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Abstract

Polymorphic types are labels classifying both (@) defined components in a library and (b)
contexts of free variables in partially written programs. It is proposed to help programmers
make better use of software libraries by providing a system that, given (b), identifies candidates
from (a) with matching types. Assuming at first that matching means unifying (i.e. having a
common instance), efficient ways of implementing such a retrieval system are discussed and its
likely effectiveness based on a quantitative study of currently available libraries is indicated.
The applicative instance relation between types, which captures some intuitions about
generalization/specialization is then introduced, and its use as the basis of a more flexible
system is discussed.

Capsule review

Programming environments for functional languages today are not particularly famous for
their ease of use. This paper takes a modest corrective step; it explores the question of how a
programmer may quickly search a potentially large library of functions for one that matches
a current need. The approach: use the known polymorphic type of the required function as an
index into the library. The probability of success seems encouraging, based on statistics
gathered on a typical ‘standard prelude’.

The most intriguing idea seems to be functional generalization, which tries to formalise rnear
misses, i.e. not finding an exact match, how do we find something close? Answer: look for a
higher-order function that, when suitably partially applied, gives us what we want. For
example, to look for a ‘sum’ function on lists of numbers, this naturally leads us to the ‘fold’
functions.

Programming tools must ultimately be judged by actual experience. Much also depends on
how well they are engineered (double-click identifier for list of library matches?). The theory
looks good; we look forward to seeing this approach in practice.

1 Introduction

Much programming effort can be saved by making good use of libraries of predefined
components. In a functional language the majority of such components are functions,
and many of them are higher-order functions, extensive use of which can dramatically
reduce the size of programs. But for components to be re-used they must be easy to
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find and recognize as useful; they must also be easy to combine safely with other
components.

The type system adopted for a programming system has a significant impact on
ways components can be combined. At one extreme, completely typeless pro-
gramming systems offer no resistance at all to the combination of arbitrarily chosen
components; but they also provide no indication or assurance that such combination
is sensible. Conversely, there are strongly typed systems that aim to guarantee as
nearly as possible that no conflict can arise from the combination of components, by
insisting on identically typed facets; but they also forbid many combinations which
are in fact quite reasonable from another point of view. Polymorphic type systems,
originated by Milner (1978), combine some of the advantages of each extreme,
offering flexibility of combination despite a considerable degree of security. Such type
systems have particularly found favour with the designers of functional programming
languages (for example, Burstall et al. 1980; Turner 1985; Milner 1984) in which it
is desirable to impose some discipline on the use of higher order functions without
unduly restricting the expressive power that such functions provide to the
programmer.

A polymorphic type system can also play a significant role in the discovery of
suitable components prior to their combination with others in a program. The
requirement for safe combination with respect to polymorphic types can be used to
constrain a search for suitable components in a library.

After a summary of polymorphic type essentials we briefly describe a representative
library of polymorphically typed components. Throughout the paper, statistics about
this library are given to illustrate the practical consequences of what is being
discussed. We then examine two complementary ways of applying polymorphic type
information to help programmers retrieve library components that are good
candidates for re-use. The first approach uses polymorphic type information, either
explicitly given or implicit in the intended context of use, as a key with which to
retrieve components of matching type. A problem with key-matched access is that the
number of components it yields is unpredictable. If there are very few (perhaps even
zero), it may be desirable to relax the precise matching requirements in favour of
something more flexible; if there are very many, the organized presentation of
components becomes extremely important. These requirements lead to a comp-
lementary approach defining structures over collections of polymorphic types so that
collections of components can be explored in a disciplined manner.

Related work on a retrieval system using a different relation between types is then
considered. We also discuss possible developments such as a system to handle
combinations of components, and the use of component descriptions other than
polymorphic types.

2 Polymorphic types

We assume some knowledge of polymorphic type systems, and only provide a brief
summary of the essentials, with our notational conventions. Those unfamiliar with
polymorphic type systems are referred to the tutorial paper by Cardelli (1985), or to
the relevant chapters in Peyton Jones (1987).
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Let there be three primitive types of value — num (numbers) char (characters) and
bool (truth values) - and three forms of construction for more complex types

t—>u functions with argument type t and result type u,
t, u pairs with left and right components of types t and u,
[t] list of zero or more items each of type t.

