of the form:

ϕεt :=
2∏
i=1

exp

⎛⎝−λ(i)ε
ε
(i)[R]
t − 0√
�

[R]
i,i

− 1
2
λ(i)ε

2

⎞⎠ 1
cε

= exp
(
−�′

εD
− 1

2
�[R]ε

[R]
t − 1

2
�

′
ε�ε

)
1
cε
,

whereD�[R] denotes a 2-by-2 matrix with entries�[R]
i,i , i= 1, 2 on the diagonal

and �ε := (λ(1)ε , λ(2)ε )
′
is the relevant market price of risk vector. The nor-

malizing coefficient cε := exp (− 1
2�

′
ε�ε + 1

2�
′
ε�

[R]
ρ �ε) with �[R]

ρ being the
correlation matrix of ε [R]t ensures that E(ϕεt )= 1 by the properties of the mul-
tivariate lognormal distribution. Under Q, annual fluctuations around the

AMT are again normally distributed with risk-adjusted mean −D 1
2
�[R]�

[R]
ρ �ε

and same covariance matrix �[R] (see Theorem 5.1 in Wang, 2007).
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TABLE 1

OBJECTIVE AND RISK-ADJUSTED MODEL DYNAMICS.

Risk driver Distribution under P Distribution under Q

Trend change occurrence Bernoulli
(
p(i)[R]

)
Bernoulli

(
�
(
�−1

(
p(i)[R]

)+ λ
(i)
O

))
Trend change sign P

(
S(i)[R]
t = −1

)
= 0.5 Q

(
S(i)[R]
t = −1

)
=�

(
�−1(0.5)+ λ

(i)
S

)
Trend change magnitude LN

(
μ

(i)[R]
M , σ (i)[R]

M

2
)

LN
(
μ

(i)[R]
M + λ

(i)
Mσ

(i)[R]
M , σ (i)[R]

M

2
)

Fluctuations around AMT N (
0,�[R]

) N
(
−D 1

2
�[R]�

[R]
ρ �ε ,�[R]

)
Mortality differentials N (

0,�[Sub]
) N

(
−D 1

2

�[Sub]�
[Sub]
ρ �Sub,�[Sub]

)

• Subpopulation-specific mortality differentials
Analogously, we obtain for the Gaussian subpopulation-specific mortality
differentials:

ϕSubt := exp
(

−�′
SubD

− 1
2

�[Sub]ε
[Sub]
t − 1

2
�

′
Sub�Sub

)
1
cSub

,

where D�[Sub] denotes a diagonal matrix with entries �[Sub]
i,i , i= 1, . . . , 2NSub.

For the market price of risk vector �Sub := 1
NSub

(λ(1)Sub, λ
(2)
Sub, . . . , λ

(1)
Sub, λ

(2)
Sub)

′ ∈
R2NSub , we assume a common market price of risk for subpopulation-specific
mortality differentials λ(i)Sub, i= 1, 2 which is evenly distributed among the
subpopulations. Of course, this assumption might be relaxed when fitting the
model to actual market prices, which is at present not possible due to the lack
of publicly available pricing information (see Section 3.3 for a discussion).
Again, a normalization coefficient of the form cSub := exp (− 1

2�
′
Sub�Sub +

1
2�

′
Sub�

[Sub]
ρ �Sub) is required with �[Sub]

ρ representing the correlation matrix.
Under Q, the Gaussian model structure is preserved and subpopulation-
specific mortality differentials are again driven by a multivariate normal

distribution with risk-adjusted mean −D 1
2

�[Sub]�
[Sub]
ρ �Sub and same covariance

matrix as under P (see Theorem 5.1 in Wang, 2007).

Besides, we omit a further adjustment for diversifiable small sample
risk and we follow most of the existing literature and refrain from pricing
parameter uncertainty to avoid over-complexity. After sampling the model
parameters at the start of each simulation path from suitable distributions
as outlined in Appendix A.3, the change of measure for pricing purposes is
conducted conditional on the drawn parameter set. As summarized in Table 1,
the basic model structure is retained under this change of measure.

However, the question of how to calibrate the market prices λ(i)Risk > 0,
i= 1, 2 assigned to the risk driversRisk ∈ {O, S,M, ε, Sub}, that is, which span-
deflators to choose from the derived set of candidates, remains open. Also,
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a discussion on whether all risk drivers should be included in the deflator is
warranted. We address these issues in Section 3.3.

3.2. Cost-of-capital approach

Under modern risk-based solvency regimes, insurance companies are required
to back their business with adequate economic capital. From the perspective of
a longevity risk taker, the expected return needs to compensate at least for the
additional expected costs of providing economic capital for assuming the risk.
Hence, the expected cost of capital for taking on the risk can be interpreted as
a minimum risk loading on top of the objective best-estimate value.

Under Solvency II, the SCR is defined as the 99.5% VaR of the basic own
funds over a 1-year horizon, where the basic own funds correspond to the
difference between the market value of assets and the market value of liabil-
ities. Loosely speaking, the SCR corresponds to the capital required to cover
all losses which may occur over the following year at a confidence level of
at least 99.5%. Alternatively, the Solvency II directive allows companies to
apply a standard formula for longevity risk based on a simplified one-off shock
approach. However, we focus on a risk-based (partial) internal model, since the
standard formula’s adequacy for pricing purposes is questionable due to struc-
tural shortcomings, see Börger (2010). In what follows, we exclusively focus on
the longevity SCR and neglect any further potential diversification effects with
an existing business mix (see Section 3.3 for a discussion).

From the risk taker’s perspective, longevity risk over a 1-year horizon
consists of two components (cf. Börger, 2010):

• First, the risk that next year’s realized mortality will be lower than antic-
ipated, for example due to a mild winter, triggering higher (or more)
payments than anticipated.

• Second, the risk that the company will have to depreciate its position at the
end of the year due to revised long-term mortality assumptions for the time
beyond.

Clearly, both components might have an impact on the value of a longevity-
linked security. Following Börger (2010) and Börger et al. (2019b), we assume
that the remaining assets do not contribute to the longevity SCR and that there
is no loss-absorbing capacity of technical provisions. Under these assumptions,
the SCR in year T for issuing a longevity-linked instrumentH is defined as the
99.5% quantile of

P (T ,T + 1)
(
H̃(T + 1)+CFH(T + 1)

)− H̃(T),

where

• H̃(T) denotes the time T best-estimate value of all future cash flows,
• CFH(T + 1) denotes the random cash flows that might occur over the year,
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• H̃(T + 1) denotes the best-estimate value of all future cash flows at time
T + 1 according to potentially revised mortality assumptions, and

• P (T ,T + 1) represents the timeT price of a zero coupon bond with maturity
T + 1.

