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ON m-COVERS AND m-SYSTEMS
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Abstract

Let A= {as(mod ns)}
k
s=0 be a system of residue classes. With the help of cyclotomic fields we obtain

a theorem which unifies several previously known results related to the covering multiplicity of A. In
particular, we show that if every integer lies in more than m0 = b

∑k
s=1 1/nsc members of A, then for

any a = 0, 1, 2, . . . there are at least
( m0
ba/n0c

)
subsets I of {1, . . . , k} with

∑
s∈I 1/ns = a/n0. We also

characterize when any integer lies in at most m members of A, where m is a fixed positive integer.

2000 Mathematics subject classification: primary 11B25; secondary 05A05, 11A07, 11B75, 11D68.
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1. Main results

For a ∈ Z and n ∈ Z+ = {1, 2, 3, . . .}, we simply denote the residue class

{x ∈ Z | x ≡ a (mod n)}

by a(n). For a finite system
A = {as(ns)}

k
s=1 (1.1)

of residue classes, the function wA : Z→ N= {0, 1, 2, . . .} given by

wA(x)= |{1 6 s 6 k | x ∈ as(ns)}| (1.2)

is called the covering function of A. Obviously wA(x) is periodic modulo the least
common multiple N of the moduli n1, . . . , nk , and it is easy to see that the average∑N−1

x=0 wA(x)/N equals
∑k

s=1 1/ns . As in [13] we call m(A)=minx∈Z wA(x) the
covering multiplicity of system (1.1).

Let m be any positive integer. If wA(x)> m for all x ∈ Z (that is, m(A)> m),
then (1.1) is said to be an m-cover of Z as in [11, 12], and in this case

∑k
s=1 1/ns > m.

Covers (that is, 1-covers) of Z were first introduced by Erdős [2] and they are also
called covering systems. If wA(x)= m for all x ∈ Z, then we call (1.1) an exact
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m-cover of Z as in [12, 13] (and in this case
∑k

s=1 1/ns = m). By [8, Theorem
1.3], when m > 2 there are exact m-covers of Z that cannot split into two covers
of Z. If wA(x)6 m for all x ∈ Z, then we call (1.1) an m-system, and in this case∑k

s=1 1/ns 6 m; any 1-system is said to be disjoint.
The reader may consult Guy [5, pp. 383–390] and Simpson [9] for some problems

and results in covering theory. Covers of Z have many surprising applications; see, for
example [1], [5, Sections A19 and B21], [14, 20, 21]. Sun [19] showed that m-covers
of Z are related to zero-sum problems for abelian groups. Also, the topic of covering
systems stimulated the birth of some new algebraic results (see [15, 17]).

Throughout this paper, for a, b ∈ Z we set [a, b] = {x ∈ Z | a 6 x 6 b} and define
[a, b) and (a, b] similarly. As usual, the integral part and the fractional part of a real
number α are denoted by bαc and {α}, respectively.

For system (1.1) we define its dual system A∗ by

A∗ = {as + r(ns) | 1 6 r < ns, 1 6 s 6 k}. (1.3)

As {as + r(ns)}
ns−1
r=0 is a partition of Z for any s ∈ [1, k], we have wA(x)+ wA∗(x)=

k for all x ∈ Z. Thus wA(x)6 m for all x ∈ Z if and only if wA∗(x)> k − m for all
x ∈ Z. This simple and new observation shows that we can study m-systems via covers
of Z, and construct covers of Z via m-systems.

By a result in [12], if (1.1) is an m-cover of Z then for any m1, . . . , mk ∈ Z+ there
are at least m positive integers in the form

∑
s∈I ms/ns with I ⊆ [1, k]. Applying

this result to the dual A∗ of an m-system (1.1), we obtain that there are more than
k − m integers in the form

∑k
s=1 xs/ns with xs ∈ [0, ns); equivalently, at most m − 1

of the numbers in [1, k] cannot be written in the form
∑k

s=1 ms/ns = k −
∑k

s=1(ns −

ms)/ns with ms ∈ [1, ns]. This implies the following result stated in [16, Remark 1.3]:
if (1.1) is an m-system, then there are m1, . . . , mk ∈ Z+ such that

∑k
s=1 ms/ns = m.