Since the type u may itself be functional or paired, this allows functions of more than
one argument (as curried functions) and heterogeneous structures with more than two
components (as binary trees). By convention the two infix type constructors are right
associative, and pair construction binds more tightly than function construction.
Round brackets may be used to indicate other associations. Single letters are used to
denote universally quantified type variables, for which other types may be substituted.

Names longer than one letter denote specific types such as the primitives.
Two formulae differing only by consistent renaming of variables denote equal

types. All subsequent uses of the term ‘ unique’ applied to types must be understood
to mean “unique up to renaming of type variables’. By convention, we usually assign
the variables of a formula the names a, b, c..in order of their first occurrence.

Examples
The function and yields the logical conjunction of two truth valued arguments;
length computes the number of items in its list argument. Their types are as follows.

and bool - bool — bool
length [a] — num

The higher order function fold applies its first argument (a binary function) as an
operator between the items of its second argument (a list) yielding a single value of
the item type.

fold op [a; b; .. ; n] = a op (b op (.. op n))

The higher order function map applies its first argument (a function) to each item in
its second argument (a list) yielding another list.

map f [a; b; .. ] = [f a; £ b; ..]
The polymorphic types of fold and map are as follows.

fold (a - a » a) - [a] - a
map (a > b) > [a] - [Db]

Definitions (polymorphic, monomorphic)
If a type formula contains one or more type variables, the formulated type is said to
be polymorphic; otherwise it is monomorphic. O
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Definitions (type instance, type unification)

One type t is an instance of another u, and we write t <u, if the formula for t can
be obtained from that for u by performing some consistent substitution of type
formulae for type variables. Two types t and u are unifiable, and we write t xu, if
they have a common instance. Whenever t ~u, among all their common instances
there is a unique maximal type with respect to <; we term this type the unification
of t and u, denoted t|u. O

The relation < is reflexive, transitive and antisymmetric —a partial order. The
relation =, although reflexive and symmetric, is not transitive, and therefore not an
equivalence. The operator | is both commutative and associative.

In most polymorphically typed programming systems, types are inferred
automatically from programmed definitions without the need for any explicit type
declarations on the programmer’s part. There may, however, be the option for the
programmer to declare types, and any such declarations are checked against the
results of type inference. Unification provides the basic mechanism for type-inference
and type-checking. Components may be combined if the types presented at the
interface between them have a common instance. Type inference and checking for a
complete program amounts to the formation and solution of a collection of
simultaneous type equations. (For details of the basic algorithms by which this task
can be performed see Cardelli (1985).) For programs of any size subject to frequent
modification (for example, during their initial development) an incremental algorithm
is desirable (Toyn et al. 1987).

3 Representative library of components

For experimental purposes, we have assembled a library containing 203 components
of 119 different types, 88 of them polymorphic. The distribution of components per
type is shown in fig. 1.

This library is representative of the components typically offered for re-use in the
context of functional programming systems. The components it contains are drawn
from the standard libraries and preludes of four different functional programming
systems: Glide (Runciman and Toyn, 1989), LML (Augustsson and Johnsson, 1987),
Miranda (Turner, 1985) and OL (Wadler et al. 1986).

Determining what proportion of other types unify with any one type gives some
idea of the balance struck between flexibility and constraint. A completely typeless
system can be likened to one in which every type is a simple variable, so the answer
would be 100 %. In a conventional (monomorphic) strongly typed system the answer
would be 0%. For our library of definitions under a polymorphic type discipline the
answer is under 2% on average. Fig. 2 shows the distribution.

4 Retrieval by key type

Assume that the number of definitions per type and the proportion of other types
unifiable are independent. Assume also that the types of components in the library are
a representative sample of component types more generally. Then a search for a
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Fig. 1. Components per-type in library.
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Fig. 2. Number of other types unifiable per type in library.

component in our representative library that unifies with some given key type can be
expected to retrieve about 5 definitions from just over 200 available. This rough
estimate of the degree of selectivity that would be obtained by using types as library
keys seems sufficiently attractive to warrant further investigation of the idea.

4.1 Sources of key types
Key types from declarations

Programmers could be required to supply a fully explicit type formula, to be used as
the search key, as part of every request for information about suitable components.
If the programming system is one that encourages or even requires explicit type
declarations anyway, this makes no additional demand on the programmer. However,
one of the attractions of many systems is precisely that they do not require the
programmer to formulate types. So, although any library access mechanism might
allow fully explicit formulation of key types, ideally it should not require it.
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Key types from examples

Asking for specifications of key types is a little less demanding if the programmer can
describe them in terms of the types of components they already know. This would be
especially straightforward, for example, in the special case where a programmer
already has a definition for the very component required, but would prefer to use a
library definition if there is one.

