ON m-COVERS AND m-SYSTEMS

ZHI-WEI SUN

(Received 3 April 2009)

Abstract

Let $\mathcal{A}=\left\{a_{s}\left(\bmod n_{s}\right)\right\}_{s=0}^{k}$ be a system of residue classes. With the help of cyclotomic fields we obtain a theorem which unifies several previously known results related to the covering multiplicity of \mathcal{A}. In particular, we show that if every integer lies in more than $m_{0}=\left\lfloor\sum_{s=1}^{k} 1 / n_{s}\right\rfloor$ members of \mathcal{A}, then for any $a=0,1,2, \ldots$ there are at least $\binom{m_{0}}{\left\lfloor a / n_{0}\right\rfloor}$ subsets I of $\{1, \ldots, k\}$ with $\sum_{s \in I} 1 / n_{s}=a / n_{0}$. We also characterize when any integer lies in at most m members of \mathcal{A}, where m is a fixed positive integer.

2000 Mathematics subject classification: primary 11B25; secondary 05A05, 11A07, 11B75, 11D68.
Keywords and phrases: covers of the integers, residue classes, unit fractions.

1. Main results

For $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^{+}=\{1,2,3, \ldots\}$, we simply denote the residue class

$$
\{x \in \mathbb{Z} \mid x \equiv a(\bmod n)\}
$$

by $a(n)$. For a finite system

$$
\begin{equation*}
A=\left\{a_{s}\left(n_{s}\right)\right\}_{s=1}^{k} \tag{1.1}
\end{equation*}
$$

of residue classes, the function $w_{A}: \mathbb{Z} \rightarrow \mathbb{N}=\{0,1,2, \ldots\}$ given by

$$
\begin{equation*}
w_{A}(x)=\left|\left\{1 \leqslant s \leqslant k \mid x \in a_{s}\left(n_{s}\right)\right\}\right| \tag{1.2}
\end{equation*}
$$

is called the covering function of A. Obviously $w_{A}(x)$ is periodic modulo the least common multiple N of the moduli n_{1}, \ldots, n_{k}, and it is easy to see that the average $\sum_{x=0}^{N-1} w_{A}(x) / N$ equals $\sum_{s=1}^{k} 1 / n_{s}$. As in [13] we call $m(A)=\min _{x \in \mathbb{Z}} w_{A}(x)$ the covering multiplicity of system (1.1).

Let m be any positive integer. If $w_{A}(x) \geqslant m$ for all $x \in \mathbb{Z}$ (that is, $m(A) \geqslant m$), then (1.1) is said to be an m-cover of \mathbb{Z} as in [11, 12], and in this case $\sum_{s=1}^{k} 1 / n_{s} \geqslant m$. Covers (that is, 1-covers) of \mathbb{Z} were first introduced by Erdős [2] and they are also called covering systems. If $w_{A}(x)=m$ for all $x \in \mathbb{Z}$, then we call (1.1) an exact

[^0]m-cover of \mathbb{Z} as in [12,13] (and in this case $\sum_{s=1}^{k} 1 / n_{s}=m$). By [8, Theorem 1.3], when $m \geqslant 2$ there are exact m-covers of \mathbb{Z} that cannot split into two covers of \mathbb{Z}. If $w_{A}(x) \leqslant m$ for all $x \in \mathbb{Z}$, then we call (1.1) an m-system, and in this case $\sum_{s=1}^{k} 1 / n_{s} \leqslant m$; any 1 -system is said to be disjoint.

The reader may consult Guy [5, pp. 383-390] and Simpson [9] for some problems and results in covering theory. Covers of \mathbb{Z} have many surprising applications; see, for example [1], [5, Sections A19 and B21], [14, 20, 21]. Sun [19] showed that m-covers of \mathbb{Z} are related to zero-sum problems for abelian groups. Also, the topic of covering systems stimulated the birth of some new algebraic results (see [15, 17]).

Throughout this paper, for $a, b \in \mathbb{Z}$ we set $[a, b]=\{x \in \mathbb{Z} \mid a \leqslant x \leqslant b\}$ and define $[a, b)$ and $(a, b]$ similarly. As usual, the integral part and the fractional part of a real number α are denoted by $\lfloor\alpha\rfloor$ and $\{\alpha\}$, respectively.

For system (1.1) we define its dual system A^{*} by

$$
\begin{equation*}
A^{*}=\left\{a_{s}+r\left(n_{s}\right) \mid 1 \leqslant r<n_{s}, 1 \leqslant s \leqslant k\right\} . \tag{1.3}
\end{equation*}
$$

As $\left\{a_{s}+r\left(n_{s}\right)\right\}_{r=0}^{n_{s}-1}$ is a partition of \mathbb{Z} for any $s \in[1, k]$, we have $w_{A}(x)+w_{A^{*}}(x)=$ k for all $x \in \mathbb{Z}$. Thus $w_{A}(x) \leqslant m$ for all $x \in \mathbb{Z}$ if and only if $w_{A^{*}}(x) \geqslant k-m$ for all $x \in \mathbb{Z}$. This simple and new observation shows that we can study m-systems via covers of \mathbb{Z}, and construct covers of \mathbb{Z} via m-systems.

By a result in [12], if (1.1) is an m-cover of \mathbb{Z} then for any $m_{1}, \ldots, m_{k} \in \mathbb{Z}^{+}$there are at least m positive integers in the form $\sum_{s \in I} m_{s} / n_{s}$ with $I \subseteq[1, k]$. Applying this result to the dual A^{*} of an m-system (1.1), we obtain that there are more than $k-m$ integers in the form $\sum_{s=1}^{k} x_{s} / n_{s}$ with $x_{s} \in\left[0, n_{s}\right.$); equivalently, at most $m-1$ of the numbers in $[1, k]$ cannot be written in the form $\sum_{s=1}^{k} m_{s} / n_{s}=k-\sum_{s=1}^{k}\left(n_{s}-\right.$ $\left.m_{s}\right) / n_{s}$ with $m_{s} \in\left[1, n_{s}\right]$. This implies the following result stated in [16, Remark 1.3]: if (1.1) is an m-system, then there are $m_{1}, \ldots, m_{k} \in \mathbb{Z}^{+}$such that $\sum_{s=1}^{k} m_{s} / n_{s}=m$.