The following theorem unifies and generalizes several known results.

THEOREM 1.1. Let A= {as(ns)}
k
s=0 be a finite system of residue classes with m(A) >

m = b
∑k

s=1 ms/nsc, where m1, . . . , mk ∈ Z+. Then, for any 0 6 α < 1, either∑
I⊆[1,k]∑

s∈I ms/ns=(α+a)/n0

(−1)|I | exp
(

2π i
∑
s∈I

asms

ns

)
= 0 (1.4)

for any a ∈ N, or ∣∣∣∣{I ⊆ [1, k] :
∑
s∈I

ms

ns
=
α + a

n0

}∣∣∣∣> (
m

ba/n0c

)
(1.5)

for all a = 0, 1, 2, . . . .

EXAMPLE 1.2. Erdős observed that {0(2), 0(3), 1(4), 5(6), 7(12)} is a cover of Z
with the moduli

n0 = 2, n1 = 3, n2 = 4, n3 = 6, n4 = 12
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distinct. As b
∑4

s=1 1/nsc = 0, by Theorem 1.1 in the case α = 0 we have∑
s∈I 1/ns = 1/n0 = 1/2 for some I ⊆ [1, 4]; we can actually take I = {1, 3}. Since∑4
s=1 1/ns < (5/6+ 1)/n0 = 11/12, by Theorem 1.1 in the case α = 5/6 the set

I = {I ⊆ [1, 4] :
∑

s∈I 1/ns = 5/12} cannot have a single element; in fact, I =
{{1, 4}, {2, 3}} and

(−1)|{1,4}| exp(2π i(0/n1 + 7/n4))+ (−1)|{2,3}| exp(2π i(1/n2 + 5/n3))

=−exp(π i/6)+ exp(π i/6)= 0.

COROLLARY 1.3. If A= {as(ns)}
k
s=0 is a finite system of residue classes with

wA(x) > m = b
∑k

s=1 1/nsc for all x ∈ Z, then∣∣∣∣{I ⊆ [1, k] :
∑
s∈I

1
ns
=

a

n0

}∣∣∣∣> (
m

ba/n0c

)
for all a ∈ N. (1.6)

In particular, if (1.1) has covering multiplicity m(A)= b
∑k

s=1 1/nsc, then∣∣∣∣{I ⊆ [1, k] :
∑
s∈I

1
ns
= n

}∣∣∣∣> (
m(A)

n

)
for each n ∈ N. (1.7)

PROOF. Observe that the left-hand side of (1.4) is nonzero in the case α = a = 0.
So (1.6) follows from Theorem 1.1 immediately. In the case n0 = 1 this yields the
latter result in Corollary 1.3. 2

REMARK 1.4. Let (1.1) be an exact m-cover of Z. Then
∑k

s=1 1/ns = m and
b
∑

s∈[1,k]\{t} 1/nsc = m − 1 for any t = 1, . . . , k. So Corollary 1.3 implies the
following result in [13]: for any t ∈ [1, k] and a ∈ N,∣∣∣∣{I ⊆ [1, k] \ {t} :

∑
s∈I

1
ns
=

a

nt

}∣∣∣∣> (
m − 1
ba/ntc

)
.

As m(A)=
∑k

s=1 1/ns , the inequality |{I ⊆ [1, k] :
∑

s∈I 1/ns = n}|>
(m

n

)
also

holds for all n = 0, 1, . . . , m, which was first established in [10] by means of the
Riemann zeta function.

