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BLOWUPS AND FIBERS OF MORPHISMS

ANDREW R. KUSTIN, CLAUDIA POLINI and BERND ULRICH

Abstract. Our object of study is a rational map Ψ : Ps−1
k

// Pn−1
k

defined by homogeneous forms g1, . . . , gn, of the same degree d, in the

homogeneous coordinate ring R= k[x1, . . . , xs] of Ps−1
k . Our goal is to relate

properties of Ψ, of the homogeneous coordinate ring A= k[g1, . . . , gn] of the

variety parameterized by Ψ, and of the Rees algebra R(I), the bihomogeneous

coordinate ring of the graph of Ψ. For a regular map Ψ, for instance, we prove

that R(I) satisfies Serre’s condition Ri, for some i > 0, if and only if A satisfies

Ri−1 and Ψ is birational onto its image. Thus, in particular, Ψ is birational

onto its image if and only if R(I) satisfies R1. Either condition has implications

for the shape of the core, namely, core(I) is the multiplier ideal of Is and

core(I) = (x1, . . . , xs)sd−s+1. Conversely, for s= 2, either equality for the core

implies birationality. In addition, by means of the generalized rows of the syzygy

matrix of g1, . . . , gn, we give an explicit method to reduce the nonbirational

case to the birational one when s= 2.

§1. Introduction

Let k be a field. We investigate rational maps Ψ : Ps−1k
// Pn−1k . Such

a map Ψ is defined by homogeneous forms g1, . . . , gn, of the same degree d,

in the homogeneous coordinate ring R= k[x1, . . . , xs] of Ps−1k . One of our

main goals is to determine necessary and sufficient conditions for Ψ to be

birational onto its image. This problem has been studied extensively; see, for

example, Hacon [22] for a technique that uses the nonvanishing theorem of

Kollár [35]. The advantage of having convenient criteria for determining if a

given parameterization is birational onto its image is quite obvious. Papers

about parameterization of curves and surfaces are now ubiquitous (see, for
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example [2–4, 7–11, 15, 16, 24, 25, 37, 50]). It is much better to have “the

parameterization is birational” as a conclusion, rather than as a hypothesis.

In this paper we employ the syzygies of the forms [g1, . . . , gn] to determine

if the rational map Ψ = [g1 : · · · : gn] : Ps−1 // Pn−1 is birational. For

s= n this approach appears already in the work of Hulek et al. [26], and

for n> s it has been further developed in [47]. In [17, 48] the method has

been advanced by emphasizing the role of the Rees algebra associated to the

ideal I = (g1, . . . , gn) of R. The Rees algebra R(I) gives the bihomogeneous

coordinate ring of the graph of Ψ, whereas, the subalgebra A= k[g1, . . . , gn]

of R is the homogeneous coordinate ring of the image of Ψ. In fact, A is

isomorphic to the special fiber ring F(I) =R(I)/mR(I) for m equal to the

maximal homogeneous ideal m = (x1, . . . , xs) of R. The ringsR(I) and F(I)

are known as blowup rings associated to I. In this paper we relate geometric

properties of Ψ, algebraic information about the homogeneous coordinate

ring A of the image, and the bihomogeneous coordinate ring R(I) of the

graph.

If Ψ is a morphism (that is, if I is primary to the maximal homogeneous

ideal m of R), then the degree of Ψ : Ps−1k → Im Ψ is equal to ds−1/e(A),

where e(A) is the multiplicity of the standard-graded k-algebra A. We prove,

for instance, that R(I) satisfies Serre’s condition Ri, for some i > 0, if and

only if A satisfies Ri−1 and Ψ is birational onto its image (that is, Ψ :

Ps−1k → Im Ψ has degree 1). Thus, in particular, Ψ is birational onto its

image if and only if R(I) satisfies R1. Furthermore, Ψ : Ps−1k → Im Ψ is a

birational morphism with a smooth image if and only if the Rees ring R(I)

has an isolated singularity. Even if the rational map Ψ is not a morphism,

if the dimension of Im Ψ is s− 1 (that is, if the Krull dimension of A is s),

then the degree of Ψ : Ps−1k → Im Ψ is equal to the multiplicity of the local

ring R(I)mR(I). Moreover, we are able to relate the degree of the map Ψ,

the degree of the image, and the j-multiplicity of the ideal I. Results of this

type were obtained before by Simis et al. [49], Validashti [52], Xie [53] and

by Jeffries et al. [32].

The j-multiplicity is a generalization of the classical Hilbert–Samuel

multiplicity that applies to ideals that are not necessarily zero-dimensional.

The notion was introduced by Achilles and Manaresi [1] and has found

applications in intersection theory and equisingularity theory. It is interest-

ing to find formulas for the j-multiplicity of classes of ideals [31, 32, 42].

Our formula serves this purpose if the degree of the map and of its image

are known. Conversely, we obtain the degree of the image of a rational
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map if the j-multiplicity can be computed, for instance by using residual

intersection techniques (see, e.g. [38]). We also express the degree of certain

dual varieties in terms of the j-multiplicity of Jacobian ideals.

The starting point for our investigation is the Eisenbud–Ulrich interpre-

tation [19] of the fibers of the morphism Ψ over the point p in Pn−1 in terms

of the corresponding generalized row of the homogeneous syzygy matrix for

[g1, . . . , gn]. This technique is explained and extended in Section 3; it also

plays a significant role in [16].

In Section 4, we prove an algebraic analogue of a consequence of Hurwitz’

theorem. Let r be the degree of the morphism Ψ : P1
k

// // Im(Ψ), which

at the level of coordinate rings corresponds to the embedding A ↪→ k[Rd].

Thus r is the degree of the field extension Quot(A)⊂Quot(k[Rd]). We show

that there exist homogeneous forms f1, f2 of degree r in R such that the

entries of the matrix ϕ are homogeneous polynomials in the variables f1
and f2. In particular, the ideal I is extended from an ideal in k[f1, f2].

Thus, replacing k[x1, x2] by k[f1, f2] we can reduce the nonbirational case

to the birational one. Furthermore, we provide an explicit description of

f1 and f2 in terms of ϕ. If q1 and q2 are general points in P1
k, then fi =

gcd(I1(piϕ)) with pi = Ψ(qi). This method gives an efficient algorithm for

reparameterizing the rational map Ψ.

In Section 5, we relate the birationality of Ψ to the shape of core(I),

the core of I, the intersection of all reductions of I. Since reductions, even

minimal ones, are highly nonunique, one uses the core to encode information

about all of them. The concept was introduced by Rees and Sally [46], and

has been studied further by Huneke and Swanson, by Corso, Polini, and

Ulrich, by Polini and Ulrich, and by Huneke and Trung [12–14, 27, 28, 44].