The instrument’s valuation at timeT (orT + 1, respectively) is conducted using
the best-estimate central path of mortality derived with the EMT model com-
ponent at that point in time (see Section 2.3) and the prevailing risk-free interest
rate term structure.

The time-zero random present value of the cost of capital is then given by:

CoC := rCoC
∑
t≥0

P(0, t+ 1)SCR(t),

where rCoC ≥ 0 denotes the minimum rate of return in excess of the risk-free
rate that investors expect for providing capital. Obviously, the SCR at a future
point in time depends on realized mortality up to that point in time and hence
is a random variable. Consequently, the accumulated cost of capital is also a
random variable and its exact computation requires the determination of each
year’s SCR conditional on realized mortality. We deal with this additional
layer of complexity within a two-level nested Monte Carlo simulation: given
an outer simulation path for realized mortality, the SCR at a certain point in
time is computed by simulating mortality over a 1-year horizon, reevaluating
the position using the EMT model component, and empirically deriving the
99.5% quantile. Note that the use of a pragmatic central path of mortality in
the EMT model component avoids an additional layer of nested simulations
in practical applications and constitutes a valid approach for symmetric
payout structures since it provides a reasonable approximation for the mean.
Nevertheless, the valuation of option-type contracts over a multi-year horizon
would call for a third level of nested simulations (or for a more tractable
stochastic mortality model). Overall, the entire distribution of the time-zero
random present value of future capital charges can be derived.

The risk taker demands at least the instrument’s objective best-estimate
value plus the expected cost of capital giving a lower bound for the risk
premium of EP (CoC). Assuming a cost-of-capital rate of rCoC = 6%, it cor-
responds to the risk margin under Solvency II, which has to be reserved in
addition to the best-estimate liabilities. In practice, the risk margin is usually
approximated by assuming a future mortality evolution according to its current
best estimate, see for example Zeddouk and Devolder (2019). In contrast, we
empirically derive an entire distribution for future capital charges from which
the risk margin can be derived.

3.3. Discussion and qualitative comparison

In this section, we briefly compare and comment on the presented pricing
approaches with regard to their economic justification, practical applicability,
and calibration.
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3.3.1. Economic justification
As argued by Cairns et al. (2006), pricing longevity-linked securities under a
risk-adjusted measure would only be fully justified in a complete market in
which all longevity-linked payments can be replicated. Hence, given the current
stage of the market, the risk-adjusted measure is not unique and different mar-
ket players might rely on different choices. However, in light of the potential
size of the longevity risk transfer market, further market development toward
higher liquidity can be expected (cf. Blake et al., 2019). Once a deep and liq-
uid market develops, observable market prices might ultimately imply a unique
risk-adjusted measure. Even if risk-adjusted valuation under a pricing measure
is not yet fully economically justified for longevity risk pricing, it provides at
least a theoretically sound approach for deriving prices which might eventually
prevail in a fully developed market.

The cost-of-capital approach on the other side is inspired by risk-based
capital requirements for (re)insurers. It is in line with the interpretation of the
risk margin under Solvency II as a loading for non-hedgeable risk that other
(re)insurance companies would be expected to require to take over the obliga-
tions. Of course, this argument only applies to (re)insurers that are regulated by
a solvency regime. Nevertheless, since the global longevity risk transfer market
is at present dominated by reinsurance companies, this approach seems to be
of high practical relevance and economically justified.

3.3.2. Practical applicability
From a practical point of view, risk-adjusted valuation under a pricing measure
offers several desirable features. As previously outlined, the change of measure
preserves the basic model structure which allows to directly simulate the risk-
adjusted distribution and to efficiently price various types of longevity-linked
securities, including option-type contracts, in a Monte Carlo simulation. In
particular, a set of forward rates can be derived for a class of small building
blocks, such as q-forwards or s-forwards. Instruments which can be written as
a linear combination of these smaller building blocks can then be priced based
on these forward rates due to the linearity of the pricing operator. However,
the calibration of multiple market prices of risk for practical applications is not
straightforward as we address in the next section.

By contrast, the cost-of-capital approach only requires specification of a
single cost-of-capital rate for which a legally prescribed reference point of
6% is available under Solvency II. On the other side, it involves computa-
tionally complex SCR derivations over the entire term of the hedge contract.
Furthermore, it merely offers a valid starting point for a reasonable risk pre-
mium. In fact, prices might also depend on potential diversification benefits
with the risk taker’s existing business mix, which we do not explicitly deal with.
In practice, SCRs are typically derived for each submodule separately and then
aggregated by explicitly taking into account potential diversification benefits.
The cost of capital for issuing a longevity hedge net of diversification effects
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could be quantified by means of a reallocation principle (such as the Euler
Principle). Consequently, different companies might have different appetites
for longevity risk, and the pricing operator is therefore generally not linear.

3.3.3. Calibration
First, we address the question of whether all risk drivers for which we pro-
posed a suitable distortion in Section 3.1 should be included in the deflator.
In principle, investors should only be compensated for taking undiversifiable
risks. Hence, unsystematic fluctuations due to a small portfolio size are not
considered in the deflator. In contrast, the systematic risks of random occur-
rence, sign, and magnitude of future trend changes should clearly be included.
Also, annual fluctuations around the AMT which account for systematic tran-
sitory effects on mortality, for example, less people than usual are dying from
flue, cannot readily be diversified by increasing the contract volume. In particu-
lar in the short run, such transitory effects may trigger higher hedge payments
than anticipated which justifies consideration in the deflator. However, risk
takers might to some extent mitigate their exposure to these transitory effects
by issuing contracts with different maturities. Hence, some investors might
arguably be willing to accept a lower risk premium for transitory fluctuations
around the AMT. Similarly, the exposure to systematic mortality differen-
tials cannot be diversified with increasing volume but, to some extent, by
pooling portfolios with different socioeconomic characteristics. However, the
volume of annuity business is typically biased toward the healthier and more
affluent part of the overall population. Hence, it seems at least questionable
whether longevity risk takers are able to maintain a well-balanced portfolio
with regard to socioeconomic characteristics. Since these diversification oppor-
tunities depend on the risk taker’s existing portfolio or his ability to write
business in different market segments, respectively, consideration in the defla-
tor appears justified. To demonstrate the full capabilities of our model in the
numerical part, we include both annual fluctuations around the AMT and
subpopulation-specific mortality differentials in the deflator. Nevertheless, we
would like to stress that the market prices for individual risk drivers can easily
be switched off if desired.