The following theorem unifies and generalizes several known results.
THEOREM 1.1. Let $\mathcal{A}=\left\{a_{s}\left(n_{s}\right)\right\}_{s=0}^{k}$ be a finite system of residue classes with $m(\mathcal{A})>$ $m=\left\lfloor\sum_{s=1}^{k} m_{s} / n_{s}\right\rfloor$, where $m_{1}, \ldots, m_{k} \in \mathbb{Z}^{+}$. Then, for any $0 \leqslant \alpha<1$, either

$$
\begin{equation*}
\sum_{\substack{I \subseteq[1, k] \\ m_{s} / n_{s}=(\alpha+a) / n_{0}}}(-1)^{|I|} \exp \left(2 \pi i \sum_{s \in I} \frac{a_{s} m_{s}}{n_{s}}\right)=0 \tag{1.4}
\end{equation*}
$$

for any $a \in \mathbb{N}$, or

$$
\begin{equation*}
\left|\left\{I \subseteq[1, k]: \sum_{s \in I} \frac{m_{s}}{n_{s}}=\frac{\alpha+a}{n_{0}}\right\}\right| \geqslant\binom{ m}{\left\lfloor a / n_{0}\right\rfloor} \tag{1.5}
\end{equation*}
$$

for all $a=0,1,2, \ldots$.
Example 1.2. Erdős observed that $\{0(2), 0(3), 1(4), 5(6), 7(12)\}$ is a cover of \mathbb{Z} with the moduli

$$
n_{0}=2, \quad n_{1}=3, \quad n_{2}=4, \quad n_{3}=6, \quad n_{4}=12
$$

distinct. As $\left\lfloor\sum_{s=1}^{4} 1 / n_{s}\right\rfloor=0$, by Theorem 1.1 in the case $\alpha=0$ we have $\sum_{s \in I} 1 / n_{s}=1 / n_{0}=1 / 2$ for some $I \subseteq[1,4]$; we can actually take $I=\{1,3\}$. Since $\sum_{s=1}^{4} 1 / n_{s}<(5 / 6+1) / n_{0}=11 / 12$, by Theorem 1.1 in the case $\alpha=5 / 6$ the set $\mathcal{I}=\left\{I \subseteq[1,4]: \sum_{s \in I} 1 / n_{s}=5 / 12\right\}$ cannot have a single element; in fact, $\mathcal{I}=$ $\{\{1,4\},\{2,3\}\}$ and

$$
\begin{aligned}
& (-1)^{|\{1,4\}|} \exp \left(2 \pi i\left(0 / n_{1}+7 / n_{4}\right)\right)+(-1)^{|\{2,3\}|} \exp \left(2 \pi i\left(1 / n_{2}+5 / n_{3}\right)\right) \\
& \quad=-\exp (\pi i / 6)+\exp (\pi i / 6)=0
\end{aligned}
$$

COROLLARY 1.3. If $\mathcal{A}=\left\{a_{s}\left(n_{s}\right)\right\}_{s=0}^{k}$ is a finite system of residue classes with $w_{\mathcal{A}}(x)>m=\left\lfloor\sum_{s=1}^{k} 1 / n_{s}\right\rfloor$ for all $x \in \mathbb{Z}$, then

$$
\begin{equation*}
\left|\left\{I \subseteq[1, k]: \sum_{s \in I} \frac{1}{n_{s}}=\frac{a}{n_{0}}\right\}\right| \geqslant\binom{ m}{\left\lfloor a / n_{0}\right\rfloor} \quad \text { for all } a \in \mathbb{N} . \tag{1.6}
\end{equation*}
$$

In particular, if (1.1) has covering multiplicity $m(A)=\left\lfloor\sum_{s=1}^{k} 1 / n_{s}\right\rfloor$, then

$$
\begin{equation*}
\left|\left\{I \subseteq[1, k]: \sum_{s \in I} \frac{1}{n_{s}}=n\right\}\right| \geqslant\binom{ m(A)}{n} \quad \text { for each } n \in \mathbb{N} \tag{1.7}
\end{equation*}
$$

Proof. Observe that the left-hand side of (1.4) is nonzero in the case $\alpha=a=0$. So (1.6) follows from Theorem 1.1 immediately. In the case $n_{0}=1$ this yields the latter result in Corollary 1.3.

REMARK 1.4. Let (1.1) be an exact m-cover of \mathbb{Z}. Then $\sum_{s=1}^{k} 1 / n_{s}=m$ and $\left\lfloor\sum_{s \in[1, k] \backslash\{t\}} 1 / n_{s}\right\rfloor=m-1$ for any $t=1, \ldots, k$. So Corollary 1.3 implies the following result in [13]: for any $t \in[1, k]$ and $a \in \mathbb{N}$,

$$
\left|\left\{I \subseteq[1, k] \backslash\{t\}: \sum_{s \in I} \frac{1}{n_{s}}=\frac{a}{n_{t}}\right\}\right| \geqslant\binom{ m-1}{\left\lfloor a / n_{t}\right\rfloor}
$$

As $m(A)=\sum_{s=1}^{k} 1 / n_{s}$, the inequality $\left|\left\{I \subseteq[1, k]: \sum_{s \in I} 1 / n_{s}=n\right\}\right| \geqslant\binom{ m}{n}$ also holds for all $n=0,1, \ldots, m$, which was first established in [10] by means of the Riemann zeta function.
COROLLARY 1.5. Let (1.1) be an m-system with $m=\left\lceil\sum_{s=1}^{k} 1 / n_{s}\right\rceil$, where $\lceil\alpha\rceil$ denotes the least integer not smaller than a real number α. Then

$$
\begin{equation*}
\left|\left\{\left\langle m_{1}, \ldots, m_{k}\right\rangle \in \mathbb{Z}^{k}: m_{s} \in\left[1, n_{s}\right], \sum_{s=1}^{k} \frac{m_{s}}{n_{s}}=n\right\}\right| \geqslant\binom{ k-m}{n-m} \tag{1.8}
\end{equation*}
$$

for every $n=m, \ldots, k$.

Proof. Let $n \in[m, k]$. Clearly the left-hand side of (1.8) coincides with

$$
L:=\left|\left\{\left\langle x_{1}, \ldots, x_{k}\right\rangle: x_{s} \in\left[0, n_{s}-1\right], \sum_{s=1}^{k} \frac{x_{s}}{n_{s}}=\sum_{s=1}^{k} \frac{n_{s}}{n_{s}}-n=k-n\right\}\right| .
$$

Since $\sum_{s=1}^{k} 1 / n_{s}>m-1, w_{A}(x)=m$ for some $x \in \mathbb{Z}$. As the dual A^{*} of (1.1) has covering multiplicity $m\left(A^{*}\right)=k-m$, applying Corollary 1.3 to A^{*} leads to $L \geqslant\binom{ k-m}{k-n}=\binom{k-m}{n-m}$. This concludes the proof.