The core appears naturally in the contexts of Briançon–Skoda theorems

that compare the integral closure filtration with the adic filtration of an

ideal [6, 40]. Another aspect that makes the core very appealing is its

connection to adjoints and multiplier ideals, and, as discovered by Hyry

and Smith, to Kawamata’s conjecture on the nonvanishing of sections of

certain line bundles [29, 30]. We prove that if Ψ is birational onto its image

then core(I) is the adjoint ideal of Is and core(I) = (x1, . . . , xs)
sd−s+1. The

converse of this statement holds for s= 2. Indeed, if Im Ψ is a curve, Ψ is a

morphism, and ϕ is a homogeneous Hilbert–Burch matrix for the row vector

[g1, . . . , gn], then in 5.14 we prove the following result.
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Theorem. Statements (1)–(8) are equivalent.

(1) The morphism Ψ is birational onto its image.

(2) The Rees ring R(I) satisfies Serre’s condition (R1).

(3) One has the equality of canonical modules ωR(I) = ωR(md).

(4) One has the equality of endomorphism rings

EndR(I)(ωR(I)) = EndR(md)(ωR(md)).

(5) e(A) = d.

(6) core(I) = m2d−1.

(7) One has the equality of the core and an adjoint core(I) = adj(I2).

(8) The ideal core(I) is integrally closed.

Furthermore, statements (1)–(8) are all implied by

(9) gcd(column degrees of ϕ) = 1.

We highlight the fact that the integral closedness of the core of I,

which is a single graded component of the canonical module ωR(I), forces

the shape of the entire canonical module. Also, we emphasize that these

equivalent conditions may sometimes be read from numerical information

about a homogeneous presentation matrix ϕ for I (that is, from information

about the graded Betti numbers of the homogeneous ideal I in the ring

R= k[x1, x2]). In general, the sufficient condition (9) is far from necessary;

however, if I is generated by monomials, then condition (9) is equivalent to

conditions (1)–(8).

The fact that the core can detect geometric properties was already

apparent in the work of Hyry and Smith [29, 30] and in [20], where the

Cayley–Bacharach property of zero-dimensional schemes is characterized in

terms of the structure of the core of the maximal ideal of their homogeneous

coordinate ring. The equality core(I) = adj(Ig) (where g is the height of the

ideal I) has also been investigated by Hyry and Smith [29, 30] in their work

on the conjecture of Kawamata. Adjoints of ideals in regular domains were

introduced by Lipman [40], and in rings essentially of finite type over a field

of characteristic zero they coincide with multiplier ideals, which play an

important role in algebraic geometry due to their connection with vanishing

theorems [39]. For the core to be the adjoint of an ideal, it needs to be

integrally closed, which is always the case if R(I) satisfies Serre’s condition

R1 (see [44]). Surprisingly, however, in 5.14 the integral closeness of the core

is sufficient to guarantee the equality between the core and the multiplier

ideal.
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§2. Notation, conventions, and preliminary results

2.1. If I and J are ideals of a ring R, then the saturation of I with

respect to J is I : J∞ =
⋃∞
i=1(I : J i). Recall that I : J∞ is obtained from I

by removing all primary components whose radical contain J . We write gcd

to mean greatest common divisor. If I is a homogeneous ideal in k[x, y],

then we denote the gcd of a generating set of I by gcd(I); notice that this

polynomial generates the saturation I : (x, y)∞.

2.2. If R is a ring, then we write Quot(R) for the total ring of quotients

of R; that is,

Quot(R) = U−1R,

where U is the set of nonzerodivisors on R. If R is a domain, then the total

ring of quotients of R is usually called the quotient field of R. An extension

of domains A⊂B is called birational if A and B have the same quotient

field.

If A⊂B is an extension of domains so that Quot(B) is algebraic over

Quot(A), then we use the three notations

[B :A], rankA B, and [Quot(B) : Quot(A)]

interchangeably. Indeed, in this situation,

(2.2.1) Quot(A)⊗A B = Quot(B).

The rank of B as an A-module, denoted rankA B, is defined to be the

dimension of the left hand side of (2.2.1) as a vector space over Quot(A).

The dimension of the right side of (2.2.1), as a vector space over Quot(A),

is denoted [Quot(B) : Quot(A)].

2.3. If R is a Noetherian ring, M is a finitely generated R-module of

Krull dimension s, and a is an ideal of R with the Krull dimension of R/a

equal to zero, then the multiplicity of the R-module M with respect to the

ideal a is

ea(M) = s! lim
n→∞

λR(M/anM)

ns
,

where λR( ) represents the length of an R-module. If R is local with

maximal ideal m, then we often write e(M) or eR(M) in place of em(M).

Similarly, if R is a standard-graded algebra over a field (see 2.4) with

maximal homogeneous ideal m, and M is a graded R-module, then we
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often write e(M) or eR(M) in place of em(M). In either case, we call the

common value e(M) = eR(M) = em(M) the multiplicity of the R-module M ;

in particular, e(R) means eR(R).

2.4. Let R=
⊕

06i Ri be a Noetherian graded algebra and M be a

finitely generated graded R-module. It follows that

λR0(Mn) = λR


⊕
n6i

Mi⊕
n<i

Mi

 .

This nonnegative integer is the value of the Hilbert function of the R-module

M at n, denoted HFM (n).

Let k be a field. The graded algebra R=
⊕

06i Ri is a standard-graded k-

algebra if R0 is equal to k, R1 is a finitely generated R0-module, and R

is generated by R1 as an algebra over R0. If R is a standard-graded k-

algebra and M is a finitely generated, graded R-module with positive Krull

dimension s, then the multiplicity of M may be expressed in terms of Hilbert

functions:

eR(M) = (s− 1)! lim
n→∞

HFM (n)

ns−1
.

2.5. If R is a standard-graded k-algebra with maximal homogeneous

ideal m, then the multiplicity e(R) of the standard-graded k-algebra R is

equal to the multiplicity e(Rm) of the local ring Rm.

2.6. One important application of multiplicity is the following well-

known theorem of Nagata [41, 40.6]; see also [51, Exercise 11.8, Example

11.1.11]. If C is a Noetherian formally equidimensional local ring, then

e(C) = 1 if and only if C is a regular local ring. When we apply this result,

C is a one-dimensional Noetherian local domain and the hypothesis that C

be formally equidimensional is automatically satisfied.