COROLLARY 1.5. Let (1.1) be an m-system with m = d
∑k

s=1 1/nse, where dαe
denotes the least integer not smaller than a real number α. Then∣∣∣∣{〈m1, . . . , mk〉 ∈ Zk

: ms ∈ [1, ns],

k∑
s=1

ms

ns
= n

}∣∣∣∣> (
k − m

n − m

)
(1.8)

for every n = m, . . . , k.
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PROOF. Let n ∈ [m, k]. Clearly the left-hand side of (1.8) coincides with

L :=

∣∣∣∣{〈x1, . . . , xk〉 : xs ∈ [0, ns − 1],
k∑

s=1

xs

ns
=

k∑
s=1

ns

ns
− n = k − n

}∣∣∣∣.
Since

∑k
s=1 1/ns > m − 1, wA(x)= m for some x ∈ Z. As the dual A∗ of (1.1)

has covering multiplicity m(A∗)= k − m, applying Corollary 1.3 to A∗ leads to
L >

(k−m
k−n

)
=
(k−m

n−m

)
. This concludes the proof. 2

REMARK 1.6. When (1.1) is an exact m-cover of Z, it was proved in [13] (by a
different approach) that for each n ∈ N the equation

∑k
s=1 xs/ns = n with xs ∈ [0, ns)

has at least
(k−m

n

)
solutions.

COROLLARY 1.7. Let A= {as(ns)}
k
s=0 be a finite system of residue classes with

m(A) > m = b
∑k

s=1 ms/nsc, where m1, . . . , mk ∈ Z+. Suppose that J ⊆ [1, k] and∑
s∈I ms/ns =

∑
s∈J ms/ns for no I ⊆ [1, k] with I 6= J . Then{

n0

∑
s∈J

ms

ns

}
+

{
n0

∑
s∈ J̄

ms

ns

}
< 1, (1.9)

where J̄ = [1, k] \ J . Also∑
s∈J

ms

ns
> m or

∑
s∈ J̄

ms

ns
> m. (1.10)

PROOF. Let v =
∑

s∈J ms/ns , α = {n0v} and b = bn0vc. Then (α + b)/n0 = v and∑
I⊆[1,k]∑

s∈I ms/ns=v

(−1)|I | exp
(

2π i
∑
s∈I

asms

ns

)

= (−1)|J | exp
(

2π i
∑
s∈J

asms

ns

)
6= 0.

By Theorem 1.1, inequality (1.5) holds for any a ∈ N. Applying (1.5) with a =
mn0 + n0 − 1 we find that

∑
s∈I ms/ns = (α + mn0 + n0 − 1)/n0 for some I ⊆

[1, k], therefore
∑k

s=1 ms/ns > m + (α + n0 − 1)/n0. As b
∑k

s=1 ms/nsc = m, we
must have{ k∑

s=1

ms

ns

}
>
α + n0 − 1

n0
, that is, n0 − 1+ α 6 n0

{ k∑
s=1

ms

ns

}
< n0.

Therefore α 6 {n0{
∑k

s=1 ms/ns}} = {n0
∑k

s=1 ms/ns}, which is equivalent to (1.9).
Inequality (1.5) in the case a = b gives that

( m
bb/n0c

)
6 1, thus bvc ∈ {0, m}. As

n0{v} − α = bn0{v}c6 n0 − 1, {v}6 (α + n0 − 1)/n0 6 {
∑k

s=1 ms/ns}. If bvc = 0,
then m + v 6 m + {

∑k
s=1 ms/ns} =

∑k
s=1 ms/ns and hence

∑
s∈ J̄ ms/ns > m.

Therefore (1.10) is valid. We are done. 2
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REMARK 1.8. Let (1.1) be an exact m-cover of Z. [11, Theorem 4(ii)] asserts that if
∅ 6= J ⊂ [1, k] then

∑
s∈I 1/ns =

∑
s∈J 1/ns for some I ⊆ [1, k] with I 6= J . This

follows from Corollary 1.7, for, A= {as(ns)}
k
s=0 (where a0 = 0 and n0 = 1) is an

(m + 1)-cover of Z with
∑

s∈J∪ J̄ 1/ns =
∑k

s=1 1/ns = m.

