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Abstract

Maillet proved that the set of Liouville numbers is preserved under rational functions with rational
coefficients. Based on this result, a problem posed by Mahler is to investigate whether there exist
entire transcendental functions with this property or not. For large parametrized classes of Liouville
numbers, we construct such functions and moreover we show that they can be constructed such that
all their derivatives share this property. We use a completely different approach than in a recent paper,
where functions with a different invariant subclass of Liouville numbers were constructed (though with
no information on derivatives). More generally, we study the image of Liouville numbers under analytic
functions, with particular attention to f (z) = zq, where q is a rational number.
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1. Introduction

1.1. Definitions. As usual, for a real number α we will write bαc for the largest
integer not greater than α, dαe for the smallest integer not smaller than α and
{α} = α − bαc. Moreover, ‖α‖will denote the distance from α to the closest integer, and
we will write A � B if both A� B and B� A are satisfied. For a function f : X 7→ Y
and a set A ⊆ X, we will write f (A) := { f (x) : x ∈ A}.

A transcendental function is defined as an analytic function f (z) which is
algebraically independent of its variable z over some field. We will usually assume
this field to be C, and when at times we deal with Q or Q instead this will be explicitly
mentioned. On the other hand, an analytic function that satisfies some polynomial
identity P(z, f (z)) = 0 with P ∈ C[X,Y] not equal P(X, Y) ≡ 0, is called an algebraic
function. It is a widely known fact that the set of algebraic entire functions (over C)
coincides with the set of complex polynomials C[X]. The nontrivial inclusion can be
inferred from the great Picard theorem; see [8, Theorem 4.2 and Corollary 4.4].
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At the end of the XIXth century, after the proof by Hermite and Lindemann of the
transcendence of eα for all nonzero algebraic α, a question arose:

Does a transcendental analytic function usually take transcendental values at
algebraic points?

In the example of the exponential function ez, the word ‘usually’ stands for avoiding
the exception z = 0. The set of the exceptions of this ‘rule’ was named by Weierstrass
as the exceptional set of a function f , which is defined as

S f := {α ∈ Q : f (α) ∈ Q}.

The study of exceptional sets started in 1886 with a letter of Weierstrass to Strauss.
Clearly, for algebraic functions over the field Q, one has S f = Q. In 2009, Huang
et al. [12] proved, in particular, that all subset ofQ is the exceptional set of uncountably
many transcendental entire functions (including their derivatives); see [19] for a more
general result.

1.2. Liouville numbers and Mahler’s classification. The irrationality exponent of
a real number α, denoted by µ(α), is defined as the (possibly infinite) supremum of all
η ≥ 0 such that ∣∣∣∣∣α − y

x

∣∣∣∣∣ ≤ x−η (1.1)

has infinitely many rational solutions y/x. We point out that (1.1) can be written
equivalently using linear forms as |αx − y| ≤ x−η+1. Mostly in this paper, the linear
form representation will be more convenient. By Dirichlet’s theorem [34, Corollary 2],
µ(α) ≥ 2 for all α ∈ R\Q and the equality holds for nonrational real algebraic numbers
α (by Roth’s theorem), whereas µ(p/q) = 0.

Real numbers with irrationality exponent equal to infinity are called Liouville
numbers. We will write ζ for Liouville numbers in contrast to α for arbitrary real
numbers and denote the set of Liouville numbers by L . The elements of L are known
to be transcendental by Liouville’s theorem, which also led to the first construction of
a transcendental number, namely the Liouville constant

L =
∑
n≥1

10−n! = 0.110 001 000 000 000 000 000 001 0 . . . . (1.2)

By altering the exponents in L slightly and adding fixed rational numbers, it is not hard
to construct uncountably many elements of L within any set A ⊆ R with nonempty
interior; see also Theorem 1.1 in Section 1.3. Furthermore, the set L is known to be
a dense Gδ set, since it can be written L =

⋂
n≥1 Un, where

Un :=
⋃
q≥2

⋃
p∈Z

( p
q
−

1
qn ,

p
q

+
1
qn

)∖{ p
q

}
are open dense sets. Thus, L is a residual set, that is, the complement of a first
category set. However, L is very small in sense of measure theory, as its Hausdorff
dimension is 0; see [13].
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Some results of the paper are related to Mahler’s U-numbers, so we want to give
a short introduction of Mahler’s classification of real transcendental numbers into S -,
T - and U-numbers regarding their properties concerning approximation by algebraic
numbers. In fact, we will introduce Koksma’s classes S ∗, T ∗ and U∗; however, the
corresponding classes are known to be pairwise identical [3, cf. Theorem 3.6]. For real
transcendental ζ and n ≥ 1 an integer, define w∗n(ζ) as the (possibly infinite) supremum
of ν > 0 such that

0 < |α − ζ | ≤ H(α)−ν−1

has infinitely many solutions in algebraic numbers α of degree at most n for arbitrarily
large X, where H(α) is the largest absolute value of the coefficients of the irreducible
(over Z) minimal polynomial P ∈ Z[X] of α. Obviously, w∗1(ζ) ≤ w∗2(ζ) ≤ · · · . The set
of S -numbers is defined as the set of real transcendental numbers that satisfy

lim sup
n→∞

w∗n(ζ)
n

<∞.

The T -numbers are defined by the properties

lim sup
n→∞

w∗n(ζ)
n

=∞, w∗n(ζ) <∞ for n = 1, 2, . . . .

Finally, the U-numbers are defined as numbers that satisfy w∗n(ζ) =∞ for some finite
index n. If m is the smallest such index, then ζ is a Um-number. The definitions imply
that the set L coincides with the set of U1-numbers, and the set of U-numbers is
the disjoint union of the sets of Um-numbers over m ≥ 1. We quote some important
facts. Two algebraically dependent numbers belong to the same class [6, 16]. Almost
all ζ, in the sense of Lebesgue measure, are S -numbers (this follows immediately
from a result of Sprindẑuk [32]), but the sets of T -numbers and Um-numbers for
m ≥ 1 are nonempty. Schmidt was the first to construct T -numbers [27], and the first
construction of Um-numbers of arbitrary prescribed degree m was due to LeVeque [15].
See also [29, Ch. 3] or [3, Ch. 3].

1.3. The image of L under analytic functions. In his pioneering book, Maillet
[18, Chapitre III] discusses some arithmetic properties of Liouville numbers. In
particular, he proved the following result concerning the image of L under analytic
functions.

Theorem 1.1 (Maillet). If f is a nonconstant rational function with rational coeffi-
cients, then f (L ) ⊆L .

We observe that a kind of converse of this result is not valid in general; for example,
taking f (x) = x2 and any number of the form ` =

∑
a j10− j! with a j ∈ {2, 4}, the number

ζ =
√

(3 + `)/4 is not a Liouville number [3, Theorem 7.4], but f (ζ) is. Also, the
rational coefficients cannot be taken algebraic (with at least one of them nonrational).
For instance, for L in (1.2) and m ≥ 2, the number L m√3/2 is not a Liouville number;
see [18, Théorème I3]. In fact, L m√3/2 is a Um-number [7].

https://doi.org/10.1017/S1446788715000415 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000415


[4] On a problem posed by Mahler 89

A problem posed by Mahler [17] is to study which analytic functions share this
property. In particular, he asked whether there exist nonconstant entire transcendental
functions for which this is true.

In 1886, Weierstrass made a construction of entire transcendental functions with
the property f (Q) ⊆ Q. Stäckel [33] proved that for any countable set A ⊆ C and any
dense set B ⊆ C, there exists an entire transcendental function f with the property
f (A) ⊆ B. Gramain [11] showed that this is true for subsets of R as well. Several
other generalizations are known; we refer the reader to [12, 20, 21, 24] for references.
However, due to the uncountable cardinality of L , the used classical methods dealing
with recursive constructions do not to provide an obvious construction of entire
transcendental functions with f (L ) ⊆L . More generally, Mahler’s problem suggests
studying the set f (L ∩ I) ∩L for functions f analytic on some interval I ⊆ R with
real Taylor coefficients. A recent result due to Kumar et al. [14] shows that the set is
always rather large; we will carry this out in Section 5.