2.7. We use the associativity formula for multiplicity; see for example,

[5, Corollary 4.6.8] or [51, Theorem 11.2.4]. Let R be a Noetherian ring, a

be an ideal of R with the Krull dimension of R/a equal to zero, and M be

a finitely generated R-module. Then

ea(M) =
∑
P

λRP
(MP )ea(R/P ),

where P varies over the prime ideals in the support of M with the property

that the Krull dimension of R/P is equal to the Krull dimension of M .
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The proof makes use of a filtration of M whose factors are cyclic modules

defined by prime ideals of R.

The following result is elementary. See [49, Proposition 6.1] for a more

sophisticated version and [5, Corollary 4.6.9] for a local version.

Observation 2.8. Assume A⊆B is a module-finite extension of standard-

graded k-algebras which also are domains. Then eB(B) = eA(A) rankA B.

Proof. One has eB(B) = eA(B) = eA(A) rankA B. The first equality

holds because B has the same Hilbert function independent of whether

B is viewed as an A-module or a B-module. The second equality is the

associativity formula for multiplicity.

2.9. A dominant rational map Ψ : X // Y of projective varieties

is birational if the induced map of function fields K(Y ) ↪→K(X) is an

isomorphism. In general, the degree of the rational map Ψ is the dimension

of the field extension [K(X) :K(Im Ψ)].

Remark 2.10. Let ψ :A→B be a homomorphism of standard-graded

k-algebras, where k is a field and A and B are domains. Assume that

ψ(Ai)⊂Bi for all i, and that ψ(A+) 6= 0. Then the degree of the rational

map Proj(ψ) : Proj(B)→ Proj(A) is [Quot(B) : Quot(ψ(A))].

Proof. According to 2.9, the degree of Proj(ψ) is defined to be [B(0) :

(ψ(A))(0)], where B(0) and (ψ(A))(0) are the subfields of Quot(B) and

Quot(ψ(A)), respectively, which consist of the homogeneous elements of

degree zero. Let a1 be an element of A1 with ψ(a1) 6= 0. It is easy to

see that ψ(a1) is transcendental over B(0), Quot(B) =B(0)(ψ(a1)), and

Quot(ψ(A)) = (ψ(A))(0)(ψ(a1)). It follows that

[B(0) : (ψ(A))(0)] = [Quot(B) : Quot(ψ(A))].

2.11. If R=
⊕

06i Ri is a graded ring and s is a positive integer, then

the sth Veronese ring of R is equal to R(s) =
⊕

06i Ris. One regrades the

Veronese ring in order to have the component of R(s) in degree i be Ris. The

sth Veronese of a graded module M =
⊕

Mi is formed in a similar manner:

M (s) =
⊕

Mis, with Mis having degree i.

2.12. Recall that the Rees algebra R(I) of an ideal I in a commutative

ring R is the graded subalgebra R[It] of the polynomial ring R[t]. If R

has a distinguished maximal ideal m (that is, if R is graded with maximal
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homogeneous ideal m or if R is local with maximal ideal m), then the special

fiber ring of I is R(I)⊗R R/m.

In the typical situation in the present paper, the ring R will be a standard-

graded polynomial ring over a field k, and I will be a homogeneous ideal of R

generated by homogeneous forms of the same degree d, and, after regrading,

the k-subalgebra k[Id] of R will be the coordinate ring of a projective variety.

In this case, there is a k-algebra isomorphism from the projective coordinate

ring k[Id], to the special fiber ring F(I). Indeed,

R(I)

(( ((
k[Id]∼= k[Idt]

* 


88

∼= // R(I)⊗R R/m = F(I)

where m is the maximal homogeneous ideal of R.

2.13. Let J ⊂ I be ideals in a commutative Noetherian ring R. The

following conditions are equivalent:

(a) there exists a nonnegative integer m with JIm = Im+1, and

(b) the Rees algebra R(I) is finitely generated as a module over R(J).

When these conditions occur, one says that J is a reduction of I or I is

integral over J . (For details, see, for example, [51, 8.21, 1.25, 1.1.1, 1.2.1].)

2.14. If R is a Noetherian domain, then the ring S is an S2-ification of R

if R⊂ S ⊂Quot(R), S is module-finite over R, S satisfies Serre’s condition

(S2) as an R-module, and for each s ∈ S, the ideal R :R s of R has height

at least 2. It follows from [23, 2.3] that the S2-fication of R is unique and

from [23, 2.7] that if R has a canonical module ωR then EndR(ωR) is the

S2-ification of R.

2.15. The concept of “generalized row ideals” appears widely in the

literature; see, for example, [18, 19, 21]. Let M be a matrix with entries in

a k-algebra and p be a nonzero row vector with entries from k, where k is

a field. A generalized row of M is the product pM . If pM is a generalized

row of M , then the ideal I1(pM) is called a generalized row ideal of R.

2.16. Let X be a topological space. We say that a general point of X

has a certain property if there exists a dense, open subset U of X so that

every point of U has the property.
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§3. Fibers, multiplicity, and row ideals

Data 3.1. Let k be an infinite field and Ψ : Ps−1k
// Pn−1k be a ratio-

nal map defined by k-linearly independent homogeneous forms g1, . . . , gn of

degree d in R= k[x1, . . . , xs], a standard-graded polynomial ring over k in

s variables with maximal homogeneous ideal m, I be the homogeneous ideal

(g1, . . . , gn) in R, and ϕ be a homogeneous syzygy matrix of [g1, . . . , gn].

Let S = k[T1, . . . , Tn] be a standard-graded polynomial ring over k in

n variables. The map Ψ corresponds to the k-algebra homomorphism

ψ : S→R, which sends Ti to gi. Let A be the image k[Id] of this homomor-

phism and B be the Veronese ring k[Rd]. After regrading, we view A⊂B as

standard-graded k-algebras. Notice that A is the homogeneous coordinate

ring of the image of Ψ. Notice also that, according to Remark 2.10, [B :A]

is the degree of the rational map Ψ.

Observation 3.2. Adopt the data of 3.1. If I is m-primary then ds−1 =

e(A)[B :A].

Proof. The hypothesis that the ideal I is m-primary forces the ring

extension A⊂B to be module-finite; since mdm ⊂ I for some m, hence

Bm =A1Bm−1. Observation 2.8 yields e(A)[B :A] = e(B). On the other

hand from the Hilbert function of B one sees e(B) = ds−1.

As in [19] we define the fibers of the rational map Ψ to be the following

schemes.

Definition 3.3. Adopt the data of 3.1. Let p be a rational closed point

in Pn−1k and let P ∈ Proj(S) be the homogeneous prime ideal corresponding

to p. The fiber of Ψ over p, (denoted Ψ−1(p)), is the scheme Proj (R/(PR :R
I∞)).