In the 1960s Erdős made the following conjecture: for any system (1.1) with
1< n1 < · · ·< nk , if it is a cover of Z then

∑k
s=1 1/ns > 1, in other words it cannot

be a disjoint cover of Z. This was later confirmed by H. Davenport, L. Mirsky,
D. Newman and R. Radó who proved that if (1.1) is a disjoint cover of Z with
1< n1 6 · · ·6 nk−1 6 nk then nk−1 = nk .

COROLLARY 1.9. Let (1.1) be an m-cover of Z with

n1 6 · · ·6 nk−l < nk−l+1 = · · · = nk (0< l < k). (1.11)

Then, for any r ∈ [0, l] with r < nk/nk−l , either
∑k−r

s=1 1/ns > m or(
l

r

)
∈ D(nk)=

{∑
p|nk

px p | x p ∈ N for any prime divisor p of nk

}
.

PROOF. Set A= {as(ns)}
k
s=0 where a0 = 0 and n0 = 1. Suppose that

∑k−r
s=1 1/ns <

m. Then
∑k

s=1 1/ns < m + r/nk < m + 1 6 m(A). Since∣∣∣∣{I ⊆ [1, k] :
∑
s∈I

1
ns
= m +

r

nk

}∣∣∣∣= 0<
(

m

m

)
,

by Theorem 1.1 we must have∑
I⊆[1,k]∑

s∈I 1/ns=r/nk

(−1)|I | exp
(

2π i
∑
s∈I

as

ns

)
= 0.

Observe that r/nk < 1/nk−l =min{1/ns | 1 6 s 6 k − l}. Therefore,

0=
∑

I⊆(k−l,k]∑
s∈I 1/ns=r/nk

(−1)|I | exp
(

2π i
∑
s∈I

as

ns

)
= (−1)r6r ,

where

6r =
∑

I⊆(k−l,k]
|I |=r

exp
(

2π i
∑
s∈I

as

nk

)
.

By [16, Lemma 3.1], 6r = 0 implies that(
l

r

)
= |{I ⊆ (k − l, k] : |I | = r}| ∈ D(nk).

This concludes the proof. 2
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REMARK 1.10. Let (1.1) be an m-cover of Z with (1.11). By Corollary 1.9 in the
case r = l, either l > nk/nk−l > 1 or

∑k−l
s=1 1/ns > m; this is one of the main results

in [12]. Corollary 1.9 in the case r = 1 yields that either
∑k−1

s=1 1/ns > m or l ∈ D(nk);
this implies the extended Newman–Znám result (see [7]) which asserts that if (1.1) is
an exact m-cover of Z (and hence

∑k−1
s=1 1/ns <

∑k
s=1 1/ns = m) then l is not smaller

than the least prime divisor of nk .

Let (1.1) be an m-system with (1.11), and let r ∈ N and r < nk/nk−l . With the help
of the dual system of (1.1), we can also show that either

∑k
s=1 1/ns 6 m − r/nk or(

l + r − 1
r

)
= |{〈xk−l+1, . . . , xk〉 ∈ Nl

| xk−l+1 + · · · + xk = r}| ∈ D(nk).

If (1.1) is disjoint with 1< n1 < · · ·< nk , then
∑k

s=1 1/ns < 1 since (1.1) is not
a disjoint cover of Z; Erdős [3] showed further that

∑k
s=1 1/ns 6 1− 1/2k . Now we

give a generalization of this result.

THEOREM 1.11. Let (1.1) be an m-system with k > m,
∑k

s=1 1/ns 6= m and n1 6
· · ·6 nk . Then

k∑
s=1

1
ns

6 m −
1

2k−m+1 , (1.12)

and equality holds if and only if ns = 2max{s−m+1,0} for all s = 1, . . . , k.