Regarding the calibration of the market price of longevity risk, there is
an ongoing debate on how to find reasonable values in an incomplete mar-
ket. If a rich set of price data was publicly available, the optimal distortion
parameters could be numerically calibrated to fit market prices in terms of a
predefined target function, see for example Chen and Cox (2009). However,
this approach would require estimation of up to 10 distortion parameters in our
setup. Unfortunately, sufficient pricing information on long-term longevity-
linked securities is currently not publicly available. As argued by Wang (2007)
and Chen and Cox (2009), multivariate normalized exponential tilting ensures
a consistent interpretation of the tilting parameters among different risks via
percentile mapping to standard normal variables. This justifies the widely used
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assumption of equal market prices for all risk drivers and allows to interpret the
common distortion parameter, denoted by λ> 0, as market price of longevity
risk, see for example Cairns et al. (2006), Chen and Cox (2009), or Leung et al.
(2018). Under this restriction, the calibration narrows down to the specifica-
tion of a single parameter. Nevertheless, even though several ideas have been
proposed on how to find a reasonable market price of longevity risk in the
absence of reliable market data, no consensus has been reached. For instance,
Lin and Cox (2005) rely on market annuity quotes, Loeys et al. (2007) attempt
to deduce a reasonable market price from other asset classes like stocks, or
Cairns et al. (2006) and Leung et al. (2018) rely on the price of the announced
but never issued EIB/BNP bond.

Naturally, there is also a large uncertainty regarding the ‘correct’ cost-of-
capital rate. In practice, the rate of return at which shareholders are willing
to provide equity might differ among different (re)insurers depending on their
solvency and credit rating. For the risk margin computation under Solvency II,
the cost-of-capital rate is currently set to 6% which offers a valid starting point
for finding a reasonable market price of longevity risk: it can be calibrated to
the capital charges for a given longevity-linked instrument so that the risk-
adjusted measure reproduces this risk loading (cf. Börger, 2010; Zeddouk and
Devolder, 2019). Given the interpretation of the risk margin under Solvency
II, this is also in the spirit of Wüthrich and Merz (2013) who argue that risk-
adjusted valuation based on probability distortions should provide values at
which ‘liabilities could be transferred between two knowledgeable and willing par-
ties in an arm’s length transaction’. In light of the current market environment,
we believe that the presented cost-of-capital approach provides an appropriate
reference framework for finding a reasonable market price of longevity risk.
Obviously, the results depend on the considered instrument and vary between
companies. While (re)insurers will typically target a return on equity above the
regulatory cost-of-capital rate on the one hand, they may, on the other hand,
also accept lower risk premiums due to diversification benefits. Overall, we
believe that a calibration based on a cost-of-capital rate of 6% is appropriate.
We implement this approach in the next section.

4. NUMERICAL ILLUSTRATIONS

For our numerical illustrations, we calibrate the mortality model to the his-
torical mortality experience of the male population of England and Wales.
We consider the national population as the reference population and we rely
on NSub = 5 socioeconomic subpopulations (ordered from the most to the
least deprived areas) based on the Index of Multiple Deprivation (IMD) for
England. We extrapolate mortality up to a limiting age of 130 years. For more
details on the model calibration, including the underlying data set, we refer to
the appendix. Furthermore, we assume a risk-free interest rate of r= 2% and a
cost-of-capital rate of rCoC = 6%. We perform a two-level nested Monte Carlo
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simulation with 10,000 outer sample paths and additional 10,000 inner 1-year
scenarios for the SCR computations.

In this section, we apply the proposed pricing methods in a simplified
setting. By way of illustration, we consider a hedger wishing to hedge the
longevity risk arising from a portfolio of immediate (or deferred) life annu-
ities. Starting at the retirement age of xR = 65 years, the beneficiaries receive
a lifelong payment of one unit of currency paid at the beginning of each year.
The exemplary portfolio consists of NBook = 10, 000 policyholders belonging to
the same cohort, where we consider different starting ages x0 ∈ {50, 65, 80} at
time zero.

Following Haberman et al. (2014), we capture portfolio-specific mortal-
ity characteristics with a so-called ‘characterization approach’. Assuming that
the majority of portfolio-specific mortality characteristics are captured by the
considered socioeconomic subpopulations, we interpret the hedger’s book pop-
ulation as a subset of the reference population with a specific socioeconomic
structure. For illustrative purposes, we use an exemplary initial socioeconomic
book composition of η= (0%, 0%, 30%, 30%, 40%). The number of initial poli-
cyholders coming from subpopulation p ∈ {1, . . . ,NSub} is then given byB[p]

x0,0 :=
ηpNBook ∈N. As pointed out by Haberman et al. (2014), this approach offers
several advantages. Most importantly, the model is calibrated to a credible and
sufficiently rich data set rather than to smaller and therefore often less reliable
portfolio-specific data. Hence, it can be applied to portfolios of any size with-
out mistaking unsystematic variations in the data due to a small sample size
for systematic mortality differentials. Also, the evolution of the socioeconomic
composition over time is adequately captured. Of course, portfolio character-
istics might differ from our exemplary values, for example, when considering
pension funds for specific industries. In this case, they can easily be altered (for
instance by assigning more weight to the less affluent subpopulations) without
having to recalibrate the model, which offers great flexibility. As demonstrated
by Villegas et al. (2017), a suitable weighting across five socioeconomic sub-
populations usually allows to reliably capture the key mortality characteristics
of typical pension schemes.

In Section 4.1, we introduce longevity swaps as suitable hedging instru-
ments for this setting. As outlined in the previous section, we then derive a
range of reasonable market prices of longevity risk in Section 4.2 based on the
cost-of-capital approach and discuss the corresponding risk-adjusted forward
rates in Section 4.3. Finally, we compare our results with alternative modeling
and pricing approaches in Section 4.4.