Remarks 3.4. (1) Definition 3.3 gives the correct notion of fiber as a

set. Indeed, since the ideal I is the extension to R of the homogeneous

maximal ideal of S, the prime ideals of Proj (R/(PR :R I
∞)) correspond

to the primes of Proj (R) that contract to the prime P of Proj (S). In

particular, the rational closed points of Proj (R/(PR :R I
∞)) correspond to

the points in the domain of Ψ that map to the point p of Pn−1k .

(2) If p is the point [α1 : · · · : αn] of Pn−1k , then P is the prime ideal

(3.4.1) P = I2

([
α1 . . . αn
T1 . . . Tn

])
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of S, and PR and PB are the extensions of P to the rings R and B,

respectively, under the ring homomorphisms:

R

S
ψ
// A

incl
??

incl ��
B

incl

OO

where incl is the inclusion map. So, in particular, the ideals PR and PB

both are generated by the 2× 2 minors of

(3.4.2) I2

([
α1 . . . αn
g1 . . . gn

])
.

Remark 3.5 shows that, not surprisingly, the fiber of Ψ, as defined in

Definition 3.3, does not change when the rational map Ψ is composed with

a t-uple embedding. Furthermore, if the point is general, then the fiber of

Ψ does not change when Ψ is composed with a birational map.

Remark 3.5. Adopt the data of 3.1 and let Q be the homogeneous

prime ideal in R which corresponds to the rational point q in Ps−1k .

(1) If q is any point in the domain of the rational map Ψ, then the ideals

(Q ∩A)R :R m∞ and (Q ∩A(t))R :R m∞ of R are equal for all positive

integers t, where A(t) denotes the t-Veronese subring of A.

(2) Let C be a standard-graded k-algebra with A⊂ C ⊂B and assume that

C is birational over A. If q is a general rational point in Ps−1k , then the

ideals (Q ∩A)R :R m∞ and (Q ∩ C)R :R m∞ of R are equal.

Proof.

(1) It suffices to show that (Q ∩A)R and (Q ∩A(t))R are equal locally at

any homogeneous relevant prime ideal of R that contains either ideal.

Any such prime ideal contracts to Q ∩A in A, and Q ∩A is a relevant

prime ideal of A because q is in the domain of Ψ. Therefore, the two

ideals Q ∩A and (Q ∩A(t))A of A coincide locally at Q ∩A.

(2) In a similar manner it suffices to show that the two ideals Q ∩ C and

(Q ∩A)C are equal locally at the prime ideal Q ∩A of A. To see this,
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notice that AQ∩A = CQ∩A because the extension A⊂ C is birational

and the point q is general.

In the next few results we impose the hypothesis that the Krull dimension

of the ring A of Data 3.1 is s. One could also say that the ideal I has maximal

analytic spread. This hypothesis holds when I is m-primary. Indeed, in this

case, B is finitely generated as an A-module, as was observed in the proof of

Observation 3.2; hence, A and B have the same dimension. One advantage

of the hypothesis dimA= s is that the rings C ⊂A⊂B all have the same

Krull dimension for any Noether normalization C of A and this allows for

multiplicity calculation involving these rings.

In the next proposition we show that for a general k-rational point q in

Ps−1k the multiplicity of the fiber over Ψ(q) coincides with the degree of

the field extension Quot(A)⊂Quot(B). Notice that the rational map Ψ is

defined at such a point q and that Ψ(q) is general in the image of Ψ.

Proposition 3.6. Adopt Data 3.1 and assume that the Krull dimension

of A is equal to s. Then the equation

[B :A] = e(R/(pR :R I
∞))

holds, where p is the homogeneous prime ideal in A of Ψ(q) for a general

rational point q in Ps−1k .

Proof. No harm is done if we assume that k is algebraically closed because

the hypotheses and conclusions remain unchanged under this change of base.

The rational map Proj(R) // Proj(A) is defined at general points

q and their images p, which correspond to prime ideals p, are general in

Proj(A). Since A and B have the same Krull dimension, the field extension

Quot(A)⊂Quot(B) is algebraic and therefore finite. Since p is general, the

Generic Freeness Lemma implies that Bp is free as an Ap-module. Therefore,

Bp is a finitely generated Ap-module and

[Quot(B) : Quot(A)] = µAp(Bp) = λAp(B ⊗A k(p)).

The ring B ⊗A k(p) is Artinian and therefore B is equal to the direct product

×q′Bq′/pBq′ , where q′ varies over all primes in Proj(B) with q′ ∩A= p.

Therefore,

λAp(B ⊗A k(p)) =
∑
q′

λAp(Bq′/pBq′).
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Since Bp is a finitely generated Ap-module, the field extension

Quot(A/p)⊂Quot(B/q′) is algebraic, and therefore A/p and B/q′ have

the same Krull dimension. Thus the rings A/p and B/q′ are standard-

graded one-dimensional domains over the algebraically closed field k, hence

both are polynomial rings in one variable. Since the inclusion A/p⊂B/q′
is homogeneous, it then follows that it is actually an equality. Therefore,

k(p) = k(q′) and we obtain

λAp(Bq′/pBq′) = λBq′ (Bq′/pBq′).

Since Proj(B/pB)' Proj(R/pR), there exists a unique Q′ ∈ Proj(R) with

Q′ ∩A= p corresponding to each q′ and furthermore

λBq′ (Bq′/pBq′) = λRQ′ (RQ′/pRQ′).

In summary we obtain

[Quot(B) : Quot(A)] =
∑
q′

λAp(Bq′/pBq′) =
∑
Q′

λRQ′ (RQ′/pRQ′).

Let mA denote the homogeneous maximal ideal of A. Notice that mAR= I

and recall that dimA/p is one. It follows that

{Q′ |Q′ ∈ Proj(R),Q′ ∩A= p} = {Q′ |Q′ ∈ Proj(R), p⊂Q′,mA 6⊂Q′}

= {Q′ |Q′ ∈ Proj(R), pR⊂Q′, I 6⊂Q′}

= Proj(R) ∩ V (pR :R I
∞).

The rings R/Q′ are polynomial rings in one variable for every prime ideal

Q′ in the above set. In particular, these prime ideals correspond to the

minimal primes of maximal dimension of the ring R/(pR :R I
∞). Now the

associativity formula for multiplicity implies that∑
Q′

λRQ′ (RQ′/pRQ′) = e(R/(pR :R I
∞)),

which completes the proof.