1.4. Continued fractions. We introduce the notation we will use throughout the
paper for continued fractions and gather various related results. The proofs can be
found in [23] if not stated otherwise.

Let α ∈ R\Q. Let α0 = α, r0 = bαc and define the sequences (r j) j≥0, (α j) j≥0 via the
recursive formulas r j+1 = b1/{α j}c and α j+1 = {1/{α j}}. Then, if we define

[r0; r1, r2, . . . , rn] := r0 + 1/(r1 + 1/(r2 + 1/(r3 + · · · + 1/rn)) · · · ),

the identity α = limn→∞[r0; r1, r2, . . . , rn] holds. This representation is unique and
[r0; r1, r2, . . .] is called the continued fraction expansion of α; r j are called partial
quotients. Denote

sn

tn
= [r0; r1, . . . , rn], n ≥ 0,

the nth convergent of α in lowest terms. If we put t−2 = 1, t−1 = 0,

tn = rntn−1 + tn−2, n ≥ 0. (1.3)

The analogous recursive formula for the sn holds but we do not need it. Moreover, for
any n ≥ 0, we have |sntn+1 − sn+1tn| = 1, such that (sn, sn+1) = 1 and (tn, tn+1) = 1.

Theorem 1.2 (Legendre). Let α ∈ R \ Q. If |αq − p| < (1/2)q−1 holds for integers p, q,
then the fraction p/q equals a convergent of the continued fraction expansion of α.

Theorem 1.3 (Lagrange). Let α ∈ R \ Q and sn/tn be the nth convergent of α = [r0; r1,
r2, . . .]. Then

rn+2

tn+2
< |αtn − sn| <

1
tn+1

=
1

tnrn+1 + tn−1
<

1
tnrn+1

.

In particular, it follows from (1.3) that limn→∞ log rn+1/log tn = ∞ is equivalent to
limn→∞ log tn+1/log tn =∞, and in this case α ∈L follows. More precisely,

lim sup
n→∞

log tn+1

log tn
=∞ ⇐⇒ α ∈L .
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1.5. Outline. This paper is organized in the way that Sections 2–4 deal with the
main topic of f (L ) ⊆ L for entire transcendental functions, whereas Sections 5
and 6 discuss related topics indicated in Section 1.1. The assertion of our main result
concerning the first category, Theorem 4.3, at first sight appears similar to a recent
result [20], which we will state in Section 3. We will show in Section 3, though,
that the classes considered in the respective theorems are in fact significantly different,
and want to point out also that the proofs differ vastly. Moreover, we point out the
advantage of Theorem 4.3, in that it makes assertions on the derivatives too. See
Remark 4.4 for another difference. Concerning results on related topics, the main
result we will prove in Section 6 is basically the following theorem.

Theorem 1.4. For any q ∈ Q\{0}, let fq(z) = zq. Then there exist uncountably many ζ,
some of which can be explicitly constructed, such that fq(ζ) ∈L if and only if q ∈ Z.

2. An approach connected to f (Q)

For a function f analytic in some open interval I ⊆ R, we will establish sufficient
conditions for f (L ∩ I) ⊆L , connected with the image f (Q). More precisely, if we
assume that f (Q) ⊆ Q as in various constructions, see Section 1.3, and additionally
assume certain upper bounds for the complexity of the fractions in the image, we
will be able to deduce that f (L ∩ I) ⊆L . Keep in mind that I = R leads to entire
functions. The method can be applied to confirm Theorem 1.1.

Theorem 2.1. Suppose that f is nonconstant analytic in some open interval I ⊆ R and
f (Q ∩ I) ⊆ Q. Moreover, assume that there exists a function ψ : R>0 7→ R>0 with the
properties:

• ψ(m) = o(m) as m→∞;
• for ζ ∈L ∩ I and any m ≥ 1, we can find coprime pm, qm ≥ 2 such that∣∣∣∣∣ζ − pm

qm

∣∣∣∣∣ ≤ q−m
m (2.1)

and, writing f (pm/qm) = p′m/q
′
m in lowest terms, we have q′m ≤ qψ(m)

m .

Then f (L ∩ I) ⊆L .

Proof. Let ζ ∈ L be arbitrary. Let J ⊆ I be nonempty and compact. Then U :=
maxz∈J | f ′(z)| is well defined. Since ζ ∈L , we can write

ζ =
pm

qm
+ εm, |εm| ≤

1
U

q−m
m

for any integer m ≥ 1 with coprime integers pm, qm, where qm > 0. Say f (pm/qm) =

p′m/q
′
m and, by assumption, q′m ≤ qψ(m)

m . Now for m sufficiently large that pm/qm ∈ J
the intermediate value theorem of differentiation gives∣∣∣∣∣ f (ζ) −

p′m
q′m

∣∣∣∣∣ = | f (ζ) − f (pm/qm)| ≤ U |εm| ≤ q−m
m ≤ q′−m/ψ(m)

m . (2.2)
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Since ψ(m) = o(m), we conclude that µ( f (ζ)) = ∞ with µ the irrationality exponent
unless f (ζ) ∈ Q. To exclude f (ζ) ∈ Q, assume the opposite and write f (ζ) = l1/l2.
Since f is not constant in I, by the identity theorem for analytic functions, see [8,
Theorem 3.7 and Corollary 3.10], there exists some neighborhood W 3 ζ of ζ such
that f (z) , f (ζ) for z ∈ W. Since pm/qm converges to ζ as m→ ∞, we infer that
f (pm/qm) , f (ζ) for large m. Thus,∣∣∣∣∣ f (ζ) − f (pm/qm)

∣∣∣∣∣ =

∣∣∣∣∣ f (ζ) −
p′m
q′m

∣∣∣∣∣ =

∣∣∣∣∣ l1l2 − p′m
q′m

∣∣∣∣∣ ≥ 1
q′ml2

,

which contradicts (2.2) for large m since ψ(m) = o(m). �

We check that, as indicated above, rational functions with rational coefficients
satisfy the conditions of Theorem 2.1. Let f be such a function and p, q integers.
Then we can write

f (p/q) =
P(p, q)
Q(p, q)

=
p′

q′

with fixed polynomials P,Q ∈ Z[X,Y] and p′, q′ ∈ Z. Consider ζ ∈L fixed and let
p = pm,q = qm satisfy (2.1) and put p′ = p′m,q

′ = q′m. First observe that we may assume
that q′ , 0 since ζ is transcendental and there are only finitely many algebraic poles of
f , so there is no pole of f (and hence f is analytic) in a neighborhood of ζ. From (2.1),
we deduce that |pm − ζqm| < 1 and thus pm � qm with implied constants depending on
ζ, P,Q but not on m. It follows that q′m � qk

m, where k is the degree of Q and again the
implied constant depends on ζ, P,Q only. Hence, the constant function ψ(z) = k + 1
(or ψ(z) = k + ε for any ε > 0) satisfies the conditions of Theorem 2.1.

Considering constant functions ψ(z), we stem a corollary from Theorem 2.1 whose
conditions do not explicitly involve ζ but are solely conditions on the image f (Q).

Corollary 2.2. Suppose that f is nonconstant analytic in some open interval I ⊆ R
and f (Q ∩ I) ⊆ Q. Moreover, assume that there exists η ∈ R such that

f (p/q) = p′/q′

implies q′ ≤ qη provided (p, q) = 1, (p′, q′) = 1 and q ≥ 2. Then f (L ∩ I) ⊆L .