4.1. Longevity swaps

At present, the longevity risk transfer market is dominated by longevity swaps
(cf. Blake et al., 2019). These contracts can either be customized, that is,
tailored to the characteristics of the hedger’s book population, or index-based
and linked to the reference population.
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4.1.1. Customized longevity swaps
In a customized longevity swap, the risk taker pays a floating series of cash
flows corresponding to the realized annuity payments in exchange for a set of
pre-agreed payments resulting in annual net payments of

CFH(t) := 1{x0+t≥xR}
(
Sx0+t,t − Fx0+t,t

)
, 0≤ t≤ τ ,

where the floating lag Sx0+t,t :=
∑NSub

p=1 B
[p]
x0+t,t corresponds to the sum of all annu-

ity payments in year t for which the annuity provider is liable. The fixed
forward rates Fx0+t,t need to be specified at inception through the pricing
approach. By construction, an unlimited (τ = ∞) customized longevity swap
provides perfect protection against longevity risk.

4.1.2. Index-based longevity swaps
Alternatively, the instrument can be linked to the mortality indices of the
reference population resulting in annual payments of

CFH(t) := 1{x0+t≥xR}
(
S[R]
x0+t,t − F [R]

x0+t,t
)
, 0≤ t≤ τ ,

where the survivor index S[R]
x0+t,t :=

∑NSub
p=1 B

[p]
x0,0

∏t−1
s=0 (1− q[R]x0+s,s+1), t≥ 0 is based

on the ex-post survival probability for an individual from the reference popu-
lation aged x0 at time zero and F [R]

x0+t,t denotes the index-based forward rates.
From the hedger’s perspective, this design gives rise to population basis risk,
since the evolution of the book population might deviate from that captured
by the reference population mainly for two reasons (cf. Haberman et al., 2014
or Villegas et al., 2017): first, due to systematic mortality differentials, which is
modeled via the subpopulations, or second, due to unsystematic fluctuations
linked to smaller diversification effects, which is modeled by sampling sur-
vivors from a Binomial distribution. On the other side, an index-based design
is expected to be more appealing to investors since it does not require any
knowledge on the characteristics of the insured population.

4.2. Capital charges and the market price of longevity risk

We start by analyzing capital charges for issuing unlimited customized
longevity swaps. Figure 2 shows histograms for the cost of capital and the
corresponding risk margins (as the expected capital charges EP (CoC)) for the
three considered starting ages.

As anticipated, the expected capital charges are higher for lower starting
ages, since the company has to provide regulatory capital over a longer con-
tract duration. Moreover, the company’s exposure to longevity risk is more
pronounced for lower starting ages since longevity risk has more time to accu-
mulate, which requires higher SCRs. Interestingly, the histograms reveal a
considerable uncertainty regarding future capital charges. In fact, their stan-
dard deviations, which are listed in Table 2, result in considerable coefficients
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TABLE 2

MEAN AND STANDARD DEVIATION OF THE COST OF CAPITAL FOR ISSUING UNLIMITED
CUSTOMIZED LONGEVITY SWAPS FOR DIFFERENT STARTING AGES AND CORRESPONDING

MARKET PRICES OF LONGEVITY RISK.

x0 = 50 x0 = 65 x0 = 80

EP (CoC) 8330 4137 1313
SDP

(CoC) 1920 750 197
Corresponding λ 0.316 0.297 0.225
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FIGURE 2: Histograms for the random present value of the cost of capital and corresponding risk margins
for issuing unlimited customized longevity swaps for different starting ages.

of variation between 15% and 23%. We conclude that regulatory capital
charges differ significantly between the simulation paths. The reason for this
is twofold. First, future SCRs naturally depend on realized mortality, in par-
ticular on the occurrence of unanticipated trend changes. While negative trend
changes lead to higher SCRs in the following years, positive trend changes
imply a capital relief. Obviously, scenarios of strong mortality improvements
require higher SCRs against longevity risk over a longer time horizon com-
pared to scenarios of higher mortality. Second, even before a trend change
occurs, the overall level of SCRs generally differs between the simulation paths
since we account for parameter uncertainty in the trend change parameters as
outlined in Appendix A.3.

In the second step, we numerically derive the corresponding market prices
of longevity risk λ so that the risk-adjusted pricing approach produces the same
risk loading as the cost-of-capital approach. Table 2 shows the risk margins
and the corresponding market prices of longevity risk for the considered start-
ing ages. As expected, the calibrated market prices of risk are positive since
the demand for de-risking is coming from an annuity provider. As pointed
out by Cairns et al. (2006), λ might be negative if the market was dominated
by hedgers of mortality risk. Furthermore, we observe that for lower starting
ages, higher values of λ are required to reproduce the risk margin. This is due to
the fact that long-term longevity exposures are rather capital-intensive under
risk-based internal models.
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FIGURE 3: Quantile plots, best-estimate, and risk-adjusted survival probabilities for customized (upper row)
and index-based (lower row) longevity swaps for different starting ages.

For comparison, values between 0.15 and 0.4 are commonly reported for
the market price of longevity risk. For instance, Leung et al. (2018) report val-
ues between 0.15 and 0.35 for the risk-adjusted pricing approach based on the
CBDmodel and Levantesi and Menzietti (2017) arrive at slightly higher values
between 0.35 and 0.41 when matching the risk-adjusted CBD model with the
cost-of-capital approach. However, it should be kept in mind that reported
market prices of longevity risk are typically model-specific and not directly
comparable due to differences in the intrinsic model setups. Nevertheless, our
calibrated market prices of longevity risk seem to be of reasonable magnitude.

4.3. Risk-adjusted forward rates

Relying on the specified set of market prices of longevity risk, we apply the
risk-adjusted pricing approach to derive forward rates for longevity swaps.
Figure 3 shows quantile plots for the T-year survival probabilities along with
their best-estimate values (black solid lines) and their risk-adjusted counter-
parts (red dashed lines) for the considered starting ages, where the upper row
shows the customized and the lower row the index-based survival curves.

We first look at the customized designs. When comparing the prediction
bands for different starting ages, we observe that the uncertainty in future sur-
vival probabilities is more pronounced for lower starting ages. This is due to

https://doi.org/10.1017/asb.2021.5 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.5


PRICING LONGEVITY RISK IN THE PRESENCE OF TREND CHANGES 435

the fact that there is more time for potential future trend changes to occur and
to unfold. Furthermore, we observe that the prediction bands are rather nar-
row in the short term and widen over time reflecting the nature of longevity risk
as a typically slowly accumulating risk. With regard to this increasing degree of
uncertainty over time, the forward rates show a reasonable pattern: they typi-
cally lie above their best-estimate counterparts and the distances between both
curves, which indicate the implied risk loading, increase over time in line with
the growing uncertainty regarding future survival rates. Obviously, most of the
risk premium is allocated to longer maturities. We further discuss the structure
of the implied risk loading in Section 4.4.2.