In the next corollary we make use of a Noether normalization C of A to

compute the multiplicity of A and express it in terms of the field degree

[A :B] and of the multiplicity of a ring defined by a colon ideal in R.
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Corollary 3.7. Let k be an infinite field, R= k[x1, . . . , xs] be a

standard-graded polynomial ring over k in s variables, I be a homogeneous

ideal in R generated by forms of degree d, A be the subring k[Id], and B be

the Veronese subring k[Rd]. Assume that the Krull dimension of A is equal

to s and let f1, . . . , fs−1 be general k-linear combinations of homogeneous

minimal generators of I. Then

e(A) =
1

[B :A]
· e
(

R

(f1, . . . , fs−1) :R I∞

)
.

Proof. Let f1, . . . , fs be general k-linear combinations of homogeneous

minimal generators of I. Let C = k[f1, . . . , fs]. Since A has dimension s, the

homogeneous ring extension C ⊂A is module-finite and C is a polynomial

ring. Hence [A : C] = e(A) by Observation 2.8, for instance.

We have the inclusion of domains

C ⊂A⊂B.

We compute the field degree [B : C] in two different ways. First,

[B : C] = [B :A] · e(A).

Next, we wish to apply Proposition 3.6 to express [B : C]. By the general

choice of f1, . . . , fs, we may assume that [0 : . . . : 0 : 1] is a general point of

Proj(C)' Ps−1k . The homogeneous prime ideal of C corresponding to this

point is p = (f1, . . . , fs−1)C. Therefore, Proposition 3.6 shows that

[B : C] = e

(
R

(f1, . . . , fs−1) :R (fs)∞

)
.

On the other hand,

(f1, . . . , fs−1) :R (fs)
∞ = (f1, . . . , fs−1) :R I

∞

because fs is a general k-linear combination of the homogeneous minimal

generators of I. The proof is complete.

We promised in the introduction to relate the degree of the rational

map Ψ : Ps−1k
// im Ψ of Data 3.1, the degree of the image, and the

j-multiplicity of the ideal I. The relation is

j(I) = d[B :A]e(A).
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A very quick proof of this formula is available in the present situation.

Another proof of this formula, in a more general setting, is given in

Theorem 5.3.

Corollary 3.8. Adopt the data of 3.1. Then

j(I) = d[B :A]e(A).

Proof. According to [53, 2.5] (see also [1, 3.8] and [42, 3.6])

j(I) = λR

(
R

((f1, . . . , fs−1) :R I∞, fs)

)
,

in the language of Corollary 3.7. On the other hand, fs is regular on

R/(f1, . . . , fs−1) :R I
∞, and fs is a homogeneous element of R of degree

d; so,

λR

(
R

((f1, . . . , fs−1) :R I∞, fs)

)
= d · e

(
R

(f1, . . . , fs−1) :R I∞

)
,

and the assertion follows from Corollary 3.7.

We now relate the fibers of the morphism Ψ of Data 3.1 to the generalized

row ideals of the presentation matrix ϕ of I. This material is taken from

[19]. For a point p ∈ Pn−1k the ideal I1(pϕ) is well defined: one may use any

representative of p when computing the matrix product pϕ.

Observation 3.9. Adopt Data 3.1. If P is the homogeneous prime ideal

in S which corresponds to the rational point p in Pn−1k , then the ideals

PR : I∞ and I1(pϕ) : I∞ of R are equal.

Proof. Let p= [α1 : · · · : αn] with αi in k. Recall the generating sets given

in (3.4.1) and (3.4.2) for the ideals P and PR of S and R, respectively. Let χ

be an invertible matrix with entries in k and (0, . . . , 0, 1) = (α1, . . . , αn)χ.

Define [g′1, . . . , g
′
n] = ggg′ by

(3.9.1) ggg′ = [g1, . . . , gn]χ.

The entries of ggg′ generate I and ϕ′ = χ−1ϕ is a homogeneous syzygy matrix

for ggg′. One consequence of this last statement is the fact that the bottom

row of ϕ′ generates the ideal (g′1, . . . , g
′
n−1) : g′n. On the other hand,[

α1 . . . αn
g1 . . . gn

]
χ=

[
0 . . . 0 1
g′1 . . . g′n−1 g′n

]
;
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and the ideal of 2× 2 minors of a matrix is unchanged by row and column

operations; therefore, PR is generated by (g′1, . . . , g
′
n−1). We now see that

(3.9.2) I1(pϕ) = I1([0, . . . , 0, 1]ϕ′) = (g′1, . . . , g
′
n−1) : g′n = PR : I;

hence, I1(pϕ) : I∞ = (PR : I) : I∞ = PR : I∞.

Recall that the degree of a subscheme of projective space is the multi-

plicity of its homogeneous coordinate ring.

Corollary 3.10. Adopt the data of 3.1. Let p be a rational point in

Pn−1k .

(1) If k is algebraically closed, then p is in the image of Ψ if and only if

I1(pϕ) : I∞ 6=R.

(2) If p is in the image of Ψ, then the degree of the fiber of Ψ over p is

equal to the multiplicity of R/(I1(pϕ) : I∞).

(3) If the Krull dimension of A is equal to s and p= Ψ(q) for q a general

point in Ps−1k , then e(R/(I1(pϕ) : I∞)) = [Quot(B) : Quot(A)].

Proof. For part (1) we use Observation 3.9, Remark 3.4(1) and the fact

that the ideal I1(pϕ) : I∞ is not the unit ideal if and only it has dimension

at least one. Item (2) follows from Observation 3.9. To prove item (3) we

apply Observation 3.9 and Proposition 3.6.

More information about the rational map Ψ of Data 3.1 may be read

from ϕ when I is an m-primary ideal. In this case, Ψ is actually a morphism

and the image of Ψ is a closed subscheme of Pn−1k . Even more information

can be read when s= 2. In this case the saturation of the row ideal I1(pϕ)

is the ideal generated by the gcd of the entries of the product matrix pϕ

and the image of Ψ is a curve C.

Corollary 3.11. Adopt the data of 3.1. In addition assume that I is

m-primary and s= 2. Let C be the image of Ψ. The following statements

hold.

(1) The point p is on the curve C if and only if gcd(I1(pϕ)) is not in k.

(2) If p is on the curve C, then the multiplicity of the fiber of Ψ over p is

equal to

deg(gcd(I1(pϕ))).

(3) If p= Ψ(q) for q a general point in P1
k, then deg(gcd(I1(pϕ))) =

[Quot(B) : Quot(A)].
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(4) All entries of the matrix ϕ have degree at least [Quot(B) : Quot(A)].