Key types from laws

Increasingly, programmers formulate laws specifying required functions in the early
stages of software development. Assuming that such laws adhere to the polymorphic
type discipline, types inferred from them provide convenient search keys for existing
definitions of specified components.

Example
A law specifying a required function positions might relate it to two other
functions, member and item.

member p (positions e x) <« item p x = e
If member and item are known functions with types

member a — [a] — bool
item num - [a] - a

then the following type for positions may be inferred from the above law.
positions a - [a] —» [num]

Although some components can be characterized by a single specifying law, there are
often several different laws about the same component. Since a key type can be
inferred from each law, there may be several different keys.

Key types from contexts of use

Programs are frequently developed ‘top down’, by so-called stepwise refinement
(Wirth 1983). This means, in particular, that the definition of a component typically
precedes the definition (or retrieval from a library) of its auxiliary sub-components.
Type information about an as yet undefined component can therefore be inferred
automatically from the contexts in which it is used.

Example

Suppose the positions function has been used as an auxiliary in the following
definition. posl x xs = head (positions x xs).

Given that the primitive head has type

head [a] — a
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from the context of this one application of positions alone we may infer the
following type information.

positions a - b - [c]

As with the use of specifying laws, multiple uses of a name may give rise to multiple
key types.

So the programmer need not give any explicit declarations or specifications of
components to provide a source of key types. There may be sufficient information in
the implicit description of a component in the contexts of its use during the ordinary
course of top-down program development. An incremental polymorphic type-
checker, such as the one we described in an earlier paper (Toyn et al. 1987) can be
used to infer suitable keys from such contexts.

4.2 Matching components against key types

A set of key types, obtained from sources such as those described above, defines a set
of components to be retrieved from a library. Successful unification of key and
component types guarantees valid application of the component in the contexts from
which the keys were derived (at least so far as a polymorphic typing system is
concerned). However, the library may contain a very large number of components
representing a large number of types. Also, there may not be just one key type, but
several, derived from various sources. If L is the set of library component types and
K is the set of key types, how can we avoid #L x #K unification tests? We first discuss
ways to reduce #K, and then ways to reduce #L.

Key type reduction

An efficient matching procedure should consider key types in combination. The basic
observation to be used is that if one type t is an instance of another u, then whatever
can be unified with t can also be unified with u. Conversely, whatever cannot be
unified with u cannot be unified with t either.

Theorem (instance unification)
(t<uAtxv)=urv
Proof
From the definitions of < and ~, for some substitutions G,, G,, G,
t=o0,u
&o,t =0,v.
L.0,(0u) =0,v,
.(0,00,)u=o0,v,
SLuRv. a
The set of key types can therefore be reduced by discarding all but the minimal
elements with respect to <. More importantly, there is a technique often used to

improve algorithms cast in the generate and test form. Dijkstra (1976) puts it in the
form of a design rule Search for the Small Superset. Darlington (1978) views it as a
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transformation he calls filter promotion. Although there are such variations of
perspective, the same idea is in view: determine the strongest simple condition that
is implied by the test part of the algorithm; this condition can be applied as a cost-
cutting preliminary test, or even built into the generate part. Our problem here is to
devise a simple pre-test that each component type must pass before we test whether
it unifies with every minimal key type. The idea is to compute from the key types a
single type x representing as many of their common requirements as possible : the pre-
test is whether a component type unifies with x. The instance unification theorem
tells us that this pre-test is valid if x is a co-instance of every key type. The less general
x is, the tougher the pre-test, so we are led to the definition below.

Definition (type co-instance, type co-unification)
If t <u then u may be termed a co-instance of t. For any types t and u their co-
unification, denoted t 4, is their minimal common co-instance. O

Similar definitions were first proposed by Reynolds (1969), who also gave an
algorithm for co-unification — or anti-unification, as he calls it. More recently, the co-
unification of a set of types has been termed by others (Martelli and Montanari, 1982)
their common part. The 4 operator is both commutative and associative. So, from
any set of minimal key types, a co-unified key type t can be computed. Any
component whose types does not unify with t can be filtered out from the key-
matching process before the costly multiple-key unification stage is reached.