REMARK 1.6. When (1.1) is an exact m-cover of \mathbb{Z}, it was proved in [13] (by a different approach) that for each $n \in \mathbb{N}$ the equation $\sum_{s=1}^{k} x_{s} / n_{s}=n$ with $x_{s} \in\left[0, n_{s}\right)$ has at least $\binom{k-m}{n}$ solutions.
Corollary 1.7. Let $\mathcal{A}=\left\{a_{s}\left(n_{s}\right)\right\}_{s=0}^{k}$ be a finite system of residue classes with $m(\mathcal{A})>m=\left\lfloor\sum_{s=1}^{k} m_{s} / n_{s}\right\rfloor$, where $m_{1}, \ldots, m_{k} \in \mathbb{Z}^{+}$. Suppose that $J \subseteq[1, k]$ and $\sum_{s \in I} m_{s} / n_{s}=\sum_{s \in J} m_{s} / n_{s}$ for no $I \subseteq[1, k]$ with $I \neq J$. Then

$$
\begin{equation*}
\left\{n_{0} \sum_{s \in J} \frac{m_{s}}{n_{s}}\right\}+\left\{n_{0} \sum_{s \in \bar{J}} \frac{m_{s}}{n_{s}}\right\}<1 \tag{1.9}
\end{equation*}
$$

where $\bar{J}=[1, k] \backslash J$. Also

$$
\begin{equation*}
\sum_{s \in J} \frac{m_{s}}{n_{s}} \geqslant m \quad \text { or } \quad \sum_{s \in \bar{J}} \frac{m_{s}}{n_{s}} \geqslant m \tag{1.10}
\end{equation*}
$$

Proof. Let $v=\sum_{s \in J} m_{s} / n_{s}, \alpha=\left\{n_{0} v\right\}$ and $b=\left\lfloor n_{0} v\right\rfloor$. Then $(\alpha+b) / n_{0}=v$ and

$$
\begin{aligned}
& \sum_{\substack{I \subseteq[1, k] \\
\sum_{s \in I} m_{s} / n_{s}=v}}(-1)^{|I|} \exp \left(2 \pi i \sum_{s \in I} \frac{a_{s} m_{s}}{n_{s}}\right) \\
& \quad=(-1)^{|J|} \exp \left(2 \pi i \sum_{s \in J} \frac{a_{s} m_{s}}{n_{s}}\right) \neq 0 .
\end{aligned}
$$

By Theorem 1.1, inequality (1.5) holds for any $a \in \mathbb{N}$. Applying (1.5) with $a=$ $m n_{0}+n_{0}-1$ we find that $\sum_{s \in I} m_{s} / n_{s}=\left(\alpha+m n_{0}+n_{0}-1\right) / n_{0}$ for some $I \subseteq$ $[1, k]$, therefore $\sum_{s=1}^{k} m_{s} / n_{s} \geqslant m+\left(\alpha+n_{0}-1\right) / n_{0}$. As $\left\lfloor\sum_{s=1}^{k} m_{s} / n_{s}\right\rfloor=m$, we must have

$$
\left\{\sum_{s=1}^{k} \frac{m_{s}}{n_{s}}\right\} \geqslant \frac{\alpha+n_{0}-1}{n_{0}}, \text { that is, } n_{0}-1+\alpha \leqslant n_{0}\left\{\sum_{s=1}^{k} \frac{m_{s}}{n_{s}}\right\}<n_{0}
$$

Therefore $\alpha \leqslant\left\{n_{0}\left\{\sum_{s=1}^{k} m_{s} / n_{s}\right\}\right\}=\left\{n_{0} \sum_{s=1}^{k} m_{s} / n_{s}\right\}$, which is equivalent to (1.9).
Inequality (1.5) in the case $a=b$ gives that $\binom{m}{\left\lfloor/ n_{0}\right\rfloor} \leqslant 1$, thus $\lfloor v\rfloor \in\{0, m\}$. As $n_{0}\{v\}-\alpha=\left\lfloor n_{0}\{v\}\right\rfloor \leqslant n_{0}-1,\{v\} \leqslant\left(\alpha+n_{0}-1\right) / n_{0} \leqslant\left\{\sum_{s=1}^{k} m_{s} / n_{s}\right\}$. If $\lfloor v\rfloor=0$, then $m+v \leqslant m+\left\{\sum_{s=1}^{k} m_{s} / n_{s}\right\}=\sum_{s=1}^{k} m_{s} / n_{s}$ and hence $\sum_{s \in \bar{J}} m_{s} / n_{s} \geqslant m$. Therefore (1.10) is valid. We are done.

REMARK 1.8. Let (1.1) be an exact m-cover of \mathbb{Z}. [11, Theorem 4(ii)] asserts that if $\emptyset \neq J \subset[1, k]$ then $\sum_{s \in I} 1 / n_{s}=\sum_{s \in J} 1 / n_{s}$ for some $I \subseteq[1, k]$ with $I \neq J$. This follows from Corollary 1.7, for, $\mathcal{A}=\left\{a_{s}\left(n_{s}\right)\right\}_{s=0}^{k}$ (where $a_{0}=0$ and $n_{0}=1$) is an $(m+1)$-cover of \mathbb{Z} with $\sum_{s \in J \cup \bar{J}} 1 / n_{s}=\sum_{s=1}^{k} 1 / n_{s}=m$.

In the 1960s Erdős made the following conjecture: for any system (1.1) with $1<n_{1}<\cdots<n_{k}$, if it is a cover of \mathbb{Z} then $\sum_{s=1}^{k} 1 / n_{s}>1$, in other words it cannot be a disjoint cover of \mathbb{Z}. This was later confirmed by H. Davenport, L. Mirsky, D. Newman and R. Radó who proved that if (1.1) is a disjoint cover of \mathbb{Z} with $1<n_{1} \leqslant \cdots \leqslant n_{k-1} \leqslant n_{k}$ then $n_{k-1}=n_{k}$.