Proof. Items (1)–(3) follow from Corollary 3.10. As for item (4), notice

that each column of ϕ contains a nonzero element, hence the linear space

V = {[β1, . . . , βn] ∈ kn |
∑

βiϕij = 0}

is a proper linear subspace of Pn−1k . Because g1, . . . , gn are k-linearly

independent the image of Ψ cannot be contained in V . Thus if q is a general

point in P1
k every entry in the product pϕ= Ψ(q)ϕ is nonzero. Now item (4)

follows from (3).

§4. Reparameterization

Data 4.1. (1) Let R= k[x1, x2] be a standard-graded polynomial ring

over an infinite perfect field k with maximal homogeneous ideal m, I be a

height two ideal of R which is generated by homogeneous forms of the same

degree d, A and B be the k-subalgebras A= k[Id] and B = k[Rd] of R, and

r be the degree of the field extension Quot(A)⊂Quot(B). View A and B as

standard-graded k-algebras with maximal homogeneous ideals mA and mB,

respectively. Let e= e(A).

(2) Let g1, . . . , gn be homogeneous forms in R of degree d which minimally

generate the ideal I and consider the morphism Ψ : P1
k

// Pn−1k which

is defined by these forms; that is, Ψ sends the point q of P1
k to the point

[g1(q) : · · · : gn(q)] ∈ Pn−1k . The corresponding homomorphism of k-algebras

is ψ : S = k[T1, . . . , Tn]→R, which sends Ti to gi, for each i.

(3) Let ϕ be a minimal homogeneous Hilbert–Burch matrix for the row

vector [g1, . . . , gn]. In other words, there exist shifts Dj and a unit u in k

so that

(4.1.1) 0→
n−1⊕
j=1

R(d−Dj)
ϕ

// R(−d)n
[g1,...,gn]

// R

is a minimal homogeneous resolution of R/I and gi is equal to u(−1)i times

the determinant of ϕ with row i deleted, for 1 6 i6 n.

In this section, we prove an algebraic analogue of a consequence of Hur-

witz’ theorem. Let r be the degree of the morphism Ψ : P1
k

// // Im(Ψ),
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which at the level of coordinate rings corresponds to the embedding A ↪→
k[Rd]. Thus r is the degree of the field extension Quot(A)⊂Quot(k[Rd]). We

show that there exist homogeneous forms f1, f2 of degree r in R such that

the entries of the matrix ϕ are homogeneous polynomials in the variables f1
and f2. In particular, the ideal I is extended from an ideal in k[f1, f2]. Thus,

replacing k[x1, x2] by k[f1, f2], we can reduce the nonbirational case to the

birational one. Furthermore, we provide an explicit description of f1 and f2
in terms of ϕ. If q1 and q2 are general points in P1

k, then fi = gcd(I1(piϕ))

with pi = Ψ(qi).

The first half of the present section is devoted to the proof of the

main result, Theorem 4.2. In the second half of the section, beginning

with Corollary 4.5, we use Theorem 4.2 to reduce the general (that is,

nonbirational) case to the birational one.

Theorem 4.2. Adopt the data of 4.1. If q1 and q2 are general points in

P1
k, then A⊂ k[f1, f2], where fi = gcd(I1(piϕ)) with pi = Ψ(qi).

The proof of Theorem 4.2 involves a number of steps. Before getting

started we record some numerical information. In preparation for the first

step in the proof of Theorem 4.2, we record a result from [36, Corollary 5.2].

Recall that a standard-graded Cohen–Macaulay k-algebra C over a field k

with homogeneous maximal ideal mC is said to have minimal multiplicity

if its multiplicity has the smallest possible value, namely, e(C) = µ(mC)−
dim(C) + 1.

Proposition 4.3. Let k be a perfect field and A⊂B a homogeneous

integral extension of standard-graded k-domains. Further assume that A is

normal and Cohen–Macaulay. If B has minimal multiplicity, then so does A.

Claim 4.4. Adopt the data of 4.1. Theorem 4.2 holds if the ring A is

normal.

Proof. Apply Proposition 4.3. In the present situation, A and B are

normal of dimension 2 and therefore Cohen–Macaulay, and B has minimal

multiplicity since d= e(B) = µ(mB)− 1. It follows that A has minimal

multiplicity as well, namely,

e= µ(mA)− 1 = µ(I)− 1 = n− 1.

We conclude that the syzygy matrix ϕ has size e+ 1× e. Each entry in

column j of ϕ is a form of degree Dj , in the language of (4.1.1), and,
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according to Corollary 3.11(4), Dj > r. The gi have degree d and each one of

them is the determinant of an e× e minor of ϕ; thus, d=
∑e

j=1 Dj > er = d,

where the last equality follows from Observation 3.2. We conclude that each

entry of ϕ is a homogeneous form of degree r.

Let q1, . . . , qe+1 be general points in P1
k. Hence the points

Ψ(q1), . . . ,Ψ(qe+1) are general on the curve C = Im Ψ, and since C is

nondegenerate in Pe, it follows that Ψ(q1), . . . ,Ψ(qe+1) span Pe. In other

words, the (e+ 1)× (e+ 1) scalar matrix Γ, whose rows are Ψ(qi), is

invertible. We apply Corollary 3.11(3) to see that each gcd(I1(Ψ(qi)ϕ)) is

a form in R of degree r. Write fi = gcd(I1(Ψ(qi)ϕ)). Degree considerations

show that

(4.4.1) Ψ(qi)ϕ= fi · λi,

where λi is a vector of scalars. It follows that

(4.4.2) Γϕ=DΛ,

where D is the diagonal matrix whose diagonal entries are the forms

f1, . . . , fe+1, and Λ is the (e+ 1)× e scalar matrix whose rows are the

λi. We notice that Λ has maximal rank e because ϕ does.

Let q be another general point in P1. Write

(4.4.3) Ψ(q)ϕ= fλ,

as in (4.4.1), where f is a form of degree r in R and λ is a row vector of

scalars from k. There is an e× (e− 1) matrix of scalars ∆ so that λ∆ = 0

and ∆ has full rank e− 1. Combine (4.4.3), the definition of Ψ as given

in 4.1(2), and (4.4.2) to see that

0 = fλ∆ = Ψ(q)ϕ∆ = [g1(q), . . . , ge+1(q)]Γ
−1DΛ∆.

The point q in P1 is general; so the product [g1(q), . . . , ge+1(q)]Γ
−1 is a row

vector of nonzero scalars and the product [g1(q), . . . , ge+1(q)]Γ
−1D is equal

to [f1, . . . , fe+1]D
′, where D′ is an invertible diagonal matrix of scalars.