Proof. Since ζ ∈L , for any m ≥ 1 there exist pm, qm with (2.1). Apply for any such
choice Theorem 2.1 with the constant function ψ(m) = η. �

Incorporating the additional condition of Theorem 2.1 or Corollary 2.2 for
transcendental functions seems difficult with the common methods, as used for
instance in [12] or [20]. In this context, [20, Theorem 1.2] asserts that there exist
entire transcendental functions with q′ < q8q2

in the notation of Corollary 2.2. See
also [21, Theorem 2] for a related result concerning the image of algebraic numbers of
bounded height under certain entire transcendental functions.
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3. Special classes of Liouville numbers

We define a few interesting subclasses of L . The first one, which is new and will
be considered in the main result Theorem 4.3, is parametrized by real functions.

Definition 3.1. Let Φ be the set of all functions ϕ : R≥2 7→ R≥2 which are nondecre-
asing and satisfy limx→∞ ϕ(x) = ∞. For ϕ ∈ Φ, define Lϕ, the (possibly empty)
subclass of ζ ∈L , for which for any given positive integer N, the estimate

−
log ‖ζq‖

log q
≥ N (3.1)

has an integer solution q = q(N) with 2 ≤ q ≤ ϕ(N). Similarly, let L ∗
ϕ ⊃Lϕ be the set

of ζ ∈L for which the condition holds for all N ≥ N0(ζ).

Remark 3.2. Observe that by Theorem 1.2, for N ≥ 2 the smallest q for which (3.1)
holds equals some denominator tn of a convergent of ζ.

Remark 3.3. Only evaluations of ϕ ∈ Φ at integers will be of importance, so we could
alternatively work with sequences. For ϕ ∈ Φ of low growth, the sets Lϕ,L ∗

ϕ are
indeed empty. However, we will see soon that the sets are large for ϕ of sufficiently
fast growth.

Define orderings on Φ by ψ ≤ ϕ (respectively ψ ≤∗ ϕ) if ψ(x) ≤ ϕ(x) for all x ≥ 2
(respectively x ≥ x0 = x0(ϕ, ψ)). These relations are clearly reflexive and transitive.
The relation ≤ is also antisymmetric and hence (Φ, ≤) is a partially ordered set.
Furthermore, the pointwise maximum of two functions lies above both functions in
these partial orders, such that (Φ, ≤) and (Φ, ≤∗) can be viewed as directed sets.
Obviously, ψ ≤ ϕ implies Lψ ⊆Lϕ and ψ ≤∗ ϕ implies L ∗

ψ ⊆L ∗
ϕ , such that the set of

all {Lϕ} (respectively {L ∗
ϕ }), partially ordered by inclusion, is a directed set as well.

For any ζ ∈L , say A (ζ) ⊆ Φ is the set of ϕ ∈ Φ such that ζ ∈Lϕ. There is a unique
ϕ ∈ A (ζ) with the property that ϕ ≤ ψ for any ψ ∈ A (ζ) (in particular, A (ζ) , ∅).
This function is locally constant, right-continuous, has image in Z≥2 and increases in a
discontinuous way at integer values q, where an estimate ‖ζq‖ ≤ q−N for some integer
N > 0 is satisfied for ‘the first time’ (for q but no smaller integer). We call it the
minimum function for ζ ∈L .

Example 3.4. For L as in (1.2) and for any integer n ≥ 1,

‖10n!L‖ ≤ 10n!−(n+1)! + 2 · 10n!−(n+2)! = 10−n·n! + 2 · 10n!−(n+2)!

and hence

−
log ‖10n!L‖

log 10n! =
n · n! log 10

n! log 10
(1 + o(1/n)) = n + o(1).

The remainder term tends to 0 fast, such that certainly ϕ(x) = 10(x+1)! is a proper choice
for which L ∈Lϕ, where we extend the definition of the factorials to real numbers by
x! := x(x − 1)(x − 2) · · · (1 + {x}).
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Example 3.5. For either ϕ(x) = 2(x!)! or ϕ(x) = 22x!
, it is easy to check that all numbers

of the form LM :=
∑

j≥1 M− j!, for M ≥ 2 an integer, belong to L ∗
ϕ simultaneously.

Proposition 3.6. Let ϕ ∈ Φ for which Lϕ , ∅, for example the minimum function of
arbitrary ζ ∈L . Then the set Lϕ is uncountable. Moreover, for any nonempty open
interval J, the set L ∗

ϕ ∩ J is uncountable.

Proof. Say ζ = [r0; r1, r2, . . .] belongs to Lϕ. By the properties we have established,
we may assume that ϕ is the minimum function of ζ.

By Remark 3.2, any rise of the locally constant minimum function of ζ is induced
by some convergent (in general, not every convergent induces a rise). It is also obvious
that there are infinitely many rises since ζ ∈ L . Define the subsequence j(n) of
{0, 1, 2, . . .} such that the nth rise is induced by s j(n)/t j(n) = [r0, r1, . . . , r j(n)], that is,
q = t j(n) but no smaller integer satisfies (3.1) for some integer N. Then r j(n)+1 is large.
For any subset T ⊆ { j(1), j(2), . . .} with infinite complement, define ζT , the number
that arises from ζ by deleting precisely those partial quotients ri for which i − 1 ∈ T .
By virtue of (1.3) and Theorem 1.3 and since T c is infinite, one checks that ζT ∈L .
On the other hand, the recurrence (1.3) implies that ψ ≤ ϕ for ψ the minimum function
of ζT . Hence, ζT ∈Lψ ⊆Lϕ. Since there are uncountably many choices for T and the
continued fraction expansion is uniquely determined, this yields uncountably many
elements in Lϕ. The assertion on L ∗

ϕ ∩ J can be inferred from the above by altering
initial partial quotients, which only yields a rational transformation of ζ. �

Unfortunately, for any given ϕ ∈ Φ it is not hard to construct continued fraction
expansions of elements in L \Lϕ either, such that Lϕ (L . It suffices to choose
many successive small partial quotients between rather large ones, such that the
maximum of the left-hand side in (3.1) for bounded q tends to infinity more slowly than
ϕ. More generally, a diagonal method argument shows that there is no representation
of L as a countable union of classes Lϕ. However, obviously L can be written as
the uncountable union

⋃
ζ∈L Lϕ(ζ), where ϕ(ζ) is the minimum function of ζ ∈L .

We compare the classes Lϕ with certain other subclasses of L that have been
studied. LeVeque [15] introduced strong Liouville numbers. This concept was refined
by Alniacik [1], who defined semi-strong Liouville numbers. The following definition
comprises these concepts and some additional ones that fit our purposes.

Definition 3.7. For ζ ∈L , denote sn/tn (n ≥ 0), the sequence of its convergents. Then
ζ is called semi-strong if one can find a subsequence (vi)i≥0 of {0, 1, 2 . . .} with the
properties

|tviζ − svi | = t−ω(vi)
vi

, lim
i→∞

ω(vi) =∞, (3.2)

lim sup
i→∞

log tvi+1

log tvi+1
<∞. (3.3)

It is called strong if (3.2) is true for vi = i (note that (3.3) is trivial then). Denote
the sets of semi-strong (respectively strong) Liouville numbers by L ss (respectively
L s). Further, for any nondecreasing function Λ : R≥1 7→ R≥1 with limx→∞ Λ(x) =∞,
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let L s,Λ ⊆L s (respectively L ss,Λ ⊆L ss) be the sets for which ω(vi) ≥ Λ(i) for some
sequence (vi)i≥1 as above.

Conversely to the sets Lϕ, the sets L s,Λ and L ss,Λ get smaller the faster Λ tends
to infinity. For any Λ as in Definition 3.7, choosing the partial quotients sufficiently
large, it is easy to check that all defined sets are nonempty (in fact, uncountable).

It is not hard to see that L s (L ss (L . Unfortunately (in view of Section 4.2),
for any given ϕ ∈ Φ, there exist (semi-)strong Liouville numbers not contained in L ∗

ϕ ,
that is, L s *L ∗

ϕ . To ensure inclusion, we need some (arbitrarily weak) additional
minimum growth condition on the sequence ω(vi) in (3.2).