REMARK 1.12. Let k > m > 1 be integers. Then m − 1 copies of 0(1), together with
the k − m + 1 residue classes

1(2), 2(22), . . . , 2k−m(2k−m+1),

form an m-system with the moduli 2max{s−m+1,0} (s = 1, . . . , k).

We will prove Theorems 1.1 and 1.11 in the next section. Section 3 deals with two
characterizations of m-systems one of which is as follows.

THEOREM 1.13. System (1.1) is an m-system if and only if, for any n ∈ [m, k),

S(n, α)=

{
(−1)k if α = 0,

0 if 0< α < 1,
(1.13)

where S(n, α) represents the sum

∑
m1,...,mk∈Z+

{
∑k

s=1 ms/ns}=α

(−1)b
∑k

s=1 ms/nsc

(
n

b
∑k

s=1 ms/nsc

)
exp

(
2π i

k∑
s=1

asms

ns

)
.

Theorem 1.13 in the case m = 1 yields the following result.
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COROLLARY 1.14. If (1.1) is disjoint, then

∑
m1,...,mk∈Z+∑k

s=1 ms/ns=1

exp
(

2π i
k∑

s=1

asms

ns

)
= (−1)k−1. (1.14)

A residue class a(n)= a + nZ is a coset of nZ in the additive group Z with
[Z : nZ] = n. In [18] the author conjectured that if {as Gs}

k
s=1 (1< k <∞) is a

disjoint system of left cosets in a group G with all the indices ns = [G : Gs] finite,
then gcd(ns, nt )> k for some 1 6 s < t 6 k.

2. Proofs of Theorems 1.1 and 1.11

LEMMA 2.1. Let N ∈ Z+ be a common multiple of the moduli n1, . . . , nk in (1.1).
And let m, m1, . . . , mk ∈ Z+. If (1.1) is an m-cover of Z, then (1− zN )m divides the
polynomial

∏k
s=1(1− zNms/ns exp(2π iasms/ns)). When m1, . . . , mk are relatively

prime to n1, . . . , nk respectively, the converse also holds.

PROOF. For any r = 0, 1, . . . , N − 1, clearly exp(2π ir/N ) is a zero of the
polynomial

∏k
s=1(1− zNms/ns exp(2π iasms/ns)) with multiplicity Mr = |{s ∈

[1, k] : ns | ms(r + as)}|. Observe that Mr > wA(−r). If ms is relatively prime
to ns for each s ∈ [1, k], then Mr = wA(−r). As (1− zN )m =

∏N−1
r=0 (1−

z exp(−2π ir/N ))m , the desired result follows from the above. 2

PROOF OF THEOREM 1.1. Set m0 = 1, and let N0 be the least common multiple of
n0, n1, . . . , nk . In light of Lemma 2.1, we can write

P(z)=
k∏

s=0

(
1− zN0ms/ns exp

(
2π i

asms

ns

))
in the form (1− zN0)m+1 Q(z) where Q(z) ∈ C[z]. Clearly

deg Q = deg P − (m + 1)N0 = N0

( k∑
s=0

ms

ns
− m − 1

)
<

N0

n0
.

Also

k∏
s=1

(
1− zN0ms/ns exp

(
2π i

asms

ns

))

=

m∑
n=0

(−1)n
(

m

n

)
znN0

n0−1∑
r=0

zr N0/n0 exp
(

2π ir
a0

n0

)
Q(z) (2.1)

since
1− zN0

1− zN0/n0 exp(2π ia0/n0)
=

n0−1∑
r=0

zr N0/n0 exp
(

2π ir
a0

n0

)
.
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Let a ∈ N and

Ca = (−1)ba/n0c
∑

I⊆[1,k]∑
s∈I ms/ns=(α+a)/n0

(−1)|I | exp
(

2π i
∑
s∈I

(as − a0)
ms

ns

)
.