Example
Consider the following pair of key types. Neither one is an instance of the other.

a — [char] — [[char]]
num - [a] - [[a]]

Co-unified Key: a - [b] - [[b]] O

So, pre-testing components against a co-unified key can reduce the computational
effort of matching against several minimal key types.

A co-unified key incorporates only the type structure that is required by all the keys.
It is tempting to think that when a set of keys can be unified, their unification could
be made the basis of a sharper test: it incorporates all type structure required by any
key.

Example
Consider again the key types of the previous example.
a — [char] — [[char]]
num - [a] - [[a]]
Unified Key: num - [char] - [[char]] O

But this would be a mistake. Keys may not be unifiable even though there are
component types that unify with all of them. More importantly, a component type
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may unify with each of a set of unifiable keys, yet not with the unified key. To
illustrate, consider Component Type: 8 - [a] — [[a]]

in connection with the key types in the above examples.

Component type reduction

We have seen that exploiting relations between key types can reduce the cost of
matching. To reduce cost further, consider relations between component types. There
are several important ways in which a set of library component types L typically
differs from a set of key types K:

(1) L is much Jarger than K;
(2) L is much less frequently changed than K;
(3) L is much more varied in content than K.

(1) and (2) indicate the increased value and attraction in principle of some form of
pre-processing of L. However, (3) indicates that the applications of the instance
unification theorem to K are unlikely to be much use for L. Indeed, in our
representative library, the structure induced by the < ordering over component types
is extremely shallow. The great majority of component types are minimal, so reducing
library types to a minimal subset would gain little. The co-unification of all the library
component types is completely polymorphic — a single variable — affording no power
of discrimination whatever against keys with no matching component. Search for
components via the < diagram, artificially completed by a top element, is
unsatisfactory: there is branching of massive degree at the root, and little other
structure.

This leads to a consideration of weaker relations between types that correlate in
some way with unification. A very similar problem arises in the implementation of the
programming language Prolog. Instead of a key type there is a current goal to be
satisfied, and instead of the collection of library component types there is a collection
of available heads of program clauses. Goals match clause heads exactly if the two
can be unified. The collection of clauses may be large and is (almost) static. Although
the problem is not quite the same as ours (for instance, matching clauses must be
considered in the order they are found in the Prolog program), it is very close. A
technique used by some Prolog implementations (Warren 1977; Komorowski 1982)
is clause indexing : clauses are indexed by a hash value computed from the outermost
structure of one or more argument patterns. A similar idea can be used here. In view
of the treatment of multi-argument functions by currying, it will be worth comparing
indexes based on initial arguments of type constructors with indexes based on final
arguments.

Definition (initial/final index of a type)

The initial/final index of a type formula is a sequence of zero or more type constructor
symbols, possibly followed by a primitive type name. The index of a type variable is
empty. A primitive type name is its own index. The index of a constructed type is the
constructor followed by the index of the initial/final constituent type. O
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L Types with initial index length L
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Fig. 3. Length distributions for initial and final indexes.

Examples type num — [a] — [[a]]

initial index - num

final index — — [] []

type [a, D] - [a], [Db]
initial index - [] ,
final index — , []

type (a - a - a) - [a] - a
initial index - —
final index — — O

Notice how the final index of a functional type represents its arity and the index of
its result type, but ignores argument types. The reverse is the case for the initial index.
In our representative library, average final index length is about 50 % greater than
average initial index length. For details of the distribution see fig. 3.
The average size of index-equivalent type classes for final indexes is only 2-76,
which is little more than half the corresponding figure of 5-17 for initial indexes.

Theorem (index unification)
If two types unify, then the initial (final) index of one must be a prefix of the initial
(final) index of the other, allowing the case where the two indexes are equal.

Proof

The index of t is a prefix of the index of ot for any substitution c. So, since tju =

o, t = o,u for some o, and o,, the index of t|u must include among its prefixes the
indexes of both t and u. So one of these two indexes must be a prefix of the other.

a
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Therefore, arrange the library of components as a variadic tree of type indexes, with
the successors of each node corresponding to its minimal extensions. For each node
in this tree there is a collection of types, and for each type a collection of components.
To access the tree using a key type

(1) Compute the index of the key type;

(2) Determine the path from the library root through increasing prefixes of the key
index to the maximal occurring prefix MP (the full key index if it occurs); all
components with type indexes on this path are candidates;

(3) Determine which, if any, successors of MP are extensions of the key index; all
components with type indexes in subtrees rooted by one of these successors are
candidates.