Proposition 3.8. Fix any function Λ as in Definition 3.7. Then there exists ϕ = ϕ(Λ)
∈ Φ such that L s,Λ ⊆Lϕ. Furthermore, there exists ψ = ψ(Λ) ∈ Φ for which L s,Λ ⊆

L ss,Λ ⊆L ∗
ψ .

Proof. First we construct ϕ ∈ Φ such that L s,Λ ⊆ Lϕ and prove this rigorously;
subsequently, we sketch how to derive the other inclusion in a similar way.

Consider an arbitrary but fixed integer N ≥ 1. We will construct suitable ϕ(N).
Let ιN := dΛ−1(N)e, that is, the smallest index i such that Λ(i) ≥ N. Consider integers
T1, . . . , TιN given by the recurrence relation T0 = 1, T1 = N + 1 and T j+1 = T N+1

j for
1 ≤ j ≤ ιN − 1 and put DN := TιN . We show that ϕ(N) := DN is a suitable choice. We
use the notation of Section 1.4 for the continued fraction expansion of ζ. First assume
that all partial denominators t1, . . . , tN of the convergents of some ζ are bounded by
t j ≤ T j. It follows from (1.3) that tιN ≤ TιN = DN , but, on the other hand, the inequality
|t jζ − s j| < t−N

j is satisfied for the index j = ιN by definition of ιN . Thus, if we put
q = TιN in Definition 3.1, we see that ϕ(N) := DN is indeed a proper choice. On
the other hand, if for some 1 ≤ j ≤ ιN − 1 we have t j > T j, then again by (1.3) and
Theorem 1.3 we infer that |t j−1ζ − s j−1| < t−N

j−1, and if j is the smallest such index
then moreover t j−1 ≤ DN . Again this shows that we may put q = q(N) = t j−1 in
Definition 3.1 and ϕ(N) := DN is a proper choice.

For the inclusion L ss,Λ ⊆L ∗
ψ , construct ψ(N) = DN as above, with the replacement

T j+1 := T j( j+1)
j in each inductive step. Observe that for any ζ ∈L ss, condition (3.3)

guarantees that we will have tιN < TιN =: DN for sufficiently large N = N(ζ). �

Conversely, it can be shown that for any fixed ϕ ∈ Φ we have Lϕ *L ss. We will
not need this, though. Another subclass of L was recently defined in [20].

Definition 3.9. Recursively define exp[0](x) := x and exp[k+1](x) = exp(exp[k])(x).
Then ζ ∈L is called ultra-Liouville if for any k ≥ 0 there exists a rational number
p/q such that ∣∣∣∣∣ζ − p

q

∣∣∣∣∣ ≤ 1
exp[k](q)

. (3.4)

We denote the set of ultra-Liouville numbers by Lultra.

Theorem 1.1 in [20], which relies on [20, Theorem 1.2] mentioned at the end of
Section 2, asserts the following result.
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Theorem 3.10 (Marques and Moreira [20]). There exist uncountably many entire trans-
cendental functions f such that f (Lultra) ⊆Lultra. In particular, f (Lultra) ⊆L .

It is important to notice that the previous result is strong in the sense that it ensures
the existence of an uncountable subset of Liouville numbers which is invariant for
uncountably many transcendental analytic functions.

It is not hard to check that there exist functions ϕ ∈ Φ for which Lϕ *Lultra. It
suffices to take ϕ, the minimum function of any ζ ∈ L , for which we cannot find
a rational for which (3.4) holds for k = 1 (or any larger k), which clearly exists.
Conversely, one checks that Lultra *L ∗

ϕ for any fixed function ϕ ∈ Φ, as the frequency
of values q inducing very good approximations p/q in (3.4) can be arbitrarily low.
For similar reasons, also a combination of the concepts (semi-)strong and ultra is not
sufficient to provide ϕwith inclusion; in other words, Lultra ∩L s *Lϕ for any ϕ ∈ Φ.
Moreover, there is no inclusion within L s (respectively L ss) and Lultra. Finally,
we also refer to [21] for a result similar to Theorem 3.10 concerning the image of
more general sets (in general, no longer subsets of L ). There is again no immediate
correlation to Theorem 4.3.

4. Entire transcendental functions with large invariant set

4.1. Preparatory results. We put our focus on entire functions f now. We gather
some results that we will utilize in the proof of Theorem 4.3. The following Lemma 4.1
on its own leads to another proof of Theorem 1.1 in the special case of polynomials. In
the proof we will use the following elementary fact. For a real number α and a positive
integer k, the estimate

|qα − p| ≤ q−ν (4.1)

implies that

|qkαk − pk| = |qα − p| · |qk−1αk−1 + · · · + pk−1| ≤ D(k, α)q−ν+k−1 (4.2)

with a constant D(k, α) depending only on k and α. This argument was actually used
in a slightly more general way in the proof of Lemma 1 in [4] and will be frequently
applied in Section 6 as well.

Lemma 4.1. Let α ∈ R and P ∈ Q[X] be given as

P(z) =
a0

b0
+

a1

b1
z + · · · +

am

bm
zm

with a j/b j in lowest terms. Put A := max0≤ j≤m |a j|, B := lcm(|b0|, . . . , |bm|). Assume for
a positive integer q and (large) ν > 0 that

‖qα‖ ≤ q−ν. (4.3)

Then Bqm ∈ Z and

‖Bqm · P(α)‖ ≤ m2(1 + |α|)m−1 · ABq−ν+m−1.
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Proof. By definition, dk := |B/bk| is an integer with 1 ≤ dk ≤ B for 0 ≤ k ≤ m. Recall
that for any integer M and α ∈ R, we have ‖Mα‖ ≤ |M| · ‖α‖. For 0 ≤ k ≤ m, we
estimate the monomial∥∥∥∥∥Bqm ak

bk
αk

∥∥∥∥∥ = ‖dkakqmαk‖ ≤ |ak|dkqm−k‖qkαk‖ ≤ ABqm−k‖qkαk‖. (4.4)

Moreover, for k = 0, the left-hand side of (4.4) is 0, which will improve the result
slightly. As ν is large and thus p/q is very close to α for some p ∈ Z, we may apply
(4.2) to estimate ‖qkαk‖ with the bound D(k, α) ≤ k(1 + |α|)k−1 ≤ m(1 + |α|)m−1 for any
1 ≤ k ≤ m. Since ‖µ0 + · · · + µm‖ ≤ ‖µ1‖ + · · · + ‖µm‖ for all real µ0, µ1, . . . , µm with
µ0 ∈ Z, we infer the lemma if we put µk in the left-hand side of (4.4) for 0 ≤ k ≤ m. �

We will need an additional technical coprimeness result for special choices of
coefficients c j in Lemma 4.1 in the proof of Theorem 4.3.

Proposition 4.2. Let α ∈ R and P ∈ Q[X] be as in Lemma 4.1, where c j = 1/b j and
b j|b j+1 for 0 ≤ j ≤ m − 1. Define A, B as in the lemma, such that A = 1, B = bm.

There exists ν0 = ν0(P) which depends on P but not on q, such that if q ≥ 2 satisfies
(4.3) for ν ≥ ν0, and if for p the closest integer to qα we have (p, q) = 1, and if R
denotes the closest integer to Bqm · P(α), we have (q,R) = 1.

Proof. There exists some large ν1 = ν1(P) independent of q such that for ν ≥ ν1, all
left-hand sides in (4.4) in the proof of Lemma 4.1 are sufficiently small to add up to a
number smaller than 1/2. Then R equals the sum of the m + 1 closest integers to the
monomials Bqmak/bkα

k; call them Zk. In view of (4.2),

qmαk = qm−k(qα)k = qm−k pk + qm−k‖qα‖k

is very close to qm−k pk uniformly in 0 ≤ k ≤ m, provided that ‖qα‖ is sufficiently small.
More precisely, it is not hard to check that if ν in (4.3) satisfies ν ≥ ν2 with large
ν2 = ν2(P) independent of q, again writing dk = B/bk ∈ Z for 0 ≤ k ≤ m,

Zk = qm−k pkakdk = qm−k pkdk, 0 ≤ k ≤ m.