When comparing the index-based (lower row) with the customized sur-
vival curves (upper row), we observe that the index-based prediction bands
are slightly narrower. This is because they are not affected by socioeconomic
mortality differentials and small sample risk. Since socioeconomic mortality
differentials are included in the deflator, the implied risk loading is notably
higher for the customized designs than for the index-based variants. However,
besides being narrower, the prediction bands are similar in shape to those for
the customized designs. Hence, it can be concluded that most of the uncer-
tainty in future mortality originates from the long-term mortality trend risk
of the reference population. Overall, the derived risk-adjusted forward rates
appear plausible in terms of intrinsic risk loading.

4.4. Comparison with alternative modeling and pricing approaches

In this section, we compare our (risk-adjusted) trend process and the resulting
swap rates with alternative modeling and pricing approaches. Since the index-
based designs do not provide any further insights, we focus on the customized
designs in this section.

4.4.1. Comparison with time series with constant trend/drift
We now consider the following alternative modeling approaches for the
reference population that do not allow for trend changes:

• Switching off the risk of future trend changes by setting p(i)[R] := 0 for
i= 1, 2 to illustrate the implications of incorporating trend changes into the
mortality model.

• Using the widely adopted RWD. Following Cairns et al. (2006), we calibrate
the drift and covariance matrix to the most recent 20 years of data and draw
them at the start of each model path from a suitable normal-inverse-Wishart
distribution to account for parameter uncertainty (we refer to their paper for
technical details).

We start with a comparison of the resulting 99% prediction intervals for
the period effects, which are shown in Figure 4. The effect of stochastic
trend changes becomes evident when comparing the prediction intervals for
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FIGURE 4: Comparison with alternative modeling approaches: 99% prediction intervals for the CBD period
effects for the trend process (black), its counterpart with constant trend (blue), and the RWD (orange with

drift calibrated to 20 years of data, red with adjusted drift).

the stochastic trend process (solid black lines) with those for its counterpart
with constant trend (blue dotted lines). While they practically coincide in the
first years, the former widen considerably over time reflecting the growing
uncertainty arising from potential future trend changes. The blue prediction
intervals, on the other side, remain unrealistically narrow in the long run.
This is due to the fact that the only sources of uncertainty are the stochastic
starting trends and the random annual fluctuations around it. Clearly, a trend-
stationary process with constant trend substantially underestimates longevity
risk in the long run.

Comparing the trend process with the RWD (orange dashed lines), we first
observe that the prediction intervals differ considerably in terms of position
for κ (1)[R]t . This is because the drift is estimated as the average change in the
period effects over the whole calibration period of 20 years, whereas the start-
ing values for the trend process depend on the most recent mortality patterns
since the last detected trend change. Hence, the latter has the advantage of
picking up potential changes in the long-term mortality trend much faster than
the RWD.

For comparability, the red dot-dashed lines show the prediction intervals
for the RWD when setting the drift estimate equal to the expected starting
trends of the trend process. Compared to the trend process, the prediction
intervals are substantially wider in the short run. However, they widen rather
slowly over time and remain rather narrow in the long run due to the fixed
drift, which has been criticized by several authors including Börger and Schupp
(2018) and Liu and Li (2016). In contrast, the prediction intervals of the trend
process widen at faster rates in line with the growing uncertainty in future
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TABLE 3

MEAN AND STANDARD DEVIATION OF THE COST OF CAPITAL FOR ISSUING UNLIMITED
CUSTOMIZED LONGEVITY SWAPS FOR DIFFERENT STARTING AGES AND CORRESPONDING MARKET

PRICES OF LONGEVITY RISK; COMPARISON BETWEEN TREND PROCESS AND ALTERNATIVE
APPROACHES WITHOUT TREND CHANGES.

Model Trend Trend p(i)[R] = 0 RWD

Starting age x0 50 65 80 50 65 80 50 65 80

EP (CoC) 8330 4137 1313 1764 1030 458 2130 1101 442
SDP

(CoC) 1920 750 197 284 174 74 1008 566 229
Corresponding λ 0.316 0.297 0.225 0.205 0.145 0.100 0.057 0.039 0.032

mortality trends and consequently overtake those generated by the RWD
over a longer projection horizon beyond 30 years. Overall, we conclude that
the trend process provides a plausible and significantly different provision
of uncertainty compared to approaches with constant mortality trends/drifts,
especially in the long run. In what follows, we rely on the adjusted drifts to
ensure that our analyses do not get blurred simply because of different initial
trend assumptions.

Next, we carry out the risk margin computation from Section 4.2 under
both alternative modeling approaches. For consistency, best-estimate mor-
tality for SCR computations is also derived by applying a weighted linear
regression to the most recent data points, where the optimal weighting is
derived by means of the same optimization criterion (see Appendix A.6).
Table 3 shows the resulting risk margins. As anticipated, they are substantially
smaller for all considered starting ages when the trend change probabilities
are set to zero. For instance for a starting age of x0 = 65 years, the expected
cost of capital is more than four times higher when random trend changes are
allowed for. This is due to the fact that the variability in best-estimate mortality
assumptions over a 1-year horizon, which essentially determines the SCRs, is
significantly higher when the mortality trend is not only sampled at the start of
the simulation but can also randomly change at future points in time. The same
argument also applies to the RWD, where the drifts are sampled at the start of
each model path but remain fixed over the projection horizon. Consequently,
the risk margins are less than half the size of those based on the trend process
for all considered starting ages.

Finally, we calibrate the corresponding market prices of longevity risk
based on the derived risk margins. For the RWD, the change to a risk-adjusted
measure is performed by applying suitable distortions to the normally dis-
tributed annual innovations as originally proposed by Cairns et al. (2006).
The resulting market prices of longevity risk are included in Table 3. In line
with our previous findings, they lie significantly below the values which we
obtain with our trend process for all considered starting ages. We infer that
the allowance for unexpected mortality trend changes yields more conservative
estimates for the market price of longevity risk and higher prices for longevity
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hedges when relying on a cost-of-capital reference framework. We therefore
conclude that our model constitutes a valuable alternative to the widely used
(risk-adjusted) RWD.