By computing indexes for both the reduced key type and each actual key in the
minimal set, parts of the candidates subtrees in (3) can be pruned away.

The effectiveness of this method can be gauged from the proportion of library
types against which a key is matched. For our representative library, using library
types themselves as sample keys, a key lookup requires an average of 17-66 attempted
unifications; so a little under 15% of the 119 types are involved.

An ordering based on index prefixes provides a simpler and smaller structure than
<: it is a tree rather than a directed acyclic graph, and has a far more limited
branching factor. For the final index tree of our representative library, the average
number of successors of a non-leaf index is 2'9, with a maximum of six and a
minimum of one. One might think it sensible to restrict the index tree to include only
indexes of component types actually occurring in the library. However, by including
in the indexing structure a small number of types for which there are no corresponding
library components, each index extension can be made of unit length: of 41 final index
extensions only seven are non-unit. If all extensions are of unit length, there are fast
methods of successor selection when searching the tree, and the tree representation
may assume a branching factor bounded by the sum of the number of primitive types
and the number of type constructions.

4.3 Assessment of the key type approach

There are very plausible scenarios in which such a system, based on retrieval against
inferred key types, ‘wins’ by delivering a small set of components including the very
one required. However, there are also circumstances in which it ‘loses’ by failing to
provide what is wanted. On the one hand, when the amount of information from
which to infer key types is limited, the ability to reject candidate components is
correspondingly limited. Instead of a small number of likely components for
inspection, the programmer may be faced with an unmanageably large batch. Other
than tedious re-submission of library requests in a revised context, there is nothing to
assist the programmer to ‘home in’ on a component by successive refinement. On the
other hand, where there is fairly specific type information describing an ideal
component, only components precisely matching this ideal are retrieved. The
programmer may therefore see nothing, or only inappropriate components, even if
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there is a component that could meet the requirements — for example, a function that
includes an additional argument corresponding to a value that is constant in the
present application. In this case, what is required is the ability to ‘pan out’ from a
given set of components in some disciplined way that is more convenient and more
general than revising the key type to some co-instance of the present one.

5 Retrieval by disciplined exploration

The observations at the close of the previous section lead to an inversion of our
thinking about the mechanisms to be provided for access to a library of components.
Up to this point the main task has been regarded as that of retrieving components
matching given keys. Presenting collections of components to the programmer has
been an implicit auxiliary task, hardly mentioned. From now on our main concern
will be how to provide for the orderly presentation of a collection of components that
a programmer wishes to explore. This complements the consideration in the earlier
part of the paper of how to help the pfogrammer to apply appropriate constraints
determining which components are presented.

Requirements for exploration structures

Any system supporting the exploration of a large collection of items must convey to
its users, in addition to information about items currently being examined, a sense of
location relating to these items. It must also convey a sense of direction and extent
relating to other parts of the collection, and to the available routes by which these can
be reached. Successful systems typically involve orderings defined over the collection.

5.1 Exploration ordering for typed components

Is there any ordering over polymorphic types that can be applied to our problem?
Earlier, two orderings over types were defined : the instance relation <, and the prefix
relation between type indexes. Indexing is fine as a device to speed up a machine
process, but not as the guiding structure for the programmer’s exploration: it ignores
too much. At first glance, < seems a far more suitable candidate — the concept of an
instance should already be clear to a programmer working in a polymorphically typed
language. However, as previously observed, the diagram of < for those types
occurring in the representative library is extremely broad and shallow. As an
exploration structure it would present far too much choice in one or two places, and
far too little everywhere else.

What is it about < that fails to capture a richer idea of ‘no more general than’?
Intuitively, one component X is no more general than another Y if —so far as type
information reveals — Y provides all that X does. Certainly this is true in a sense if
X<Y, but that is a rather special case. A more satisfactory way of confirming the
intuition, and a very practical one from the programmer’s point of view, is to observe
the possibility — again, so far as type information reveals — that X could be defined as
Y applied in a particular way. (Any actual definition of X may not be in terms of ¥
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at all, of course.) If Y is a function (likely, since only seven components in our
representative library have non-functional types), then the obvious way in which it
might “provide’ X is as its result. Equivalently, the most common way in which a
function Y might be used to define X involves applying Y to some argument.