By comparing the coefficients of zN0(α+a)/n0 on both sides of (2.1) we obtain that

∑
I⊆[1,k]∑

s∈I ms/ns=(α+a)/n0

(−1)|I | exp
(

2π i
∑
s∈I

asms

ns

)

= (−1)ba/n0c

(
m

ba/n0c

)
exp(2π ia0{a/n0})[z

αN0/n0]Q(z),

where [zαN0/n0]Q(z) denotes the coefficient of zαN0/n0 in Q(z). Therefore

Ca = exp
(
−2π iα

a0

n0

)(
m

ba/n0c

)
[zαN0/n0]Q(z)=

(
m

ba/n0c

)
C0. (2.2)

For an algebraic integer ω in the field K =Q(exp(2π i/N0)), the norm

N (ω)=
∏

16r6N0, gcd(r,N0)=1

σr (ω)

(with respect to the field extension K/Q) is a rational integer, where σr is the
automorphism of K (in the Galois group Gal(K/Q)) induced by σr (exp(2π i/N0))=

exp(2π ir/N0). (See, for example, [6, Ch. 1].) As N ((−1)ba/n0cCa) equals

∏
16r6N0

gcd(r,N0)=1

∑
I⊆[1,k]∑

s∈I ms/ns=(α+a)/n0

(−1)|I | exp
(

2π ir
∑
s∈I

(as − a0)
ms

ns

)
,

we have

|N (Ca)| =
∏

16r6N0
gcd(r,N0)=1

∣∣∣∣ ∑
I⊆[1,k]∑

s∈I ms/ns=(α+a)/n0

(−1)|I | exp
(

2π ir
∑
s∈I

(as − a0)
ms

ns

)∣∣∣∣
6

∣∣∣∣{I ⊆ [1, k] :
∑
s∈I

ms

ns
=
α + a

n0

}∣∣∣∣ϕ(N0)

,

where ϕ is Euler’s totient function. Also

|N (Ca)| =

∣∣∣∣N(( m

ba/n0c

))∣∣∣∣× |N (C0)| =

(
m

ba/n0c

)ϕ(N0)

|N (C0)|.
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Suppose that Cb 6= 0 for some b ∈ N. Then N (Cb) 6= 0, and hence N (C0) ∈ Z is
nonzero. For any a ∈ N,∣∣∣∣{I ⊆ [1, k] :

∑
s∈I

ms

ns
=
α + a

n0

}∣∣∣∣ϕ(N0)

> |N (Ca)|>

(
m

ba/n0c

)ϕ(N0)

,

and hence (1.5) holds. This concludes the proof. 2

PROOF OF THEOREM 1.11. We use induction on k.
In the case k = m, we have nk > 1 and hence

k∑
s=1

1
ns

6 k − 1+
1
nk

6 m −
1
2
= m −

1

2k−m+1 ;

also
∑k

s=1 1/ns = m − 1/2 if and only if n1 = · · · = nk−1 = 1 and nk = 2.

Now let k > m. Clearly
∑k−1

s=1 1/ns <
∑k

s=1 1/ns < m. Assume that

k−1∑
s=1

1
ns

6 m −
1

2(k−1)−m+1
= m −

1
2k−m

and that equality holds if and only if ns = 2max{s−m+1,0} for all s ∈ [1, k − 1]. When
nk > 2k−m+1,

k∑
s=1

1
ns
=

k−1∑
s=1

1
ns
+

1
nk
<

(
m −

1
2k−m

)
+

1

2k−m+1 = m −
1

2k−m+1 .

If
∑k

s=1 1/ns > m − 1/nk , then d
∑k

s=1 1/nse = m, thus
∑k

s=1 ms/ns = m for
some m1, . . . , mk ∈ Z+ (by Corollary 1.5), and hence

m −
k∑

s=1

1
ns

> min
{

1
ns
| 1 6 s 6 k

}
=

1
nk
.