4.4.2. Comparison of risk-adjusted forward rates with other pricing approaches
In Section 3.1, we have constructed our risk-adjusted trend process by apply-
ing the Wang distortion to each longevity risk driver individually. Now,
we compare the resulting forward rates with those based on the following
alternative pricing approaches:

• applying the Wang transform to best-estimate survival rates EP
(
Sx0+t,t

)
,

t> 0 in the spirit of Lin and Cox (2005);
• applying the Wang transform to the empirical cumulative distribution

functions (CDFs) of Sx0+t,t, t> 0;
• using the risk-adjusted RWD of Cairns et al. (2006) from the previous

subsection.

For each approach, we assume a constant time-invariant distortion param-
eter which needs to be specified first. To ensure comparability, we assume
for a moment that the cumulative risk loading for the unlimited customized
longevity swap with starting age of 65 years from Section 4.2 is given
(e.g., observable in the market) and use it as a common reference point for the
calibration of these pricing approaches. While all approaches then produce,
by construction, the same cumulative risk premium for the given unlimited
longevity swap, we can compare the forward rates with regard to the alloca-
tion of the risk premium over the term of the hedge. To this end, we follow
Cairns et al. (2006) and convert the risk loading for the time t hedge cash flow
CFH(t) into an average rate of return per annum for the investor of

δ(t) := 1
t
log

(
Fx0+t,t

EP
(
Sx0+t,t

))

with Fx0+t,t representing the respective forward rates. The results are shown in
Figure 5.

Regarding the two alternative approaches based on the Wang transform,
the most striking observation is that much of the risk premium is allocated
to shorter maturities when applying the Wang transform to best-estimate sur-
vival rates (green dashed lines). As pointed out by Bauer et al. (2010), this
proceeding does not properly capture the uncertainty in future survival rates
and yields risk premiums which are therefore not proportional to the aggre-
gate risk. In contrast, applying the Wang distortion to the empirical CDFs
of future survival rates (orange dash-dotted lines) seems to provide more ade-
quate forward rates, given that a greater proportion of the risk premium is
allocated to longer maturities in line with the growing uncertainty in future
survival rates. Yet, this approach also allocates a greater proportion of the risk

https://doi.org/10.1017/asb.2021.5 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.5


PRICING LONGEVITY RISK IN THE PRESENCE OF TREND CHANGES 439

Time t

Av
er

ag
e 

ra
te

 o
f r

et
ur

n 
pe

r a
nn

um

Trend process
RWD with adjusted drift
Wang applied to survival distribution
Wang applied to best-estimate rates

0 5 10 15 20 25 30

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

0 10 20 30 40 50

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Time t

Av
er

ag
e 

ra
te

 o
f r

et
ur

n 
pe

r a
nn

um

Trend process
RWD with adjusted drift
Wang applied to survival distribution
Wang applied to best-estimate rates

(a) (b)

FIGURE 5: Average rate of return per annum δ(t) for the time t cash flow of the customized longevity swap
with starting age x0 = 65 years based on different pricing approaches.

premium to shorter maturities compared to our risk-adjusted trend process
(black solid lines) and also yields a significantly different risk loading struc-
ture for several reasons. First, this approach does not differentiate between
randomness that originates from undiversifiable systematic changes in mortal-
ity and that arising from diversifiable fluctuations in portfolios of limited size
for which the investor should not obtain a risk premium. Second, applying
the Wang transform to the final distributions of the hedge cash flows does not
properly account for correlations of mortality over time. Moreover, it has the
major drawback of depending on the specific payout structure of the instru-
ment under consideration and might therefore require different distortions
as soon as multiple instruments are priced. By applying the Wang distortion
directly to the underlying longevity risk drivers, the risk-adjusted trend process
overcomes these issues and produces risk loadings that appear plausible.

Finally, when comparing the forward rates based on our risk-adjusted trend
process with those based on the risk-adjusted RWD (red dashed lines), we
observe that the former assigns a lower risk premium to short maturities. For
instance for t= 15, the average annual risk premium corresponds to 2.6 basis
points for the former compared to 4.3 basis points for the latter. While the risk
premium naturally increases in both models over time in line with the growing
uncertainty regarding future survival rates, it picks up at a much faster rate
for the trend process, ending up at a higher level for long-term cash flows. We
conclude that the risk-adjusted trend process allocates a greater proportion of
the risk loading to longer maturities than the commonly used RWD. This is in
line with the prediction intervals in Section 4.4.1 and appears plausible given
the much higher exposure of long-term longevity-linked cash flows to the risk
of unexpected changes in the long-term mortality trend.
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5. CONCLUSION

Pricing longevity-linked securities in the absence of a liquid and complete mar-
ket has recently been addressed by many authors. Most of the proposed pricing
approaches are based on stochastic mortality models in which one or more
time-dependent parameters are projected into the future. As argued by several
authors in the field of longevity trend modeling, long-term mortality projec-
tions should account for the risk of future mortality trend changes. Otherwise,
the risks involved in a longevity transaction will be systematically understated
which might lead to insufficient risk premiums and to inadequate prices.

We contribute to the literature on longevity risk pricing by addressing the
determination of adequate longevity risk premiums within a stochastic mod-
eling framework which explicitly models the risk of random future changes
in the long-term mortality trend. We construct a set of meaningful stochastic
discount factors based on suitable probability distortions which imply equiv-
alent risk-adjusted pricing measures under which the basic model structure is
preserved. These deflators help to understand how the risk-adjusted measure
relates to its objective counterpart, under which the model is calibrated. To
find a reasonable range for the market price of longevity risk in the current
incomplete market environment, we follow Börger (2010) and rely on a cost-
of-capital approach in the context of a regulatory capital model under Solvency
II. Unlike previous studies, we explicitly derive entire distributions for future
capital charges for longevity risk from which adequate risk premiums can be
deduced. Moreover, we also allow mortality in selected subpopulations to dif-
fer from the underlying trend of the overall population. Hence, our framework
is applicable to customized as well as to index-based instruments. We discuss
the presented approaches with regard to their economic justification, practical
applicability, and calibration.