We therefore arrive at the principle of functional generalization: a functional type
should be regarded as more general than its result type. This principle is intuitively
consistent with the idea that specialization involves commitment to a particular
instance, since applying a function commits an expression found in its definition by
substituting actual arguments for argument names.

A pre-order?

However, functional generalization cannot simply be added alongside the principle of
co-instance generalization in the definition of a new ordering, because in some cases
the two principles conflict. We would obtain only a pre-ordering.

Example
Consider the following definitions and their types.

apply f x = f x
Type: (a - b) - a > b

id x = x
Type: a — a

The type of id is an instance of the result type of apply. So, by the principle of
functional generalization, apply would be more general than id. But the whole type
of apply is an instance of id’s type. So, by the principle of co-instance generalization,
id would be more general than apply. O

Exploration based on a pre-ordered collection of components is quite feasible, but is
complicated by the possibility of such cycles limiting the sense of location and
direction. This assertion is supported by recent developments in so-called hypertext
systems (Conklin, 1987), for which it has been found necessary to provide additional

aids to navigation.
A partial order

We should therefore prefer to add the principle of functional generalization in such
a way that the result is a partial order. The problem is (as we have seen) that x -
symbol can be introduced either by instance specialization, or by functional
generalization. This problem can be solved by a very simple device: directly exclude
substitution of functional types.

Definition (applicative type instance/co-instance)
One type t is an applicative instance of another u (with respect to a substitution o),
and we write t < u, under the following conditions

(1) If t and u are the same primitive type, o is the identity.
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(2) If u is a variable, t must not be a functional type, and o is the identity for all
but u, which it maps to t.

(3) If u is a functional type with result type v and t <€ v with respect to o, then
t < u with respect to o also.

(4) If t and u are formed by applications of the same type constructor (possibly
the functional constructor —), and for every corresponding pair of arguments
t, < u, with respect to o,, and the non-identity part of o is the union of such
parts in every o,, then the relation holds.

Also, if t < u then u is an applicative co-instance of t. |

Theorem ( < ordering)
< is reflexive, transitive and anti-symmetric — a partial order.

Proof

By induction, for example on the combined sizes of related terms. (Details are lengthy
but straightforward.) O
Example

Recall the fold function, first introduced in Section 2
fold op [a; b; .. ; n] = a op (b op (.. op n))
and its polymorphic type.
fold (a > a - a) - [a] - a

More general forms of fold are well-known as standard components in functional
programming. For example, the foldr function accepts as its first argument a
possibly asymmetric binary operator op — one whose left and right operand types
may differ. The result type of op must be that of its right operand. The second
argument of foldr is a valid right operand for op, and its third a list of items having
the same type as op’s left operand. The result of an application of foldr to three
such arguments is expressed in the schematic equation

foldr op z [a; b; ... 3 n] = a op (b op (.. op (n op z)))
and foldr’s type is as follows.
foldr (& - b - b) - Db > [a] - D
In terms of expressive power fold is no more general than foldr since

fold op xs = foldr op (foot xs) (body xs)

where foot yields the final item of its list argument and body the list of all items but
the final one. The generalization of fold to foldr is captured by the < ordering.
By rule 3 from the applicative instance definition

[2] = b €« b — [a] - D
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so by rule 4 foldr’s type has applicative instance
(a >b->Db) > [a] - b
and fold’s type is the (applicative) instance of this in which b is mapped to a. [
Example
Similarly, recall the map function
map f [a; b; ..] = [f a; f b; ..]

and its polymorphic type.

map (a - b) - [a] - [b]

This version of map applies f to single arguments drawn from a single list. There are
frequent applications for a variation map2 that applies a binary operator to the
corresponding items from two list arguments to obtain a resulting list

map2 op [al; bl; ..] [a2; b2; ..] = [al op bl; a2 op b2; ..].
The polymorphic type of this function is as follows.
map2 (a - b - ¢c) »> [a] - [b] = [ec]

In terms of expressive power, map is no more general than map2, since op could be
defined to apply a function f to one operand, ignoring the other. The generalization
is also captured by the < ordering. By rule 3 of the applicative instance definition

b >c < a->Db>c

and also
[B] - [ec] < [a] - [b] - [c]

so by rule 4 map2’s type has among its applicative instances
(b > ¢c) - [b] » [c]

which is an (applicative) instance of map’s type — variable renaming being just a
special case of rules two and four. O

It is immediate from the principle of functional generalization that the introduction
of an argument (to form a functional type from a result type) should constitute a rise
in the < ordering. One encouraging consequence of the < definition, illustrated in
the above examples, is that an additional argument in any position also constitutes a
generalization.