Corollary 1.9. Let (1.1) be an m-cover of \mathbb{Z} with

$$
\begin{equation*}
n_{1} \leqslant \cdots \leqslant n_{k-l}<n_{k-l+1}=\cdots=n_{k} \quad(0<l<k) . \tag{1.11}
\end{equation*}
$$

Then, for any $r \in[0, l]$ with $r<n_{k} / n_{k-l}$, either $\sum_{s=1}^{k-r} 1 / n_{s} \geqslant m$ or

$$
\binom{l}{r} \in D\left(n_{k}\right)=\left\{\sum_{p \mid n_{k}} p x_{p} \mid x_{p} \in \mathbb{N} \text { for any prime divisor } p \text { of } n_{k}\right\}
$$

Proof. Set $\mathcal{A}=\left\{a_{s}\left(n_{s}\right)\right\}_{s=0}^{k}$ where $a_{0}=0$ and $n_{0}=1$. Suppose that $\sum_{s=1}^{k-r} 1 / n_{s}<$ m. Then $\sum_{s=1}^{k} 1 / n_{s}<m+r / n_{k}<m+1 \leqslant m(\mathcal{A})$. Since

$$
\left|\left\{I \subseteq[1, k]: \sum_{s \in I} \frac{1}{n_{s}}=m+\frac{r}{n_{k}}\right\}\right|=0<\binom{m}{m}
$$

by Theorem 1.1 we must have

$$
\sum_{\substack{I \subseteq[1, k] \\ C}}(-1)^{|I|} \exp \left(2 \pi i \sum_{s \in I} \frac{a_{s}}{n_{s}}\right)=0 .
$$

Observe that $r / n_{k}<1 / n_{k-l}=\min \left\{1 / n_{s} \mid 1 \leqslant s \leqslant k-l\right\}$. Therefore,

$$
0=\sum_{\substack{I \subseteq(k-l, k] \\ \sum_{s \in I} 1 / n_{s}=r / n_{k}}}(-1)^{|I|} \exp \left(2 \pi i \sum_{s \in I} \frac{a_{s}}{n_{s}}\right)=(-1)^{r} \Sigma_{r},
$$

where

$$
\Sigma_{r}=\sum_{\substack{I \subseteq(k-l, k] \\|I|=r}} \exp \left(2 \pi i \sum_{s \in I} \frac{a_{s}}{n_{k}}\right)
$$

By [16, Lemma 3.1], $\Sigma_{r}=0$ implies that

$$
\binom{l}{r}=|\{I \subseteq(k-l, k]:|I|=r\}| \in D\left(n_{k}\right)
$$

This concludes the proof.

REMARK 1.10. Let (1.1) be an m-cover of \mathbb{Z} with (1.11). By Corollary 1.9 in the case $r=l$, either $l \geqslant n_{k} / n_{k-l}>1$ or $\sum_{s=1}^{k-l} 1 / n_{s} \geqslant m$; this is one of the main results in [12]. Corollary 1.9 in the case $r=1$ yields that either $\sum_{s=1}^{k-1} 1 / n_{s} \geqslant m$ or $l \in D\left(n_{k}\right)$; this implies the extended Newman-Znám result (see [7]) which asserts that if (1.1) is an exact m-cover of \mathbb{Z} (and hence $\sum_{s=1}^{k-1} 1 / n_{s}<\sum_{s=1}^{k} 1 / n_{s}=m$) then l is not smaller than the least prime divisor of n_{k}.

Let (1.1) be an m-system with (1.11), and let $r \in \mathbb{N}$ and $r<n_{k} / n_{k-l}$. With the help of the dual system of (1.1), we can also show that either $\sum_{s=1}^{k} 1 / n_{s} \leqslant m-r / n_{k}$ or

$$
\binom{l+r-1}{r}=\left|\left\{\left\langle x_{k-l+1}, \ldots, x_{k}\right\rangle \in \mathbb{N}^{l} \mid x_{k-l+1}+\cdots+x_{k}=r\right\}\right| \in D\left(n_{k}\right) .
$$

If (1.1) is disjoint with $1<n_{1}<\cdots<n_{k}$, then $\sum_{s=1}^{k} 1 / n_{s}<1$ since (1.1) is not a disjoint cover of \mathbb{Z}; Erdős [3] showed further that $\sum_{s=1}^{k} 1 / n_{s} \leqslant 1-1 / 2^{k}$. Now we give a generalization of this result.
THEOREM 1.11. Let (1.1) be an m-system with $k \geqslant m, \sum_{s=1}^{k} 1 / n_{s} \neq m$ and $n_{1} \leqslant$ $\cdots \leqslant n_{k}$. Then

$$
\begin{equation*}
\sum_{s=1}^{k} \frac{1}{n_{s}} \leqslant m-\frac{1}{2^{k-m+1}} \tag{1.12}
\end{equation*}
$$

and equality holds if and only if $n_{s}=2^{\max \{s-m+1,0\}}$ for all $s=1, \ldots, k$.
REMARK 1.12. Let $k \geqslant m \geqslant 1$ be integers. Then $m-1$ copies of $0(1)$, together with the $k-m+1$ residue classes

$$
1(2), 2\left(2^{2}\right), \ldots, 2^{k-m}\left(2^{k-m+1}\right)
$$

form an m-system with the moduli $2^{\max \{s-m+1,0\}}(s=1, \ldots, k)$.
We will prove Theorems 1.1 and 1.11 in the next section. Section 3 deals with two characterizations of m-systems one of which is as follows.

Theorem 1.13. System (1.1) is an m-system if and only if, for any $n \in[m, k$,

$$
S(n, \alpha)= \begin{cases}(-1)^{k} & \text { if } \alpha=0 \tag{1.13}\\ 0 & \text { if } 0<\alpha<1\end{cases}
$$

where $S(n, \alpha)$ represents the sum

$$
\sum_{\substack{m_{1}, \ldots, m_{k} \in \mathbb{Z}^{+} \\\left\{\sum_{s=1}^{k} m_{s} / n_{s}\right\}=\alpha}}(-1)^{\left\lfloor\sum_{s=1}^{k} m_{s} / n_{s}\right\rfloor}\binom{n}{\left\lfloor\sum_{s=1}^{k} m_{s} / n_{s}\right\rfloor} \exp \left(2 \pi i \sum_{s=1}^{k} \frac{a_{s} m_{s}}{n_{s}}\right) .
$$

Theorem 1.13 in the case $m=1$ yields the following result.

Corollary 1.14. If (1.1) is disjoint, then

$$
\begin{equation*}
\sum_{\substack{m_{1}, \ldots, m_{k} \in \mathbb{Z}^{+} \\ \sum_{s=1}^{k} m_{s} / n_{s}=1}} \exp \left(2 \pi i \sum_{s=1}^{k} \frac{a_{s} m_{s}}{n_{s}}\right)=(-1)^{k-1} \tag{1.14}
\end{equation*}
$$

A residue class $a(n)=a+n \mathbb{Z}$ is a coset of $n \mathbb{Z}$ in the additive group \mathbb{Z} with $[\mathbb{Z}: n \mathbb{Z}]=n$. In [18] the author conjectured that if $\left\{a_{s} G_{s}\right\}_{s=1}^{k}(1<k<\infty)$ is a disjoint system of left cosets in a group G with all the indices $n_{s}=\left[G: G_{s}\right]$ finite, then $\operatorname{gcd}\left(n_{s}, n_{t}\right) \geqslant k$ for some $1 \leqslant s<t \leqslant k$.