Thus,

0 = [f1, . . . , fe+1]D
′Λ∆,

where D′Λ∆ is an (e+ 1)× (e− 1) matrix of scalars of rank e− 1. We

conclude that the vector space V spanned by the homogeneous forms

f1, . . . , fe+1 has dimension at most two. Select a generating set fi, fj for V .
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Every entry of the Hilbert–Burch matrix ϕ is an element of the ring k[fi, fj ]

(as can be seen from (4.4.2)); hence A= k[Id]⊂ k[fi, fj ] and the proof of

Claim 4.4 is complete.

Next we are ready to prove Theorem 4.2.

Proof. We prove the theorem by reducing to the normal case. The

integral closure A of A in Quot(A) is a graded k-subalgebra of B, though

not necessarily standard-graded. However, A is a finitely generated graded

module over the standard-graded k-algebra A and hence there exists a

positive integer s such that the t-Veronese subring of the integral closure of

A, denoted A
(t)

, is standard-graded for all t> s. We observe that A
(t)

=A(t).

We apply Claim 4.4 to A(s). For general points q1 and q2 in P1
k we obtain

forms f̃1 and f̃2 such that A(s) ⊂ k[f̃1, f̃2]. Let Qi be the prime ideals in R

corresponding to qi. We have

f̃iR = ((Qi ∩A(s))R) : m∞

= ((Qi ∩A(s))R) : m∞ = ((Qi ∩A)R) : m∞ = fiR,

where the first and last equality follow from Observation 3.9 (and 2.1)

and the second and third equality hold due to Remark 3.5. We conclude

that f̃ik = fik and therefore A(s) ⊂ k[f1, f2]. In the same manner we obtain

A(s+1) ⊂ k[f1, f2]. Hence for every nonzero homogeneous element α in A we

have

α=
αs+1

αs
∈Quot(k[f1, f2]).

On the other hand, α is integral over A(s), hence integral over k[f1, f2]. We

conclude that α ∈ k[f1, f2] since k[f1, f2] is normal.

Corollary 4.5. Adopt the data of 4.1. Let f1 and f2 as in Theorem 4.2.

(1) The elements f1, f2 are a regular sequence of forms of degree r in R.

(2) The ring R′ = k[f1, f2] is a polynomial ring in the variables f1 and f2.

After regrading, we view R′ as a standard-graded k-algebra.

(3) The vector space Id is a subset of R′ and the ideal I ′ = IdR
′ is generated

by forms of degree d/r in R′.

(4) The extension A= k[I ′d/r]⊂ k[R′d/r] is birational.

(5) The ring R is a free R′-module of rank r2 and I = I ′R.

(6) There exists a minimal homogeneous Hilbert–Burch matrix for the row

vector [g1, . . . , gn] whose entries are in the ring k[f1, f2].
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Proof. The forms f1 and f2 have degree r according to Corollary 3.11(3).

From Theorem 4.2 we obtain Id ⊂R′ = k[f1, f2]. In particular, I ⊂ (f1, f2)R

because I = IdR. It follows that f1, f2 form a regular sequence in R and

hence R is a free module over R′ = k[f1, f2], necessarily of rank r2. Parts

(1) and (5) are established. At this point, items (2), (3), and (6) are clear.

To prove (4) we use the following diagram, where the relevant field degrees

are displayed:

R
r2

R′

d/r

k[Rd]

d

k[R′d/r]

A

r

The diagram shows [k[R′d/r] :A] = 1.

In the following corollary we gather important numerical consequences of

Theorem 4.2.

Corollary 4.6. Adopt the data of 4.1.

(1) [B :A] | deg[ϕ]ij.

(2) [B :A] | gcd(column degrees of ϕ).

(3) If gcd(column degrees of ϕ) = 1, then A⊂B is a birational extension;

in other words, Ψ is birational onto its image.

(4) If every entry of ϕ has the same degree and that degree is a prime

integer, then the morphism Ψ is birational onto its image if and only if

µ(I1(ϕ)) > 3.

Proof. Items (1) and (2) follow from items (1)–(6) of Corollary 4.5.

Item (3) is now clear. Item (4) is [16, 0.11].

Observation 4.7. Adopt the data of 4.1 and assume that I is a monomial

ideal. Then

[B :A] = gcd(column degrees of ϕ).
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Proof. We may assume that gi = xaiyd−ai with 0 = a1 < a2 < · · ·<
an = d. Hence in the language of (4.1.1),

Dj = aj+1 − aj for 1 6 j 6 n− 1.

On the other hand, as is well known,

[R :A]Z = I2

(
a1 a2 . . . an

d− a1 d− a2 . . . d− an

)
.

After row and column operations on the matrix, this determinantal ideal

becomes

d · I2
(

0 a2 − a1 . . . an − an−1
1 0 . . . 0

)
= d · gcd(D1, . . . , Dn−1)Z.

It follows that

[B :A] =
[R :A]

d
= gcd(D1, . . . , Dn−1) = gcd(column degrees of ϕ).

Remark 4.8. Adopt the data of 4.1. If I is a monomial ideal

gcd(column degrees of ϕ) = 1 ⇐⇒ A⊂B is a birational extension.

However, the direction (⇐) is far from true if the ideal I is not monomial;

see, for example, Corollary 4.6(4) or all of [16].

The following theorem summarizes some of the results of the present

section that were used in [16]. It was recorded as [16, Theorem 0.10]. (The

present statement is the correct one.)

Theorem 4.9. Let R be the standard-graded polynomial ring k[x, y],

with k an infinite perfect field, I be a height two ideal of R generated by forms

g1, . . . , gn of degree d, and ϕ be a homogeneous Hilbert–Burch matrix for

the row vector [g1, . . . , gn]. If A and B are the standard-graded k-algebras

A= k[Id] and B = k[Rd], r is the degree of the field extension [Quot(B) :

Quot(A)], and e is the multiplicity of A, then the following statements hold.

(1) re= d.

(2) The morphism P1
k→ Pn−1k , which is given by q 7→ [g1(q) : · · · : gn(q)], is

birational onto its image if and only if e= d.
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(3) There exist forms f1 and f2 of degree r in R such that A⊂ k[f1, f2].

In particular, I is extended from an ideal in k[f1, f2] in the sense

that I = (I ∩ k[f1, f2])R. Furthermore, we can choose fi = gcd(I1(piϕ))

where pi = [g1(qi) : · · · : gn(qi)] for general points q1 and q2 in P1
k.

Proof. Item (1) is Observation 3.2; (2) follows from (1) and the definition

of birationality; and (3) is Theorem 4.2 and Corollary 4.5.