In a numerical illustration, we apply the proposed methods to price
longevity swaps. For different contract designs, we first derive the required
risk margin under the cost-of-capital approach and then construct the risk-
adjusted measure, so that both approaches imply the same risk premium. We
show that this results in a reasonable range of market prices for longevity
risk. Furthermore, we demonstrate that the risk-adjusted pricing approach
produces highly plausible forward rates in terms of intrinsic risk loading. We
find that in the presence of mortality trend changes, most of the risk pre-
mium is allocated to longer maturities. This seems reasonable given the longer
time horizon for longevity trend changes to unfold. In light of the potentially
devastating impact of an unanticipated mortality trend change on the sol-
vency of longevity risk bearers, our modeling framework constitutes a valuable
alternative to existing approaches for longevity risk pricing.

Interestingly, we find that future capital charges for longevity risk are sub-
ject to a considerable degree of uncertainty. Since commonly used approxima-
tions for the risk margin only provide a point estimate for future capital charges
rather than an entire distribution, they might systematically underestimate
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longevity risk. In particular in scenarios of strong mortality improvements,
annuity providers might not only be liable for more payments to policyholders,
but they also need to account for higher capital charges.We plan to address this
issue and the potential implications for longevity risk management in future
works.
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APPENDIX

A. MODEL CALIBRATION

A.1. Data

For the reference population, we use data of the male population of England and Wales for
the years 1841–2016 over the age range of 60–109 years, which is available in the Human
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Mortality Database (data downloaded on 01 July 2018 from: http://www.mortality.org).
Regarding the subpopulations, we rely on mortality data of English males sorted by quin-
tiles of the Index of Multiple Deprivation (IMD) for the years 2001–2016 over the age range
of 60–89 years, which we obtained from the Office for National Statistics. Note that the
relative modeling setting can deal with a shorter data history and a different age range
for the subpopulations than for the reference population. As the official measure for rel-
ative deprivation of small areas in England, the IMD measures deprivation in 32,844 areas
with an average of 1500 residents each. Based on their IMD score, these areas are grouped
into quintiles (ordered from the most to the least deprived) to obtain five homogeneous
subpopulations of the male English population. We calibrate the multi-population CBD
model structure via a standard two-stage maximum likelihood estimation (MLE) approach
assuming binomially distributed deaths, see Villegas et al. (2017).

A.2. Extrapolation for high ages

When calibrating the CBD model to different socioeconomic subpopulations, one needs to
be aware that the fitted mortality lines in the logit plot typically cross over somewhere in
the highest age range. The reason for this lies in the structure of socioeconomic mortality
differentials, which are usually more distinct for younger ages and diminish for high ages,
see for example Villegas et al. (2017). To avoid an unrealistic reversal of the ranking among
the subpopulations for highest ages in our simulations, we set the mortality rates equal to
those of the reference population as soon as its mortality curve would be crossed, that is,

q[p]x,t :=

⎧⎪⎨⎪⎩
max

{
q[R]x,t ;q

[p]
x,t

}
, for p= 1, 2

min
{
q[R]x,t ;q

[p]
x,t

}
, for p= 4, 5

and leave the middle subpopulation, which might lie (depending on the mortality scenario)
above or below the reference population, unadjusted.

A.3. Calibration of stochastic trend process

For the calibration of the AMT process, we apply an iterative pseudo-MLE approach as
proposed by Schupp (2019) and refer to this paper for technical details. Since data on histor-
ical mortality trend changes are sparse, we account for parameter uncertainty in the starting
values of the simulation as well as in the trend change parameters.

Figure A.1 shows the historical period effects κ (i)[R]t , i= 1, 2 and the best possible realiza-

tions for the underlying trend processes κ̂ (i)[R]t , i= 1, 2 for all relevant potential numbers (k)
of historical trend changes, which are identified by the calibration algorithm. The identified
trend change years are given in Table A.1 along with the corresponding parameter estimates
and assigned weights. We account for parameter uncertainty by sampling the starting values
from the respective empirical distribution.

Moreover, we obtain the following trend change parameters:(
p̂(1)[R], μ̂(1)[R]

M , σ̂ (1)[R]
M

)
= (0.0223,−4.5453, 0.4105) ,(

p̂(2)[R], μ̂(2)[R]
M , σ̂ (2)[R]

M

)
= (0.0246,−7.4134, 0.2027)
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TABLE A.1

EMPIRICAL DISTRIBUTIONS FOR THE AMT STARTING VALUES.

k κ̂
(1)[R]
t=0 d̂(1)[R]

t=0 P(%) Trend change years

2 −2.3099 −2.10× 10−2 6.24 1931, 1985
3 −2.3374 −2.43× 10−2 0.54 1931, 1980, 1997
4 −2.3020 −1.15× 10−2 93.22 1929, 1978, 1999, 2011

k κ̂
(2)[R]
t=0 d̂(2)[R]

t=0 P(%) Trend change years

3 0.1144 5.85× 10−4 43.14 1902, 1930, 1972
4 0.1156 6.96× 10−4 3.89 1901, 1932, 1969, 1987
5 0.1143 3.55× 10−4 34.67 1900, 1932, 1969, 1988, 2009
6 0.1131 3.49× 10−4 18.30 1890, 1906, 1930, 1967, 1988, 2004

Historical period effects
k=2
k=3
k=4
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−2
.2

−2
.0

−1
.8

−1
.6

−1
.4

−1
.2

1850 1900 1950 2000

0.
08

0.
09

0.
10

0.
11

Historical period effects
k=3
k=4
k=5
k=6

(a) (b)

FIGURE A.1: Period effects for English and Welsh males (dotted), best possible realizations for the actual
trend processes given different numbers of trend changes k (colored dashed lines).

with corresponding covariance matrices of standard errors of

SE(1) =

⎛⎜⎜⎝
1.353× 10−4 3.535× 10−5 −1.754× 10−5

3.535× 10−5 4.616× 10−2 3.331× 10−4

−1.754× 10−5 3.331× 10−4 2.322× 10−2

⎞⎟⎟⎠ ,

SE(2) =

⎛⎜⎜⎝
1.860× 10−4 −1.211× 10−3 8.060× 10−4

−1.211× 10−3 4.285× 10−2 −2.153× 10−2

8.060× 10−4 −2.153× 10−2 2.124× 10−2

⎞⎟⎟⎠ .
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TABLE A.2

CHOW TEST STATISTICS FOR THE NULL HYPOTHESIS THAT THERE IS NO STRUCTURAL BREAK AT THE
IDENTIFIED TREND CHANGE YEARS AND DICKEY-FULLER (DF) TEST STATISTICS FOR THE NULL

HYPOTHESIS THAT THE TIME PROCESSES BETWEEN TWO TREND CHANGE YEARS HAVE A UNIT ROOT
AGAINST THE ALTERNATIVE OF TREND-STATIONARITY; SIGNIFICANCE LEVELS: ∗∗∗1%,∗∗ 5%, ∗10%.