2. Proofs of Theorems 1.1 and 1.11

Lemma 2.1. Let $N \in \mathbb{Z}^{+}$be a common multiple of the moduli n_{1}, \ldots, n_{k} in (1.1). And let $m, m_{1}, \ldots, m_{k} \in \mathbb{Z}^{+}$. If (1.1) is an m-cover of \mathbb{Z}, then $\left(1-z^{N}\right)^{m}$ divides the polynomial $\prod_{s=1}^{k}\left(1-z^{N m_{s} / n_{s}} \exp \left(2 \pi i a_{s} m_{s} / n_{s}\right)\right)$. When m_{1}, \ldots, m_{k} are relatively prime to n_{1}, \ldots, n_{k} respectively, the converse also holds.

Proof. For any $r=0,1, \ldots, N-1$, clearly $\exp (2 \pi i r / N)$ is a zero of the polynomial $\prod_{s=1}^{k}\left(1-z^{N m_{s} / n_{s}} \exp \left(2 \pi i a_{s} m_{s} / n_{s}\right)\right)$ with multiplicity $M_{r}=\mid\{s \in$ $\left.[1, k]: n_{s} \mid m_{s}\left(r+a_{s}\right)\right\} \mid$. Observe that $M_{r} \geqslant w_{A}(-r)$. If m_{s} is relatively prime to n_{s} for each $s \in[1, k]$, then $M_{r}=w_{A}(-r)$. As $\left(1-z^{N}\right)^{m}=\prod_{r=0}^{N-1}(1-$ $z \exp (-2 \pi i r / N))^{m}$, the desired result follows from the above.

Proof of Theorem 1.1. Set $m_{0}=1$, and let N_{0} be the least common multiple of $n_{0}, n_{1}, \ldots, n_{k}$. In light of Lemma 2.1, we can write

$$
P(z)=\prod_{s=0}^{k}\left(1-z^{N_{0} m_{s} / n_{s}} \exp \left(2 \pi i \frac{a_{s} m_{s}}{n_{s}}\right)\right)
$$

in the form $\left(1-z^{N_{0}}\right)^{m+1} Q(z)$ where $Q(z) \in \mathbb{C}[z]$. Clearly

$$
\operatorname{deg} Q=\operatorname{deg} P-(m+1) N_{0}=N_{0}\left(\sum_{s=0}^{k} \frac{m_{s}}{n_{s}}-m-1\right)<\frac{N_{0}}{n_{0}}
$$

Also

$$
\begin{align*}
& \prod_{s=1}^{k}\left(1-z^{N_{0} m_{s} / n_{s}} \exp \left(2 \pi i \frac{a_{s} m_{s}}{n_{s}}\right)\right) \\
& \quad=\sum_{n=0}^{m}(-1)^{n}\binom{m}{n} z^{n N_{0}} \sum_{r=0}^{n_{0}-1} z^{r N_{0} / n_{0}} \exp \left(2 \pi i r \frac{a_{0}}{n_{0}}\right) Q(z) \tag{2.1}
\end{align*}
$$

since

$$
\frac{1-z^{N_{0}}}{1-z^{N_{0} / n_{0}} \exp \left(2 \pi i a_{0} / n_{0}\right)}=\sum_{r=0}^{n_{0}-1} z^{r N_{0} / n_{0}} \exp \left(2 \pi i r \frac{a_{0}}{n_{0}}\right)
$$

Let $a \in \mathbb{N}$ and

$$
C_{a}=(-1)^{\left\lfloor a / n_{0}\right\rfloor} \sum_{\substack{I \subseteq[1, k] \\ \sum_{s \in I}}}(-1)^{|I|} \exp \left(2 \pi i \sum_{s \in I}\left(a_{s}-a_{0}\right) \frac{m_{s}}{n_{s}}\right) .
$$

By comparing the coefficients of $z^{N_{0}(\alpha+a) / n_{0}}$ on both sides of (2.1) we obtain that

$$
\begin{aligned}
& \sum_{\substack{I \subseteq[1, k] \\
m_{s} / n_{s}=(\alpha+a) / n_{0}}}(-1)^{|I|} \exp \left(2 \pi i \sum_{s \in I} \frac{a_{s} m_{s}}{n_{s}}\right) \\
= & (-1)^{\left\lfloor a / n_{0}\right\rfloor}\binom{m}{\left\lfloor a / n_{0}\right\rfloor} \exp \left(2 \pi i a_{0}\left\{a / n_{0}\right\}\right)\left[z^{\alpha N_{0} / n_{0}}\right] Q(z),
\end{aligned}
$$

where $\left[z^{\alpha N_{0} / n_{0}}\right] Q(z)$ denotes the coefficient of $z^{\alpha N_{0} / n_{0}}$ in $Q(z)$. Therefore

$$
\begin{equation*}
C_{a}=\exp \left(-2 \pi i \alpha \frac{a_{0}}{n_{0}}\right)\binom{m}{\left\lfloor a / n_{0}\right\rfloor}\left[z^{\alpha N_{0} / n_{0}}\right] Q(z)=\binom{m}{\left\lfloor a / n_{0}\right\rfloor} C_{0} \tag{2.2}
\end{equation*}
$$

For an algebraic integer ω in the field $K=\mathbb{Q}\left(\exp \left(2 \pi i / N_{0}\right)\right)$, the norm

$$
N(\omega)=\prod_{1 \leqslant r \leqslant N_{0}, \operatorname{gcd}\left(r, N_{0}\right)=1} \sigma_{r}(\omega)
$$

(with respect to the field extension K / \mathbb{Q}) is a rational integer, where σ_{r} is the automorphism of K (in the Galois group $\operatorname{Gal}(K / \mathbb{Q}))$ induced by $\sigma_{r}\left(\exp \left(2 \pi i / N_{0}\right)\right)=$ $\exp \left(2 \pi i r / N_{0}\right)$. (See, for example, [6, Ch. 1].) As $N\left((-1)^{\left\lfloor a / n_{0}\right\rfloor} C_{a}\right)$ equals

$$
\prod_{\substack{1 \leqslant r \leqslant N_{0} \\ \operatorname{gcd}\left(r, N_{0}\right)=1}} \sum_{\substack{I \subseteq[1, k] \\ \sum_{s \in I}}}(-1)^{|I|} \exp \left(2 \pi i r \sum_{s \in I}\left(a_{s}-a_{0}\right) \frac{m_{s}}{n_{s}}\right)
$$