Note that dm = 1 since bm = B follows from the divisibility conditions on the b j.
Combining these results, if we let ν ≥ ν0 in (4.3) with ν0 := max{ν1, ν2}, we infer that

R = Z0 + · · · + Zm = qmd0 + qm−1 pd1 + qm−2 p2d2 + · · · + qpm−1dm−1 + pm.

Clearly, any prime divisor of q divides any other expression in the sum but certainly
not pm since (p, q) = 1 by assumption. The assertion follows. �

4.2. The main result. Now we state the main theorem, which provides nonconstant
entire transcendental functions f that map large prescribed subclasses of L to L . It
will turn out that all derivatives have the same property. The idea is to look at entire
functions whose Taylor coefficients decrease fast by absolute value, in order to apply
Lemma 4.1 with gain. To exclude the case that an element of the image is rational is
slightly technical. We agree that f (∅) = ∅ in the trivial case L ∗

ϕ = ∅.
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Theorem 4.3. Let ϕ ∈ Φ be arbitrary but fixed. Then there exist uncountably many
entire transcendental functions f (z) = c0 + c1z + · · · with c j ∈ Q \ {0} and the property
that for any s ∈ {0, 1, 2, . . .}:

• f (s)(0) ∈ Q;
• f (s)(Q \ {0}) ⊆L ;
• f (s)(L ∗

ϕ ) ⊆L .

Suitable functions f can be explicitly constructed.

Proof. First we prove the assertion for s = 0 and subsequently describe how the proof
extends to s > 0.

Let (Tm)m≥1 be any sequence of positive real numbers that tends to infinity, for
instance Tm = m. We recursively construct the rational Taylor coefficients c j of suitable
functions f . Note that the first assertion of the theorem will follow immediately from
c j ∈ Q. Let c0 = 1. Assume that the Taylor polynomial Pm(z) = c0 + c1z + · · · + cmzm

of f of degree m ≥ 0 is already constructed and has rational coefficients c j = 1/b j
and b j|b j+1 for 0 ≤ j ≤ m − 1, as in Proposition 4.2. We construct cm+1. Let P := Pm
in Lemma 4.1 and similarly define A := Am, B := Bm with Am, Bm arising from the
present a j, b j as in the lemma. In fact, the conditions show that Am = 1, Bm = bm. Let
the positive integer km be large enough such that

qkm > m2(Tm + 1)m−1AmBmqm−1 · 2(Bmqm)m =: qm2+m−1Dm (4.5)

for any integer q ≥ 2, which is possible since Dm and the exponent m2 + m − 1 are
constants. Since we can make km larger if necessary, we may assume that km ≥ ν0(Pm),
where ν0(Pm) is as in Proposition 4.2 for P = Pm. By definition of the set Lϕ, for any
ζ ∈Lϕ, the inequality

‖qζ‖ ≤ q−km (4.6)

has a solution q =: q̃m that may depend on ζ but with 2 ≤ q̃m ≤ ϕ(km) uniformly.
First consider only the class Lϕ instead of L ∗

ϕ . Restricting to ζ ∈Lϕ ∩ [−Tm,Tm],
application of Lemma 4.1 with ν := km in view of (4.5) yields

‖(Bmq̃ m
m ) · Pm(ζ)‖ ≤ m2(1 + |ζ |)m−1 · AmBmq̃−km+m−1

m ≤ 1
2 |Bmq̃ m

m |
−m. (4.7)

Put Q̃m := Bmq̃ m
m ; then (4.7) turns into

‖Q̃mPm(ζ)‖ ≤ 1
2 Q̃−m

m . (4.8)

Moreover, if we write τm := Bmϕ(km)m, then

|Q̃m| ≤ τm. (4.9)

Now we determine cm+1 ∈ Q \ {0} of very small modulus. Assume that the
coefficients cm+2, cm+3, . . . do not vanish but are of very small and fast decreasing
modulus too. More precisely, for now we assume that all the coefficients cm+1, cm+2, . . .
satisfy

|cm+h| < min{(1/4)(1 + Tm)−m−2hτ−m−1
m , 1/(m + h)!}, h ≥ 1, (4.10)
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where the purpose of 1/(m + h)! is solely to guarantee convergence. Pick any suitable
cm+1 = 1/bm+1 ∈ Q \ {0} for bm+1 a sufficiently large integral multiple of bm such that
(4.10) is satisfied for h = 1. Then

| f (z) − Pm(z)| =
∣∣∣∣∣ ∞∑
h=1

cm+hzm+h
∣∣∣∣∣ ≤ ∞∑

h=1

|cm+h|T m+h
m <

1
2
τ−m−1

m

uniformly for z ∈ [−Tm,Tm]. Thus, in particular for ζ ∈Lϕ ∩ [−Tm,Tm], condition
(4.9) implies that

|Q̃m · ( f (ζ) − Pm(ζ))| ≤ |Q̃m| ·
1
2τ
−m−1
m ≤ 1

2 |Q̃m|
−m. (4.11)

Combination of (4.8), (4.11) and the triangular inequality yields

‖Q̃m · f (ζ)‖ ≤ |Q̃m|
−m. (4.12)

Now we repeat the procedure with the polynomial Pm+1(z) = c0 + · · · + cm+1zm+1,
where we have to satisfy the condition (4.10) for m and m + 1, which however we may
easily do by choosing any sufficiently small rational cm+2 = 1/bm+2 with bm+1|bm+2.
Proceeding in this manner, we obtain integer solutions to the estimate (4.12) for
any m ≥ 1 and any ζ ∈ Lϕ ∩ [−Tm,Tm]. Any ζ belongs to [−Tm, Tm] for all large
m ≥ m0(ζ); hence, indeed µ( f (ζ)) = ∞ or f (ζ) ∈ Q for any ζ ∈Lϕ, where µ denotes
the irrationality exponent. We have to exclude the case f (ζ) ∈ Q to infer that f (ζ) ∈L ,
simultaneously for all ζ ∈Lϕ.

Assume that f (ζ) ∈ Q for some ζ ∈Lϕ, say f (ζ) = l1/l2 with coprime integers l1, l2.
For q̃m as constructed in the proof, let p̃m/q̃m be the good approximation to ζ with
denominator q̃m, that is, p̃m is the closest integer to ζq̃m. Recalling the definition of q̃m

in (4.6), we may assume that ( p̃m, q̃m) = 1, otherwise we could divide both p̃m, q̃m by
their greatest common divisor and (4.6) still holds (in fact, the left-hand side is even
smaller and the right-hand side larger) and all above works analogously. Further, say
that R̃m is the closest integer to Q̃m f (ζ) for m ≥ 1. The estimate (4.12) can be written

|Q̃m f (ζ) − R̃m| ≤ |Q̃m|
−m, m ≥ 1. (4.13)

On the other hand, if for some m we have R̃m/Q̃m , l1/l2, then

|Q̃m f (ζ) − R̃m| =

∣∣∣∣∣Q̃m
l1
l2
− R̃m

∣∣∣∣∣ ≥ 1
l2
, m ≥ 1. (4.14)

Since both (4.13) and (4.14) cannot hold for large m, we must have

R̃m

Q̃m
= f (ζ) =

l1
l2
, m ≥ m0. (4.15)

Since Q̃m = Bmq̃ m
m and limm→∞ q̃m =∞, it suffices to show that R̃m and q̃m are coprime

for any fixed m to contradict (4.15). Due to (4.11), R̃m equals the closest integer to
Q̃mPm(ζ) as well. Hence, recalling (4.6) and km ≥ ν0(Pm), Proposition 4.2 indeed
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implies that (R̃m, q̃m) = 1. This contradicts the hypothesis f (ζ) ∈ Q, which finishes
the proof of f (Lϕ) ⊆L .