Quantitative assessment

Comparison of the structures induced by < and <, reveals that < is considerably
richer. This can be quantified in measures such as the number of maximal (minimal)
(co-)instances of a type. For our representative library, the average figure using < is
3.16, whereas for < it is only 0.34. To appreciate the practical significance of these
numbers, imagine you are a programmer searching for a suitable component and

8 - FPR |
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Fig. 4. Maximal/minimum applicative instances/co-instances per type.

currently examining some particular type-equivalent class. You wish to move on to
look at similar but more general (or more specialized) components. The numbers
indicate how many alternative lines of exploration are open to you, on average, for
each of the two structures. It seems that the < ordering is far more suitable as the
basis for an exploration structure.

Although the average figure for < is attractive, we must put alongside it some
worst-case information. A very few types have an undesirably large number of
maximal applicative instances (just three out of 119 have over 20 —see fig. 4). To
reduce the degree of branching we may adopt the same method as used in Section 4.2
to constrain index structure, allowing the structure to include types for which there
are no library components. An additional benefit of this, in our experience, is that
consequent awareness of such types inspires the introduction of useful new
components to fill the gap. Note that the determination of suitable intermediate types
must be based on both instances and co-instances because the dual generalization
principle behind < prevents any definition analogous to the co-unification of <.

If the implementation of the applicative instance test is directly based on the four
defining rules, then preprocessing a library to compute the < access structure can be
quite time consuming. This is because recursive application of the two alternative
rules three and four for — types gives rise to an exponential computation in the worst
case. However, even using such a direct implementation to test all possible pairs of
types in a slow interpretative environment, we computed the applicative instance
structure of our representative library in about 30 minutes.
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6 Related and future work

We do not know of much previous work on the use of polymorphic types as keys for
component retrieval. The idea was discussed in the second author’s thesis (Toyn,
1987), but without resolving details.

6.1 Rittri’s work

The main comparison to make is with the work of Rittri (1989) at Chalmers
University in Sweden - he has independently investigated the use of types as keys, but
in a rather different way. Rittri assumes a single, explicitly formulated, type key. The
components that his system retrieves are those whose types are equivalent to the key,
under the relation = with the following axioms.

t, u =u, t
(t, u), v =1t, (u v)
t > (u->v) = (t, u) > v
t—=>(w, v) = (t > u), (t >v)

The intuitive justification for these axioms is that argument order should be ignored,
and so should the distinction between a curried function and one that takes a tuple
as argument: Rittri proposes that any such difference between key and component
type can be bridged by adding a converter function. The axioms also have a formal
justification based in category theory.

The equivalence between key and component must be exact — the systems does not
accept components whose type only unifies with an equivalent key. The justification
here is twofold: first, it is doubtful whether unification modulo equivalence is
decidable; and second, the programmer has clearly indicated the degree of
polymorphism required by the choice of key type, and this should be respected.

The difference of view regarding identical versus unifying types is accounted for by
the different sources of key type used: explicit formulae on Rittri’s part, and implicit
contextual information on ours. His = relation and our < ordering are both means
to the same end — a relaxation of the matching condition for functional types. Our
view of currying, for example, is that the curried form of a function should be
regarded as more general, although this is not uniformly the case under our present
definition of <. We do have the chain

a—>b—>¢c>Db->c >» a, b-—>c

but this depends on b being a type variable. As to the re-ordering, insertion and
deletion of arguments, it seems to us that the two approaches are complementary.

6.2 Combinations of components

One obvious generalization of a system to retrieve individual components from a
library would be a system that considered also suitable combinations of components.
In fact, the possibility of component combination is already implicit in the definition
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of an applicative instance: a component Y is more general than another X under the
principle of functional generalization precisely because (so far as type information
reveals) Y can be applied — combined with an argument — to obtain X. However, our
present system draws the programmer’s attention only to Y, not to any other
component in the library that might form a suitable argument for combination with
it.