we have

$$
\begin{aligned}
\left|N\left(C_{a}\right)\right| & =\prod_{\substack{1 \leqslant r \leqslant N_{0} \\
\operatorname{gcd}\left(r, N_{0}\right)=1}}\left|\sum_{\substack{I \subseteq[1, k] \\
\sum_{s \in I}}}(-1)^{|I|} \exp \left(2 \pi i r \sum_{s \in I}\left(a_{s}-a_{0}\right) \frac{m_{s}}{n_{s}}\right)\right| \\
& \leqslant\left|\left\{I \subseteq[1, k]: \sum_{s \in I} \frac{m_{s}}{n_{s}}=\frac{\alpha+a+a) / n_{0}}{n_{0}}\right\}\right|^{\varphi\left(N_{0}\right)},
\end{aligned}
$$

where φ is Euler's totient function. Also

$$
\left|N\left(C_{a}\right)\right|=\left|N\left(\binom{m}{\left\lfloor a / n_{0}\right\rfloor}\right)\right| \times\left|N\left(C_{0}\right)\right|=\binom{m}{\left\lfloor a / n_{0}\right\rfloor}^{\varphi\left(N_{0}\right)}\left|N\left(C_{0}\right)\right| .
$$

Suppose that $C_{b} \neq 0$ for some $b \in \mathbb{N}$. Then $N\left(C_{b}\right) \neq 0$, and hence $N\left(C_{0}\right) \in \mathbb{Z}$ is nonzero. For any $a \in \mathbb{N}$,

$$
\left|\left\{I \subseteq[1, k]: \sum_{s \in I} \frac{m_{s}}{n_{s}}=\frac{\alpha+a}{n_{0}}\right\}\right|^{\varphi\left(N_{0}\right)} \geqslant\left|N\left(C_{a}\right)\right| \geqslant\binom{ m}{\left\lfloor a / n_{0}\right\rfloor}^{\varphi\left(N_{0}\right)}
$$

and hence (1.5) holds. This concludes the proof.
Proof of Theorem 1.11. We use induction on k.
In the case $k=m$, we have $n_{k}>1$ and hence

$$
\sum_{s=1}^{k} \frac{1}{n_{s}} \leqslant k-1+\frac{1}{n_{k}} \leqslant m-\frac{1}{2}=m-\frac{1}{2^{k-m+1}}
$$

also $\sum_{s=1}^{k} 1 / n_{s}=m-1 / 2$ if and only if $n_{1}=\cdots=n_{k-1}=1$ and $n_{k}=2$.
Now let $k>m$. Clearly $\sum_{s=1}^{k-1} 1 / n_{s}<\sum_{s=1}^{k} 1 / n_{s}<m$. Assume that

$$
\sum_{s=1}^{k-1} \frac{1}{n_{s}} \leqslant m-\frac{1}{2^{(k-1)-m+1}}=m-\frac{1}{2^{k-m}}
$$

and that equality holds if and only if $n_{s}=2^{\max \{s-m+1,0\}}$ for all $s \in[1, k-1]$. When $n_{k}>2^{k-m+1}$,

$$
\sum_{s=1}^{k} \frac{1}{n_{s}}=\sum_{s=1}^{k-1} \frac{1}{n_{s}}+\frac{1}{n_{k}}<\left(m-\frac{1}{2^{k-m}}\right)+\frac{1}{2^{k-m+1}}=m-\frac{1}{2^{k-m+1}}
$$

If $\sum_{s=1}^{k} 1 / n_{s}>m-1 / n_{k}$, then $\left\lceil\sum_{s=1}^{k} 1 / n_{s}\right\rceil=m$, thus $\sum_{s=1}^{k} m_{s} / n_{s}=m$ for some $m_{1}, \ldots, m_{k} \in \mathbb{Z}^{+}$(by Corollary 1.5), and hence

$$
m-\sum_{s=1}^{k} \frac{1}{n_{s}} \geqslant \min \left\{\left.\frac{1}{n_{s}} \right\rvert\, 1 \leqslant s \leqslant k\right\}=\frac{1}{n_{k}}
$$

This shows that indeed $\sum_{s=1}^{k} 1 / n_{s} \leqslant m-1 / n_{k}$. Provided that $n_{k} \leqslant 2^{k-m+1}$, inequality (1.12) holds, and also

$$
\begin{aligned}
\sum_{s=1}^{k} \frac{1}{n_{s}}=m-\frac{1}{2^{k-m+1}} & \Longleftrightarrow n_{k}=2^{k-m+1} \text { and } \sum_{s=1}^{k-1} \frac{1}{n_{s}}=m-\frac{1}{2^{k-m}} \\
& \Longleftrightarrow n_{s}=2^{\max \{s-m+1,0\}} \quad \text { for } s=1, \ldots, k-1, k
\end{aligned}
$$

This concludes the induction step and we are done.

3. Characterizations of \boldsymbol{m}-systems

Proof of Theorem 1.13. Like Lemma 2.1, system (1.1) is an m-system if and only if $f(z)=\left(1-z^{N}\right)^{m} / \prod_{s=1}^{k}\left(1-z^{N / n_{s}} \exp \left(2 \pi i a_{s} / n_{s}\right)\right)$ is a polynomial, where N is the least common multiple of n_{1}, \ldots, n_{k}.

Set $c=m-\sum_{s=1}^{k} 1 / n_{s}$. If $f(z)$ is a polynomial, then $\operatorname{deg} f=c N$ and $\left[z^{c N}\right] f(z)=(-1)^{k-m} \exp \left(-2 \pi i \sum_{s=1}^{k} a_{s} / n_{s}\right)$.

For $|z|<1$,

$$
f(z)=\sum_{n=0}^{m}\binom{m}{n}(-1)^{n} z^{n N} \prod_{s=1}^{k} \sum_{x_{s}=0}^{\infty} \exp \left(2 \pi i \frac{a_{s} x_{s}}{n_{s}}\right) z^{N x_{s} / n_{s}}
$$