Period Chow statistic DF statistic

1841–1929 −8.160835∗∗∗

1929–1978 4.660071∗∗∗ −6.187494∗∗∗

1978–1999 1.521318∗∗∗ −6.799186∗∗∗

1999–2011 6.860339∗∗∗ −2.818677
2011–2016 2.478597∗∗∗ −3.428520∗

(a) κ (1)[R]t ; trend change years 1929, 1978, 1999,
2011

Period Chow statistic DF statistic

1841–1902 −6.065415∗∗∗

1902–1930 116.0099∗∗∗ −6.986161∗∗∗

1930–1972 143.1342∗∗∗ −6.865163∗∗∗

1972–2016 331.7755∗∗∗ −2.514045

(b) κ (2)[R]t ; trend change years 1902, 1930, 1972

To account for parameter uncertainty, we follow Börger et al. (2019a): for each simulation
path, we generate a multivariate normal random vector with mean equal to the estimated
trend change parameters and covariance matrix SE(i). Subsequently, the first component of
the vector is transformed to a beta distribution with same mean and variance to obtain trend
change probabilities between zero and one. Similarly, the third component is transformed
to a gamma distribution with unchanged mean and variance to ensure positivity.

Finally, the covariance matrix for random fluctuations around the AMT is estimated as:

�[R] =
(
3.865× 10−4 1.720× 10−5

1.720× 10−5 2.036× 10−6

)
,

for which we neglect parameter uncertainty since it is typically not material.

A.4. Statistical evidence for a piecewise linear trend-stationary process

Having identified potential structural break points in the historical CBD time series with the
algorithm of Schupp (2019), we evaluate their statistical significance. Following Sweeting
(2011), we partition the historical time series into consecutive sections separated by the
identified break points and apply the test of Chow (1960). Under the assumption of nor-
mally distributed error terms with constant variance, we test the null hypothesis that the
coefficients in two linear regressions fitted to each consecutive pair of sections are equal.
The results for both CBD time processes are given in Table A.2. For the sake of brevity, we
only show the results for the break points with highest likelihood according to Table A.1.
The null hypothesis of no structural break is rejected for all identified break points at a 1%
level of significance which provides strong statistical evidence for the presence of several
mortality trend changes.

Furthermore, we apply the test designed by Dickey and Fuller (1979) to each of these
consecutive sections of period effects to test the null hypothesis of a unit root against
the alternative of trend-stationarity. The results are included in Table A.2. The Dickey–
Fuller (DF) test suggests that the historical period effects are trend-stationary rather than
difference-stationary in four out of five periods for κ (1)[R]t and in three out of four periods

for κ (2)[R]t , respectively, with the level of significance being 1% in most cases. Overall, our
findings are in line with those of Sweeting (2011) and provide strong statistical evidence
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TABLE A.3

KPSS TEST STATISTICS FOR THE NULL HYPOTHESIS THAT THE TIME PROCESSES OF SOCIOECONOMIC
MORTALITY DIFFERENTIALS ARE LEVEL-STATIONARY AGAINST THE ALTERNATIVE OF A UNIT

ROOT; SIGNIFICANCE LEVELS: ∗∗∗1%,∗∗ 5%, ∗10%.

IMD-1 IMD-2 IMD-3 IMD-4 IMD-5

κ
(1)[p]
t 0.62344710∗∗ 0.55980637∗∗ 0.09315834 0.61351390∗∗ 0.60069293∗∗

κ
(2)[p]
t 0.29389570 0.28458448 0.08543594 0.37001952∗ 0.32292157
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FIGURE A.2: Historical time series of socioeconomic mortality differentials for IMD quintiles.

for using a trend-stationary process around piecewise linear trends with changing slopes
over time.

A.5. Calibration of time processes for socioeconomic mortality
differentials

Figure A.2 shows the historical time series of subpopulation-specific mortality differentials
κ
(1)[p]
t (in the left panel) and κ (2)[p]t (in the right panel), respectively. Both period effects reveal
a clear and intuitive ranking among the subpopulations in terms of socioeconomic status.

To identify a suitable model of the class of VARIMA(p, d, q) models, we apply a Box–
Jenkins approach: first, we observe a widening of the gap between the least and the most
deprived subpopulations over the calibration period in the left panel of Figure A.2, which
indicates non-stationarity for κ (1)[p]t . This is substantiated by the Kwiatkowski–Phillips–
Schmidt-Shin (KPSS) test (cf. Kwiatkowski et al., 1992) in Table A.3 which rejects the null
hypothesis of (weak) level-stationarity for κ (1)[p]t for all but the middle subpopulation at a
5% level of significance. After applying a differencing approach, the integrated time series
appears to be (weakly) stationary; in particular repeated application of the KPSS test does
not reject the null hypothesis of first-order difference-stationary for any subpopulation at a
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5% level of significance. Since we could also neither find any significant signs of seasonality
nor any indications for the existence of q> 0 moving-average terms in the autocorrelation
plots, we restrict ourselves to the class of VARIMA(p, 1, 0) models. Relying on the BIC, we
finally find that a VARIMA(0, 1, 0) model, that is, a multivariate RWD, provides the best
compromise between a satisfactory fit and a parsimonious model structure with a BIC of
−1440.77. For comparison, its counterpart without drift provides a slightly worse value of
−1414.23 and we obtain values between−1318.59 and−1338.23 for VARIMA(1, 1, 0) mod-
els by considering various restrictions for the autoregressive matrix. The RWD is calibrated
via a standard MLE approach using all 16 years of available data.

A.6. Calibration of optimal EMT weights

As suggested by Börger et al. (2019b), we determine the optimal EMT weighting by mini-
mizing the mean squared errors between the unobservable AMT (or drift, respectively) and
the derived EMT in a Monte Carlo simulation and obtain (ψ (1),ψ (2))= (2.225, 2.752) for
the trend process, (7.364, 10.212) when setting the trend change probabilities to zero, and
(39.828, 89.818) for the RWD. For the latter, we restrict the regression to the most recent 20
data points in line with the calibration period. Higher weights for the variants with constant
trends/drifts indicate that less weight should be assigned to the most recent data points.
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