This shows that indeed
∑k

s=1 1/ns 6 m − 1/nk . Provided that nk 6 2k−m+1,
inequality (1.12) holds, and also

k∑
s=1

1
ns
= m −

1

2k−m+1 ⇐⇒ nk = 2k−m+1 and
k−1∑
s=1

1
ns
= m −

1
2k−m

⇐⇒ ns = 2max{s−m+1,0} for s = 1, . . . , k − 1, k.

This concludes the induction step and we are done. 2
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3. Characterizations of m-systems

PROOF OF THEOREM 1.13. Like Lemma 2.1, system (1.1) is an m-system if and only
if f (z)= (1− zN )m/

∏k
s=1(1− zN/ns exp(2π ias/ns)) is a polynomial, where N is

the least common multiple of n1, . . . , nk .
Set c = m −

∑k
s=1 1/ns . If f (z) is a polynomial, then deg f = cN and

[zcN
] f (z)= (−1)k−m exp(−2π i

∑k
s=1 as/ns).

For |z|< 1,

f (z)=
m∑

n=0

(
m

n

)
(−1)nznN

k∏
s=1

∞∑
xs=0

exp
(

2π i
as xs

ns

)
zN xs/ns .

Let α > 0. Then

[z(c+α)N ] f (z) =
m∑

n=0

(−1)n
(

m

n

) ∑
x1,...,xk∈N∑k

s=1 xs/ns=c+α−n

exp
(

2π i
k∑

s=1

as xs

ns

)

=

m∑
n=0

(−1)n
(

m

n

) ∑
m1,...,mk∈Z+∑k

s=1 ms/ns=α+m−n

exp
(

2π i
k∑

s=1

as(ms − 1)
ns

)

= (−1)m exp
(
−2π i

k∑
s=1

as

ns

)
S(m, α),

where S(n, α) (n ∈ N) represents the sum∑
m1,...,mk∈Z+∑k
s=1 ms/ns−α∈N

(−1)
∑k

s=1 ms/ns−α

(
n∑k

s=1 ms/ns − α

)
exp

(
2π i

k∑
s=1

asms

ns

)

which agrees with its definition in the case 0 6 α < 1 given in Theorem 1.13.
(i) Suppose that (1.1) is an m-system. Then f (z) is a polynomial of degree cN and

hence

S(m, α)= (−1)m exp
(

2π i
k∑

s=1

as

ns

)
[z(c+α)N ] f (z)=

{
(−1)k if α = 0,

0 if α > 0.

For any integer n > m, (1.1) is also an n-system and so (1.13) holds.
(ii) Now assume that (1.13) holds for all n ∈ [m, k). For any n > k, we also

have (1.13) by (i) because (1.1) is a k-system. If 0< α < 1 then S(n, α)= 0 for any
integer n > m. Fix α > 0. If S(n, α)= 0 for all integers n > m, then for any integer
n > m,

S(n, α + 1)= S(n, α)− S(n + 1, α)= 0

because
( n

j−1

)
=
(n+1

j

)
−
(n

j

)
for j = 1, 2, . . . . Thus, by induction, S(n, α)= 0 for
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all α > 0 and n = m, m + 1, . . . . It follows that [z(c+α)N ] f (z)= 0 for any α > 0. So
f (z) is a polynomial and (1.1) is an m-system.

The proof of Theorem 1.13 is now complete. 2

The following characterization of m-covers plays important roles in [11, 12].

LEMMA 3.1 (Sun [11]). Let m, m1, . . . , mk ∈ Z+. If (1.1) forms an m-cover of Z,
then ∑

I⊆[1,k]
{
∑

s∈I ms/ns}=θ

(−1)|I |
(
b
∑

s∈I ms/nsc

n

)
exp

(
2π i

∑
s∈I

asms

ns

)
= 0 (3.1)

for all 0 6 θ < 1 and n = 0, 1, . . . , m − 1. The converse also holds if m1, . . . , mk
are relatively prime to n1, . . . , nk , respectively.