Let $\alpha \geqslant 0$. Then

$$
\begin{aligned}
{\left[z^{(c+\alpha) N}\right] f(z) } & =\sum_{n=0}^{m}(-1)^{n}\binom{m}{n} \sum_{\substack{x_{1}, \ldots, x_{k} \in \mathbb{N} \\
\sum_{s=1}^{k} x_{s} / n_{s}=c+\alpha-n}} \exp \left(2 \pi i \sum_{s=1}^{k} \frac{a_{s} x_{s}}{n_{s}}\right) \\
& =\sum_{n=0}^{m}(-1)^{n}\binom{m}{n} \sum_{\substack{m_{1}, \ldots, m_{k} \in \mathbb{Z}^{+} \\
\sum_{s=1}^{k} m_{s} / n_{s}=\alpha+m-n}} \exp \left(2 \pi i \sum_{s=1}^{k} \frac{a_{s}\left(m_{s}-1\right)}{n_{s}}\right) \\
& =(-1)^{m} \exp \left(-2 \pi i \sum_{s=1}^{k} \frac{a_{s}}{n_{s}}\right) S(m, \alpha),
\end{aligned}
$$

where $S(n, \alpha)(n \in \mathbb{N})$ represents the sum

$$
\sum_{\substack{m_{1}, \ldots, m_{k} \in \mathbb{Z}^{+} \\ \sum_{s=1}^{k} m_{s} n_{s}-\alpha \in \mathbb{N}}}(-1)^{\sum_{s=1}^{k} m_{s} / n_{s}-\alpha}\binom{n}{\sum_{s=1}^{k} m_{s} / n_{s}-\alpha} \exp \left(2 \pi i \sum_{s=1}^{k} \frac{a_{s} m_{s}}{n_{s}}\right)
$$

which agrees with its definition in the case $0 \leqslant \alpha<1$ given in Theorem 1.13.
(i) Suppose that (1.1) is an m-system. Then $f(z)$ is a polynomial of degree $c N$ and hence

$$
S(m, \alpha)=(-1)^{m} \exp \left(2 \pi i \sum_{s=1}^{k} \frac{a_{s}}{n_{s}}\right)\left[z^{(c+\alpha) N}\right] f(z)= \begin{cases}(-1)^{k} & \text { if } \alpha=0 \\ 0 & \text { if } \alpha>0\end{cases}
$$

For any integer $n \geqslant m$, (1.1) is also an n-system and so (1.13) holds.
(ii) Now assume that (1.13) holds for all $n \in[m, k)$. For any $n \geqslant k$, we also have (1.13) by (i) because (1.1) is a k-system. If $0<\alpha<1$ then $S(n, \alpha)=0$ for any integer $n \geqslant m$. Fix $\alpha>0$. If $S(n, \alpha)=0$ for all integers $n \geqslant m$, then for any integer $n \geqslant m$,

$$
S(n, \alpha+1)=S(n, \alpha)-S(n+1, \alpha)=0
$$

because $\binom{n}{j-1}=\binom{n+1}{j}-\binom{n}{j}$ for $j=1,2, \ldots$ Thus, by induction, $S(n, \alpha)=0$ for
all $\alpha>0$ and $n=m, m+1, \ldots$ It follows that $\left[z^{(c+\alpha) N}\right] f(z)=0$ for any $\alpha>0$. So $f(z)$ is a polynomial and (1.1) is an m-system.

The proof of Theorem 1.13 is now complete.
The following characterization of m-covers plays important roles in [11, 12].
Lemma 3.1 (Sun [11]). Let $m, m_{1}, \ldots, m_{k} \in \mathbb{Z}^{+}$. If (1.1) forms an m-cover of \mathbb{Z}, then

$$
\begin{equation*}
\sum_{\substack { I \subseteq[1, k] \\
\begin{subarray}{c}{\left.s \in I \\
m_{s} / n_{s}\right\}=\theta{ I \subseteq [1 , k] \\
\begin{subarray} { c } { s \in I \\
m _ { s } / n _ { s } \} = \theta } }\end{subarray}}(-1)^{|I|}\binom{\left\lfloor\sum_{s \in I} m_{s} / n_{s}\right\rfloor}{ n} \exp \left(2 \pi i \sum_{s \in I} \frac{a_{s} m_{s}}{n_{s}}\right)=0 \tag{3.1}
\end{equation*}
$$

for all $0 \leqslant \theta<1$ and $n=0,1, \ldots, m-1$. The converse also holds if m_{1}, \ldots, m_{k} are relatively prime to n_{1}, \ldots, n_{k}, respectively.

We can provide a new proof of Lemma 3.1 in a way similar to the proof of Theorem 1.13.

Lemma 3.2. Let $n \in \mathbb{Z}^{+}$and $l \in[0, n-1]$. Then

$$
\begin{equation*}
\sum_{\substack{J \subseteq[1, n) \\|J|=l}} \exp \left(2 \pi i \sum_{j \in J} \frac{j}{n}\right)=(-1)^{l} . \tag{3.2}
\end{equation*}
$$

Proof. Clearly we have the identity

$$
\prod_{0<j<n}\left(1-z e^{2 \pi i j / n}\right)=\frac{1-z^{n}}{1-z}=1+z+\cdots+z^{n-1}
$$

Comparing the coefficients of z^{l} we then obtain (3.2).
Using Lemmas 3.1 and 3.2 we can deduce another characterization of m-systems.
THEOREM 3.3. System (1.1) is an m-system if and only if

$$
\begin{equation*}
\sum_{\substack{x_{s} \in\left[0, n_{s}\right) \text { for } s \in[1, k] \\\left\{\sum_{s=1}^{k} x_{s} / n_{s}\right\}=\theta}}\binom{\left\lfloor\sum_{s=1}^{k} x_{s} / n_{s}\right\rfloor}{ n} \exp \left(2 \pi i \sum_{s=1}^{k} \frac{a_{s} x_{s}}{n_{s}}\right)=0 \tag{3.3}
\end{equation*}
$$

for all $0 \leqslant \theta<1$ and $n \in[0, k-m)$.
Proof. The case $k \leqslant m$ is trivial, so we just let $k>m$. Recall that (1.1) is an m system if and only if its dual A^{*} is a $(k-m)$-cover of \mathbb{Z}.

By Lemma 3.1 in the case $m_{1}=\cdots=m_{k}=1, A^{*}$ forms a $(k-m)$-cover of \mathbb{Z} if and only if for any $0 \leqslant \theta<1$ and $n \in[0, k-m)$ the sum

$$
\sum_{\substack{x_{s} \in\left[0, n_{s}\right) \text { for } s \in[1, k] \\\left\{\sum_{s=1}^{k} x_{s} / n_{s}\right\}=\theta}}(-1)^{\sum_{s=1}^{k} x_{s}}\binom{\left\lfloor\sum_{s=1}^{k} x_{s} / n_{s}\right\rfloor}{ n} \exp \left(2 \pi i \sum_{s=1}^{k} \frac{a_{s} x_{s}}{n_{s}}\right) \prod_{s=1}^{k} f_{s}\left(x_{s}\right)
$$

vanishes, where

$$
f_{s}\left(x_{s}\right)=\sum_{\substack{J \subseteq\left[1, n_{s}\right) \\|J|=x_{s}}} \exp \left(2 \pi i \sum_{j \in J} \frac{j}{n_{s}}\right)=(-1)^{x_{s}}
$$

by Lemma 3.2. This concludes the proof.
The following consequence extends Corollary 1.14.