Re-ordering arguments can be regarded as a special case of combination. The
function flip flip fxy=fyx

which has the type
flip (a - b - ¢c) > b >c¢c - a

can be applied to any function f of at least two arguments, to yield a function like
f but with the first two argument positions exchanged. (In Rittri’s terminology, we
can use f1ip as a converter function — though in general his converters may need to
be complex and recursive.) Similarly, considering applications of the components

curried f x y = f (%, ¥)
uncurried f (x, y) = f x ¥y

is another way of handling the distinction between the curried and uncurried variants
of a function.

Although function application is arguably the basic operation by which to combine
pairs of components, some higher level operations such as function composition
might be specially treated. If this gives an undesirably large number of candidate
binary combinations, a useful restriction might be to consider compositions with
projection functions only. For example, to form

assoc [a,b] - a - Db

from a library of components including the related (more general?) function
allassocs [a,b] - a = [Db]
we would routinely combine allassocs with the projection function
head [a] — a

(or some other function of that type, such as a specialisation of fold). Using
application as the sole combining operator this requires

assoc = comp (comp head) assocs

where comp is function composition treated as a component just like any other.
However, matching the argument type of one component with the result type of the
other yields the same combination from a single binary operation. This operation
corresponds to the compose i family of functions

compose O = apply
compose (n+1l) = comp (compose n) comp
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but, within the type system we are assuming, each member of the family has in
practice to be defined separately, because compose itself cannot be typed.

6.3 Stronger tests than type-matching

A component may have the desired type yet have a functionality quite unlike that
required. Polymorphic types applied as keys fulfil the role of a filter, enabling
candidate components to be identified.

If the key types have been obtained from specifying laws, though, there is the
information available to make the test part of the generate and test procedure much
more rigorous. A fully automatic test proving or disproving each law for each
candidate component is not possible, but substantial support could be given to the
programmer in the task of checking whether laws hold. For example, a simplifier
starting from a standard inductive proof scheme might reduce some case to a
falsehood, and therefore reject a component before it is ever presented to the
programmer. Another possibility (requiring interaction with the programmer to
avoid termination problems) would be to establish specific test values to be
substituted for the free variables of a law and try each candidate component in this
context.

6.4 Other type systems

Although most programming languages with polymorphic types follow Milner’s
(1978) system (as we have done), other polymorphic type systems have been
proposed. For example, Fairbairn’s (1986) language Ponder incorporates a more
expressive form of type polymorphism, allowing locally quantified type variables.
Type-based library access in this context might exploit the relation of generality
defined between Ponder types. Object-oriented systems have another component-
ordering that aids re-use, the class hierarchy. There have been various attempts to
integrate the concept of subclass into a polymorphic type system (for example
Jategaonkar and Mitchell, 1988).

6.5 Other relations between components

Component libraries could be combined with a Literate Programming (Knuth 1984)
approach, emphasizing integral documentation and wuses/used by cross-references.
Such links between component definitions illustrate the more general possibility of
combining an ordering over polymorphic types with some other access structure.
Though a programmer re-using a library component may wish to abstract away
from the details of its definition, the option of employing a definition-based relation
such as uses/used by could be a valuable adjunct to type-based access. For example,
this would allow the function computing the product of a list of values to be described
as having the type of sum but using times’(instead of plus). However, the
introduction of multiple access structures should be restrained to avoid presenting the
programmer with an unhelpfully wide choice or an unduly complex specification task.
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The beauty of an access mechanism based on polymorphic types is that they represent
a single concept already present in the programming system, and their specification
can so often be left implicit.

6.6 Full implementation

The techniques proposed in this paper have been tested in a prototype implementation
using Prolog. We have plans to implement them to a higher standard as an
enhancement to Glide, our UNIX-based exploratory functional programming
environment.

7 Summary and conclusion

We began by observing the need for some way of finding re-usable software
components and recognizing their potential application. Polymorphic types can be
used to provide a source of access keys corresponding to a class of components that
are prime candidates for re-use in a particular context. They also provide the basis for
a structure of exploration when the selection offered by key access is too narrow or
too wide: there is an ordering over polymorphic types that corresponds well with
usual intuitions about generalization and specialization of components. We have
indicated the practicality of these ideas by giving figures for a representative library
of components. We have also built a prototype system.
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