We can provide a new proof of Lemma 3.1 in a way similar to the proof of
Theorem 1.13.

LEMMA 3.2. Let n ∈ Z+ and l ∈ [0, n − 1]. Then∑
J⊆[1,n)
|J |=l

exp
(

2π i
∑
j∈J

j

n

)
= (−1)l . (3.2)

PROOF. Clearly we have the identity∏
0< j<n

(1− ze2π i j/n)=
1− zn

1− z
= 1+ z + · · · + zn−1.

Comparing the coefficients of zl we then obtain (3.2). 2

Using Lemmas 3.1 and 3.2 we can deduce another characterization of m-systems.

THEOREM 3.3. System (1.1) is an m-system if and only if

∑
xs∈[0,ns) for s∈[1,k]
{
∑k

s=1 xs/ns}=θ

(
b
∑k

s=1 xs/nsc

n

)
exp

(
2π i

k∑
s=1

as xs

ns

)
= 0 (3.3)

for all 0 6 θ < 1 and n ∈ [0, k − m).

PROOF. The case k 6 m is trivial, so we just let k > m. Recall that (1.1) is an m-
system if and only if its dual A∗ is a (k − m)-cover of Z.

By Lemma 3.1 in the case m1 = · · · = mk = 1, A∗ forms a (k − m)-cover of Z if
and only if for any 0 6 θ < 1 and n ∈ [0, k − m) the sum

∑
xs∈[0,ns) for s∈[1,k]
{
∑k

s=1 xs/ns}=θ

(−1)
∑k

s=1 xs

(
b
∑k

s=1 xs/nsc

n

)
exp

(
2π i

k∑
s=1

as xs

ns

) k∏
s=1

fs(xs)
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vanishes, where

fs(xs)=
∑

J⊆[1,ns)
|J |=xs

exp
(

2π i
∑
j∈J

j

ns

)
= (−1)xs

by Lemma 3.2. This concludes the proof. 2

The following consequence extends Corollary 1.14.

COROLLARY 3.4. Let (1.1) be an m-system. Then we have

∑
ms∈[1,ns ] for s∈[1,k]
m−

∑k
s=1 ms/ns∈N

(
k − 1−

∑k
s=1 ms/ns

m −
∑k

s=1 ms/ns

)
exp

(
2π i

k∑
s=1

asms

ns

)
= (−1)k−m .

PROOF. If k 6 m, then the left-hand side of the last equality coincides with(
k − 1−

∑k
s=1 ns/ns

m −
∑k

s=1 ns/ns

)
exp

(
2π i

k∑
s=1

asns

ns

)
=

(
−1

m − k

)
= (−1)m−k .

Now let k > m. As {−as(ns)}
k
s=1 is an m-system, by Theorem 3.3 and the identity

(−1)k−m−1
(

x − 1
k − m − 1

)
=

k−m−1∑
n=0

(−1)n
(

x

n

)
(see [4, (5.16)]) we have

0 =
∑

xs∈[0,ns) for s∈[1,k]
{
∑k

s=1 xs/ns}=0

(
b
∑k

s=1 xs/nsc − 1
k − m − 1

)
exp

(
2π i

k∑
s=1

−as xs

ns

)

=

∑
ms∈[1,ns ] for s∈[1,k]∑k

s=1(ns−ms)/ns∈N

(∑k
s=1(ns − ms)/ns − 1

k − m − 1

)
exp

(
−2π i

k∑
s=1

as(ns − ms)

ns

)

=

∑
ms∈[1,ns ] for s∈[1,k]∑k

s=1 ms/ns∈[0,k−1]

(
k − 1−

∑k
s=1 ms/ns

k − 1− m

)
exp

(
2π i

k∑
s=1

asms

ns

)

+

(
k − 1−

∑k
s=1 ns/ns

k − 1− m

)
exp

(
2π i

k∑
s=1

asns

ns

)
.

So the desired equality follows. 2
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