COROLLARY 3.4. Let (1.1) be an m-system. Then we have

$$
\sum_{\substack{m_{s} \in\left[1, n_{s}\right] \text { for } \\ m-\sum_{s=1}^{k} m_{s} / n_{s} \in \mathbb{N}}}\binom{k-1-\sum_{s=1}^{k} m_{s} / n_{s}}{m-\sum_{s=1}^{k} m_{s} / n_{s}} \exp \left(2 \pi i \sum_{s=1}^{k} \frac{a_{s} m_{s}}{n_{s}}\right)=(-1)^{k-m}
$$

Proof. If $k \leqslant m$, then the left-hand side of the last equality coincides with

$$
\binom{k-1-\sum_{s=1}^{k} n_{s} / n_{s}}{m-\sum_{s=1}^{k} n_{s} / n_{s}} \exp \left(2 \pi i \sum_{s=1}^{k} \frac{a_{s} n_{s}}{n_{s}}\right)=\binom{-1}{m-k}=(-1)^{m-k}
$$

Now let $k>m$. As $\left\{-a_{s}\left(n_{s}\right)\right\}_{s=1}^{k}$ is an m-system, by Theorem 3.3 and the identity

$$
(-1)^{k-m-1}\binom{x-1}{k-m-1}=\sum_{n=0}^{k-m-1}(-1)^{n}\binom{x}{n}
$$

(see [4, (5.16)]) we have

$$
\begin{aligned}
0= & \sum_{\substack{x_{s} \in\left[0, n_{s}\right) \text { for } s \in[1, k] \\
\left\{\sum_{s=1}^{k} x_{s} / n_{s}\right\}=0}}\binom{\left\lfloor\sum_{s=1}^{k} x_{s} / n_{s}\right\rfloor-1}{k-m-1} \exp \left(2 \pi i \sum_{s=1}^{k} \frac{-a_{s} x_{s}}{n_{s}}\right) \\
= & \sum_{\substack{m_{s} \in\left[1, n_{s}\right] \text { for } s \in[1, k] \\
\sum_{s=1}^{k}\left(n_{s}-m_{s}\right) / n_{s} \in \mathbb{N}}}\binom{\sum_{s=1}^{k}\left(n_{s}-m_{s}\right) / n_{s}-1}{k-m-1} \exp \left(-2 \pi i \sum_{s=1}^{k} \frac{a_{s}\left(n_{s}-m_{s}\right)}{n_{s}}\right) \\
= & \sum_{\substack{m_{s} \in\left[1, n_{s}\right] \text { for } s \in[1, k] \\
\sum_{s=1}^{k} m_{s} / n_{s} \in[0, k-1]}}\binom{k-1-\sum_{s=1}^{k} m_{s} / n_{s}}{k-1-m} \exp \left(2 \pi i \sum_{s=1}^{k} \frac{a_{s} m_{s}}{n_{s}}\right) \\
& +\binom{k-1-\sum_{s=1}^{k} n_{s} / n_{s}}{k-1-m} \exp \left(2 \pi i \sum_{s=1}^{k} \frac{a_{s} n_{s}}{n_{s}}\right) .
\end{aligned}
$$

So the desired equality follows.

References

[1] R. Crocker, 'On a sum of a prime and two powers of two', Pacific J. Math. 36 (1971), 103-107.
[2] P. Erdős, 'On integers of the form $2^{k}+p$ and some related problems', Summa Brasil. Math. 2 (1950), 113-123.
[3] \quad, Remarks on number theory IV: extremal problems in number theory I', Mat. Lapok 13 (1962), 228-255.
[4] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd edn (Addison-Wesley, Amsterdam, 1994).
[5] R. K. Guy, Unsolved Problems in Number Theory, 3rd edn (Springer, New York, 2004).
[6] H. Koch, Algebraic Number Theory (Springer, Berlin, 1997).
[7] M. Newman, 'Roots of unity and covering sets', Math. Ann. 191 (1971), 279-282.
[8] H. Pan and L. L. Zhao, 'Clique numbers of graphs and irreducible exact m-covers of the integers', Adv. Appl. Math. 43 (2009), 24-30.
[9] R. J. Simpson, 'On a conjecture of Crittenden and Vanden Eynden concerning coverings by arithmetic progressions', J. Aust. Math. Soc. Ser. A 63 (1997), 396-420.
[10] Z. W. Sun, 'On exactly m times covers', Israel J. Math. 77 (1992), 345-348.
[11] -, 'Covering the integers by arithmetic sequences', Acta Arith. 72 (1995), 109-129.
[12] , 'Covering the integers by arithmetic sequences II', Trans. Amer. Math. Soc. 348 (1996), 4279-4320.
[13] -, 'Exact m-covers and the linear form $\sum_{s=1}^{k} x_{s} / n_{s}$ ', Acta Arith. 81 (1997), 175-198.
[14] ——, 'On integers not of the form $\pm p^{a} \pm q^{b}{ }^{\prime}$, Proc. Amer. Math. Soc. 128 (2000), 997-1002.
[15] -, 'Algebraic approaches to periodic arithmetical maps', J. Algebra 240 (2001), 723-743.
[16] , 'On the function $w(x)=\left|\left\{1 \leq s \leq k: x \equiv a_{s}\left(\bmod n_{s}\right)\right\}\right|$ ', Combinatorica 23 (2003), 681-691.
[17] , 'A local-global theorem on periodic maps', J. Algebra 293 (2005), 506-512.
[18] -, 'Finite covers of groups by cosets or subgroups', Internat. J. Math. 17 (2006), 1047-1064.
[19] , 'Zero-sum problems for abelian p-groups and covers of the integers by residue classes', Israel J. Math. 170 (2009), 235-252.
[20] Z. W. Sun and S. M. Yang, 'A note on integers of the form $2^{n}+c p$ ', Proc. Edinb. Math. Soc. 45 (2002), 155-160.
[21] K. J. Wu and Z. W. Sun, 'Covers of the integers with odd moduli and their applications to the forms $x^{m}-2^{n}$ and $x^{2}-F_{3 n} / 2^{\prime}$, Math. Comp. 78 (2009), 1853-1866.

ZHI-WEI SUN, Department of Mathematics, Nanjing University,
Nanjing 210093, People's Republic of China
e-mail: zwsun@nju.edu.cn

[^0]: Supported by the National Natural Science Foundation (grant 10871087) of China.
 (C) 2009 Australian Mathematical Publishing Association Inc. 0004-9727/2009 \$16.00