We now describe how the above generalizes to the larger class L ∗
ϕ . We may

assume that the sequence (km)m≥1 tends to infinity, otherwise we can choose larger
values in any step. Thus, by definition of L ∗

ϕ , for any ζ ∈L ∗
ϕ the estimate (4.6) has a

solution 2 ≤ q̃ ≤ ϕ(km) for all large m ≥ m0(ζ). Hence, we deduce solutions to (4.12)
for m ≥ m0(ζ) which guarantee f (ζ) ∈L ∪ Q. The exclusion of f (ζ) ∈ Q obviously
works as for ζ ∈Lϕ.

Next we show that f (Q \ {0}) ⊆L . Let l1/l2 ∈ Q be arbitrary and write Bm/b j =

dm, j ∈ Z for m ≥ 1 and 0 ≤ j ≤ m. Then, on the one hand,

Bmlm2 Pm(l1/l2) = Bmlm2

m∑
j=0

c j

( l1
l2

) j
=

m∑
j=0

dm, jl
j
1lm− j

2 =: Am ∈ Z

by construction; on the other hand,

|Bmlm2 ( f (l1/l2) − Pm(l1/l2))| ≤
∣∣∣∣∣Bmlm2

∞∑
j=m+1

c j

( l1
l2

) j∣∣∣∣∣ ≤ (B2lm2 )−m

for large m by the fast decay of c j = 1/b j = 1/B j. The triangular inequality shows that
µ( f (l1/l2)) =∞ unless f (l1/l2) ∈ Q, and that Am is the closest integer to Bmlm2 f (l1/l2).
By virtue of the same principle as in (4.14), it suffices to check that Am/(Bmlm2 ) =

Pm(l1/l2) is not constant for all m ≥ m0 to exclude the case f (l1/l2) ∈ Q and thus
f (l1/l2) ∈L . However, since Pm+1(z) = Pm(z) + cm+1zm+1, the equality Pm(l1/l2) =

Pm+1(l1/l2) for some m implies that cm+1 = 0, which is false, unless l1/l2 = 0. This
yields the assertion.

We check that f has the remaining desired properties. The expression 1/(m + h)!
in (4.10) guarantees that f is an entire function, which by construction has rational
coefficients and is not a polynomial. Hence, it is transcendental as described in
Section 1.1. Clearly, this method is flexible enough to provide uncountably many
suitable f .

It remains to extend the assertion to the derivatives. We may assume that in every
recursive step the condition bm|bm+1 is strengthened to m!bm|bm+1. All derivatives
of f are then again of the form f (s)(z) =

∑
j≥0(1/b(s)

j )z j for integers b(s)
j with the

property b(s)
j |b

(s)
j+1 for all pairs j ≥ 0, s ≥ 0. Let s ≥ 0 be fixed now. If we define

A(s)
m , B(s)

m for P(s)
m the mth Taylor polynomial of f (s) as in Lemma 4.1, then by the

above A(s)
m = 1, B(s)

m = b(s)
m for all m ≥ 0, as in the case s = 0. By construction, also

B(t+1)
m = (m + 1)−1B(t)

m+1 < B(t)
m+1 for all m ≥ 0, t ≥ 0 and thus B(s)

m < Bm+s. Thus, if we
put k(s)

m := km+s, then similarly to (4.5) the estimate

qk(s)
m > m2(Tm + 1)m−1A(s)

m B(s)
m qm−1 · 2(B(s)

m qm)m =: qm2+m−1D(s)
m

will be satisfied for all q ≥ 2 with D(s)
m := Dm+s. Similarly to (4.6), we infer that

‖qζ‖ ≤ q−k(s)
m
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has a solution q =: q̃(s)
m that may depend on ζ but with 2 ≤ q̃m ≤ ϕ(k(s)

m ) uniformly.
Proceeding further as in the case s = 0, the analogue of (4.7) holds again and with
Q̃ (s)

m := B(s)
m q̃ (s)m

m we further obtain

‖Q̃ (s)
m P(s)

m (ζ)‖ ≤ 1
2 Q̃ (s)−m

m . (4.16)

Moreover, with τ(s)
m := τm+s, we also obtain

|Q̃ (s)
m | ≤ τ

(s)
m . (4.17)

For the estimate of the remainder term, first note that the coefficients c(s)
j of f (s) satisfy

c(s)
j =

1

b(s)
j

=
1

b j+s
j( j + 1) · · · ( j + s − 1) ≤ ( j + s)s 1

bm+s
= ( j + s)scm+s.

Hence,

| f (z)(s) − P(s)
m (z)| =

∣∣∣∣∣ ∞∑
h=1

c(s)
m+hzm+h

∣∣∣∣∣ ≤ ∞∑
h=1

|c(s)
m+h|T

m+h
m ≤

∞∑
h=1

(m + h + s)s|cm+h+s|T m+h
m

uniformly for z ∈ [−Tm,Tm]. If we strengthen the condition (4.10) in any inductive
step by replacing τ−m by τ−m2

if necessary, from the fast decay of (cm)m≥1 and since s
is fixed, it clearly follows that at least for large m the above can be bounded by

| f (z)(s) − P(s)
m (z)| ≤

∞∑
h=1

(m + h + s)s|cm+h+s|T m+h
m ≤

1
2
τ(s)−m−1

m .

In combination with (4.17) for large m again,

|Q̃ (s)
m · ( f (s)(ζ) − P(s)

m (ζ))| ≤ |Q̃ (s)
m | ·

1
2τ

(s)−m−1
m ≤ 1

2 |Q̃
(s)
m |
−m

and, together with (4.16) and the triangular inequality, eventually

‖Q̃ (s)
m · f (s)(ζ)‖ ≤ |Q̃ (s)

m |
−m.

As this holds for all ζ ∈Lϕ and large m, indeed f (s)(Lϕ) ⊆L . The generalization to
L ∗

ϕ such as the proof of f (s)(ζ) < Q and f (s)(Q \ {0}) ⊆L works very similarly to the
case s = 0. �

We give several remarks.

Remark 4.4. The assertion f (Q \ {0}) ⊆ L implies that f (Q \ {0}) is a purely
transcendental set; see Section 1.2. Observe the contrast to Theorems 1.1, 2.1,
Corollary 2.2 and Theorem 3.10, where we had f (Q) ⊆ Q. Moreover, since a function
f algebraic over Q satisfies S f = Q, this leads to a proof that all constructed functions
are transcendental over the base field Q instead of C. This is weaker but avoids the
rather deep great Picard theorem; see Section 1.1.
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Remark 4.5. We only needed ζ ∈Lϕ to obtain a uniform bound of q̃m in (4.6). If we
weaken this to ζ ∈L , we further have no uniform bound in (4.9), which is needed to
bound the left-hand side in (4.11), even restricting to ζ in a given compact interval.

Remark 4.6. For any finite set {ζ1, ζ2, . . . , ζu} ⊆ L u, the proof of Theorem 4.3
provides a method of constructing entire transcendental functions f that map all
ζ j simultaneously to elements of L . It suffices to define the involved function ϕ
as the pointwise maximum of the individual minimum functions for ζ j, as carried
out subsequent to Definition 3.1. However, such functions f can alternatively be
constructed with the Weierstrass factorization theorem; see [8, Ch. 7, paragraph 5].

It is evident that Theorem 4.3 becomes more interesting the faster the function ϕ
tends to infinity. See Section 3 for examples of ϕ inducing large sets Lϕ. From
Proposition 3.8 and Theorem 4.3, we further infer a last corollary.

Corollary 4.7. Let Λ be any function as in Definition 3.7. Then there exist uncoun-
tably many entire transcendental functions f with f (L s,Λ) ⊆ f (L ss,Λ) ⊆L .

Proof. Given Λ, by Proposition 3.8 we can choose ϕ such that L s,Λ ⊆L ss,Λ ⊆L ∗
ϕ .

By virtue of Theorem 4.3, on the other hand, we can find suitable f such that
f (L ∗

ϕ ) ⊆L . Thus, f (L s,Λ) ⊆ f (L ss,Λ) ⊆ f (L ∗
ϕ ) ⊆L . �

5. The converse problem: f (L ) ∩L = ∅

Up to this point, we have tried to find examples of analytic functions with a large
set f (L ) ∩L . This suggests the following converse problem.

Problem 5.1. Are there nonconstant analytic functions f with real coefficients such
that L ∩ f (L ) = ∅?

A negative answer can be readily inferred from a recent result on Liouville
numbers [14], which is based solely on the topological property of L being a Gδ

dense set.

Theorem 5.2 (Kumar et al. [14]). Let I be a nonempty open interval of R and let ( fn)n≥0

be a sequence of real continuous functions on I which are nowhere locally constant.
Then there exists an uncountable Gδ-set E ⊆L ∩ I such that fn(E) ⊆L for all n ≥ 0.

See also [2], [10], [25], [30] and [5] (however, as pointed out in the MathSciNet
review, the proof in [5] has a small gap and it does not work in general. See Silva [31]
for a recent slightly weaker result). As a corollary, we indeed obtain the following
result.

Theorem 5.3. Let I ⊆ R be a nonempty open interval and f : I 7→ R be a nonconstant
analytic function. Then there exists an uncountable set E ⊆L ∩ I such that f (s)(E) ⊆
L for all s ≥ 0.
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Proof. Apply Theorem 5.2 with fn := f (n) for n ≥ 0, and note that the condition clearly
holds due to the identity theorem. It claims that an analytic function on a connected
open set I is determined by its values on a set with limit point in I. In particular, the
constant 0 function is the only analytic function that takes the value 0 on a set with
limit point. Hence, any entire function which is constant on some real interval must
already be constant on C or, equivalently, a nonconstant entire function is not constant
on any real interval. �

6. The set f (L ) ∩L for the functions f (z) = za/b

Theorem 1.1 implies that f (z) = zk for an integer k , 0 satisfies f (L ) ⊆ L . A
more general class of functions one may consider is f (z) = za/b for rational numbers
a/b. In certain subsets of C, there might be several representatives of f ; however,
we are only interested in the real representative f : (0,∞) 7→ (0,∞). Any such
function f is algebraic even over the base field Q as f (z)b − za = 0; in particular,
S f = Q. Further, at any s ∈ (0,∞) the function f admits a local power series expansion
f (z) = c0 + c1(z − s) + c2(z − s)2 + · · · with radius of convergence s. Moreover, one
checks that the power series expansion at a point s ∈ Q ∩ R has coefficients c j ∈ Q ∩ R.

The first result is an easy observation and more for the sake of completeness. It
provides explicit constructions of ζ fixed under given f , as in Theorem 5.3.

Theorem 6.1. For integer parameters a , 0, b , 0, let fa,b(z) = za/b. Further, let
I ⊆ (0,∞) with nonempty interior. Then there exist uncountably many ζ ∈L such that
fa,b(ζ) ∈L simultaneously for all a, b. Moreover, for fixed a, b, uncountably many
such ζ ∈L ∩ I can be explicitly constructed.

Proof. The first assertion follows from Theorem 5.2 with ( fn)n≥1 any enumeration of
the set of functions fa,b. Now consider a, b fixed and let f := fa,b. Due to Theorem 1.1,
we may assume that a > 0, b > 0. Clearly, if we take arbitrary ζ′ ∈L ∩ (0,∞) and put
ζ = ζ′b, then Theorem 1.1 implies that ζ ∈L and f (ζ) = ζa/b = ζ′a is in L . Moreover,
since x 7→ xb induces a homeomorphism on (0,∞), the suitable set L b := {ζb : ζ ∈L }
inherits the property of being uncountable in any positive interval from the analogous
property of L . �

Now we state the main result of Section 6, which was already indicated in
Section 1.5.

Theorem 6.2. Let fa,b and I be as in Theorem 6.1. Then there exist uncountably many
ζ ∈L ∩ I such that fa,b(ζ) ∈L if and only if a/b is an integer. Suitable ζ can be
explicitly constructed. In particular, for any fixed coprime a, b with |b| ≥ 2, we have
fa,b(L ) ∩L is uncountable but fa,b(L ) *L .

We compare Theorem 6.2 with a result connected to U-numbers in Mahler’s
classification introduced in Section 1.2. Theorem 7.4 and its proof in [3] provide
an explicit example of a number ζ0 whose mth root is a Um-number for any integer
m ≥ 1. This implies Theorem 6.2 for a = 1, and is in fact stronger for b > 2 since
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the latter only yields that ζa/b is a Ul-number for some 2 ≤ l ≤ b. In contrast to [3,
Theorem 7.4], Theorem 6.2 provides no information on approximation by algebraic
irrational numbers. However, it seems that the general assertion of Theorem 6.2 cannot
be deduced entirely from [3, Theorem 7.4] or related results.

Theorems 6.1 and 6.2, in view of Theorem 1.1, suggest the following conjecture.

Conjecture 6.3. Let I and fa,b be as in Theorem 6.1. Further, let A ⊆ Q \ {0} be
arbitrary with the properties 1 ∈ A and for any element of A any nonzero integral
multiple belongs to A as well. Then there exist uncountably many ζ ∈L ∩ I with
the property that fa,b(ζ) ∈L if a/b ∈ A and fa,b(ζ) <L if a/b < A.

Obviously, Theorems 6.1 and 6.2 provide the extremal cases A = Q \ {0} and
A = Z \ {0}. If we drop the condition 1 ∈ A, then the conjecture might be true for some
ζ ∈ I not necessarily in L . We collect some ingredients for the proof of Theorem 6.2
in the next section.

6.1. Preparatory results. It was shown by Maillet [18] that the bth root of ζ ∈L
is a Liouville number if and only if among the convergents of ζ there are infinitely
many bth powers of rationals. We carry out his main argument for the necessity of this
condition in the following more general Lemma 6.4, which in particular will allow us
to establish effective bounds in Corollary 6.8.

Lemma 6.4. Let a/b be a rational number in lowest terms. Suppose that ζ ∈L and
ζa/b ∈L . Then for any η > 0 the inequality

|qbζa − pb| ≤ q−η (6.1)

has a solution in coprime integers p, q. Moreover, if η > b is fixed and q is large, then
pb/qb is a convergent of ζa.

Proof. Assume for a real number α and a positive integer k that the estimate (4.1)
is satisfied. This implies (4.2) with a constant D(k, α) depending only on k and α.
Further, observe that if

q−ν+k−1 <
1

2D(k, α)q
, (6.2)

then Theorem 1.2 and (4.2) imply for large q that pk/qk is a convergent of αk.
Obviously, for fixed k, α the estimate (6.2) is satisfied for any ν > k and all large
q ≥ q0(ν).

Suppose that ζ and ζa/b both belong to L for some suitable a, b. The above
argument with k = b, α = ζa/b shows that for arbitrarily large η the estimate (6.1) has a
solution (p, q) ∈ N2 with pb/qb a convergent of ζa. �

In the proof of the more technical case a > 1 of Theorem 6.2, we will need
the following basic result (Lemma 6.5). It can be derived by the combination of
Theorem 1.2 and Proposition 4.6 in [26] (or, if one prefers, directly from Minkowksi’s
second lattice point theorem [22]; see also [28, Section 1]).
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Lemma 6.5. Let α ∈ R. For any parameter Q > 1, there cannot be two linearly
independent integral solution pairs (x, y) to the system

|x| ≤ Q, |αx − y| <
1

2Q
.

Moreover, if (x, y) is a solution for some Q, then y/x must be a convergent of α.

It will be convenient to apply Dirichlet’s theorem on primes in arithmetic
progressions [9] to shorten the proof of Theorem 6.2, although more elementary
methods would work as well. See also Remark 6.7.

Theorem 6.6 (Dirichlet [9]). Let A, B be coprime positive integers. Then the arithmetic
progression an = An + B contains infinitely many prime numbers.

Now we are ready for the proof of Theorem 6.2.

6.2. Proof of Theorem 6.2. As in Theorem 6.1, we may assume that a > 0, b > 0.
If a/b is an integer and ζ ∈L , then fa,b(ζ) ∈L by Theorem 1.1. Thus, it suffices to
construct ζ ∈L with fa,b(ζ) <L simultaneously for all coprime pairs a, b with b ≥ 2.
At first we drop the restriction ζ ∈ I. Due to Lemma 6.4, it suffices to find ζ ∈L such
that for each pair a, b we can find η = η(a, b) > b such that ζa has no convergent of the
form pb/qb for which (6.1) has a solution for η = η(a, b), to infer ζa/b <L .

We construct such ζ. We want that the partial quotients of ζ are rapidly increasing
and all denominators of convergents of ζ are prime numbers. With the notation
as above, suppose that the partial denominators r0, r1, . . . , rg are constructed with
the property that the denominators of all convergents s1/t1, . . . , sg/tg are primes.
Subsequent to (1.3), we remarked that tg−1, tg are coprime. By Theorem 6.6 and (1.3),
we may choose arbitrarily large rg+1 such that tg+1 is prime. We require rg+1 ≥ tg

g and,
for technical reasons, the sequence rn should moreover grow fast enough that if νn is
defined by |ζtn − sn| = t−νn

n , then νn+1 > νn in any step. By Theorem 1.3, obviously
limn→∞ νn = ∞, such that this procedure indeed leads to ζ ∈L . We have to show
that ζ has the requested property. Throughout the remainder of the proof let δ > 0 be
arbitrarily small but fixed.

First let a = 1. In this case it suffices to put η(1, b) = b + δ and observe that
by construction all convergents of ζa = ζ have prime denominators and hence no
convergent is of the form pb/qb for b ≥ 2.

Now let a ≥ 2. We show that the inequality

|xζa − y| ≤ x−a−δ (6.3)

can hold for (x, y) ∈ N2 with large x only in case of (x, y) an integral multiple of
some (q′a, p′a), where p′a/q′a is a convergent of ζa in lowest terms. More precisely,
(p′, q′) = (sn, tn) for some n, with sn, tn as above. Assume that this is true. Let
η = η(a, b) = max{a + δ, b + δ}. Assume for this choice of η that there exist solutions
of (6.1) that must be convergents of ζa of the form pb/qb by Lemma 6.4. On the
other hand, by the above observation and the choice of η, these solutions must at the
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same time have a representation as a quotient of ath powers of integers p′a/q′a. Since
a, b are coprime and q′ = tn is a prime number, this is clearly impossible, giving a
contradiction. This yields again an indirect proof of ζa/b <L .

It remains to check the assertion above. We have to check that for (x, y) ∈ N2 with
large x and linearly independent of any (sa

n, t
a
n), we cannot have (6.3). Consider large x

fixed and let N be the index such that tN ≤ x < tN+1. Recall that all sn/tn are very good
approximations to ζ. By construction of ζ and definition of νn, in particular we have
|ζtn+1 − sn+1| < t−νn

n+1. Then, similar to (4.2), we can write

|ta
Nζ

a − sa
N | = |tNζ − sN | · |ta−1

N ζa−1 + · · · + sa−1
N | ≤ D(a, ζ)t−νN+a−1

N , (6.4)

|ta
N+1ζ

a − sa
N+1| = |tN+1ζ − sN+1| · |ta−1

N+1ζ
a−1 + · · · + sa−1

N+1| ≤ D(a, ζ)t−νN+a−1
N+1 .

Moreover, tN+1 � tνN
N in view of (1.3) and Theorem 1.3. We distinguish two cases.

Case 1: tN ≤ x < ta
N . We apply Lemma 6.5, with Q := ta

N . Since (sa
N , t

a
N) leads to

a good approximation for ζa by (6.4), there cannot be another vector (u, v) ∈ N2

linearly independent of (sa
N , t

a
N) with u < ta

N that leads to a good approximation. As
the condition x < ta

N is satisfied by assumption, Lemma 6.5 more precisely yields that
|ζax − y| > (1/2)t−a

N . Since tN ≤ x, for large x (or N) we conclude that

|ζax − y| > (1/2)t−a
N ≥ (1/2)x−a > x−a−δ,

which is indeed a contradiction to (6.3).

Case 2: ta
N ≤ x < tN+1. First assume that x is close to tN+1; more precisely, t1−ε

N+1 ≤

x < tN+1 for ε ∈ (0, δ/(a + δ)). Then we may use the same argument as in Case 1 with
Q = ta

N+1 instead of Q = ta
N , since |ζax − y| > (1/2)t−a

N+1 > x−a−δ is still valid. So, we
may assume that ta

N ≤ x < t1−ε
N+1. In this case we apply Lemma 6.5 with Q := x. Assume

that (6.3) holds. Then (x, y) is a pair with |ζax − y| < (1/2)Q−1, so by Lemma 6.5 there
cannot be another such pair linearly independent of (x, y). However, we show that
(sa

N , t
a
N) satisfies the inequality as well. Recall that tN+1 � tνN

N such that Q = x < t1−ε
N+1

yields Q1/[(1−ε)νN ] � tN . By (6.4), we infer that

|ta
Nζ

a − sa
N | � t−νN+a−1

N � Q(−νN+a−1)/((1−ε)νN ) � Q−(1/(1−ε))

for large N as νN is then large too. Since 1/(1 − ε) > 1, the right-hand side is indeed
smaller than (1/2)Q−1 for large x = Q and the contradiction again shows that (6.3) is
false.

Finally, we may allow the continued fraction expansion of ζ to start with arbitrary
[r0; r1, r2, . . . , rl] and then start the above procedure. Hence, the method is flexible
enough to guarantee uncountably many suitable ζ in any subinterval of (0,∞). This
completes the proof. �

Remark 6.7. The constructed ζ ∈L in the proof of Theorem 6.2 are strong Liouville
numbers; see Definition 3.7. Indeed, the method of the proof for a ≥ 2 with Lemma 6.5
requires that there are no large gaps between denominators of convergents with very
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good approximation to ζ. Conversely, the proof basically does work for any semi-
strong Liouville number for which no convergent is of the form pb/qb for some b ≥ 2.
Recall that for a = 1, it was already shown by Maillet that a sufficient condition is that
no convergent p/q of ζ is of the form pb/qb for b ≥ 2, which is rather easy to construct.

The proof of Theorem 6.2 provides explicit upper bounds for the irrationality
exponent of ζa/b for the involved ζ ∈L .

Corollary 6.8. Let fa,b(z) be as in Theorem 6.1 and ζ ∈ L be constructed as in
the proof of Theorem 6.2. Then fa,b(ζ) ∈ L for a/b an integer but µ( fa,b(ζ)) ≤
max{|a|, |b|} + |b| simultaneously for all a, b for which a/b is not an integer.

Proof. If a/b is an integer, then the assertion follows from Theorem 1.1, as already
observed in Theorem 6.2. Thus, and since µ(α−1) = µ(α), we can restrict to a > 0,b > 0
and a/b not an integer. Let a = 1. Indeed, the fact that (6.1) has no (large) solution for
η = b + δ implies that (4.1) has no (large) solution for ν = (b + δ) + (b − 1) = 2b − 1 + δ.
With δ→ 0 and adding 1, taking into account the transition from linear forms to
fractions, we obtain the bound. The same argument can be applied for a ≥ 2 with
η(a, b) = max{a + δ, b + δ}. �
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