§5. Rees rings

Data 5.1. Let R be a standard-graded domain over a field k, of dimension

s, with maximal homogeneous ideal m. Let I be a homogeneous ideal in R

generated by forms of degree d, A be the ring k[Id], and B be the Veronese

ring k[Rd]. After regrading, we view A⊂B as standard-graded k-algebras.

In this section, we relate properties of the extension A⊂B to properties of

the corresponding inclusions of Rees algebras R(I)⊂R(md). The extension

of Rees algebras has the advantage that it is automatically birational.

Remark 5.2. Adopt the data of 5.1. The injective map of graded k-

algebras

A∼= k[Idt] ↪→R[It] =R(I)

induces an isomorphism between the ring A and the special fiber ring

R(I)/mR(I); see, for example, (2.12). The ring A is a domain; hence, mR(I)

is a prime ideal. Since dimR(I) is equal to s+ 1 (see, for example, [51,

5.1.4]), we obtain

dimA= s+ 1− dimR(I)mR(I).

In the next result we show that the degree of the morphism Ψ : Ps−1k −→
Im Ψ is equal to the multiplicity of the local ring R(I)mR(I). In addition,

we relate the degree of the morphism Ψ, the degree of the image, and the

j-multiplicity of the ideal I. The notion of j-multiplicity and the importance

of this result is discussed in the introduction and in Corollary 3.8.

Theorem 5.3. Adopt the data of 5.1. If the Krull dimension of A is

equal to s, then

e(R(I)mR(I)) = [B :A] and j(I) = d · [B :A] · e(A).

Proof. Inside the Rees ring R :=R(I) =R[It]⊂R[t] we consider the k-

subalgebra A′ = k[Idt], which is isomorphic to A. Write K for the quotient
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field of A′. We notice that R⊗A′ K is a standard-graded K-algebra with

maximal homogeneous ideal m(R⊗A′ K) and (R⊗A′ K)m(R⊗A′K) is equal

to RmR. Therefore, the local ring RmR and the standard-graded K-algebra

R⊗A′ K have the same multiplicity and the same Krull dimension. This

dimension is one by Remark 5.2.

Let g be a nonzero homogeneous element of Id. Notice that g is a

homogeneous nonzerodivisor of degree d in the one-dimensional standard-

graded K-algebra R⊗A′ K. We obtain

e(R⊗A′ K) = e((R⊗A′ K)(d)) = [(R⊗A′ K)(d) :K[g]]

=
1

d
[(R⊗A′ K) :K[g]]

=
1

d
[R[t] :A[t]].

The last equality holds because

Quot(K[g]) = Quot(k[Idt, g]) = Quot(k[Id, t]) = Quot(A[t])

and Quot(R⊗A′ K) = Quot(R[t]). Now we conclude that

e(R mR) = e(R⊗A′ K) =
1

d
[R :A] = [B :A].

This concludes the proof of the first equality.

The second equality follows from [49, 6.1(a) and 3.4]. Here we give a self-

contained proof. We write G := grI(R) =R/IR for the associated graded

ring of I. Notice that G/mG ∼=R/mR∼=A. In particular, mG is a prime ideal

in G and GmG is Artinian, because A is a domain and dimA= s= dim G.

The j-multiplicity of I is

j(I) = e(0 :G m
∞).

Since SuppG(0 :G m
∞) = V (mG), the associativity formula for multiplic-

ity 2.7 gives

e(0 :G m
∞) = λGmG ((0 :G m

∞)mG) · e(G/mG) = λ(GmG) · e(A).

We conclude that

j(I) = λ(GmG) · e(A).

(The same equality was proved in [32, the proof of 3.1].)
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If g 6= 0 is an element of Id as above, then gt ∈R \mR, hence I/g =

It/gt⊂R. It follows that IR mR = gR mR, which gives

GmG ∼=R mG/(g).

Now

λ(GmG) = λ(RmG/(g)) = e((R⊗A′ K)/(g)) = d · e(R⊗A′ K)

= d · e(RmR) = d · [B :A].

We conclude that j(I) = d · [B :A] · e(A).

In the next corollary we express the degree of certain dual varieties in

terms of the j-multiplicity of Jacobian ideals.

Corollary 5.4. Let k be an algebraically closed field of characteristic

zero, let X = V (f)⊂ Pn−1k be a reduced and irreducible hypersurface of

degree d > 1, and assume that the dual variety X ′ ⊂ Pn−1
′

k is nondeficient,

that is, is a hypersurface as well. Let R denote the homogeneous coordinate

ring of X ⊂ Pn−1k , and I = (∂f/∂x1, . . . , ∂f/∂xn)R its Jacobian dual. Then

deg X ′ = j(I)/(d− 1).

Proof. We apply the notation of Data 5.1 to the present setting. The

ideal I is generated by forms of degree d− 1, and the algebra A is the

homogeneous coordinate ring of X ′ ⊂ Pn−1
′

k . According to [33, Theorem 4] or

[43, Proposition 3.3], the extension A⊂B is birational, that is, [B :A] = 1.

Now Theorem 5.3 shows that j(I) = (d− 1)deg X ′.

Corollary 5.5. Adopt the data of 5.1. Let J be a reduction of I

generated by s forms of degree d. If the Krull dimension of A is equal to s,

then

e(A) =
e(R(J)mR(J))

e(R(I)mR(I))
.

Remark. If k is infinite, then I has a reduction generated by s forms

of degree d.

Proof. Notice that k[Jd] is a homogeneous Noether normalization of

A= k[Id]. Therefore, e(A) = [k[Id] : k[Jd]]. On the other hand,

[k[Id] : k[Jd]] =
[B : k[Jd]]

[B : k[Id]]
=
e(R(J)mR(J))

e(R(I)mR(I))
,
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where the last equality follows from Theorem 5.3 applied to the two ideals

J and I, respectively.

As a consequence we obtain the following numerical criterion for bira-

tionality in terms of the Rees ring or the special fiber ring, respectively.

Corollary 5.6. Adopt the data of 5.1. The following statements are

equivalent.

(1) The ring extension A⊂B is birational, that is, [B :A] = 1.

(2) The ring R(I)mR(I) is a discrete valuation ring.

(3) The ring A has dimension s and e(A) = e(R(J)mR(J)), where J is a

reduction of I generated by s forms of degree d.

Proof. Notice that if the ring extension A⊂B is birational, then A and

B have the same transcendence degree over k and therefore, dimA= dimB

= s. Furthermore, dimR(I)mR(I) = 1 if and only if dimA= s according to

Remark 5.2. Now the asserted equivalences follow from Theorem 5.3 and

Corollary 5.5.

More can be said if the rational map Ψ of data of 3.1 is a morphism, or

equivalently, if the ideal I is m-primary. A crucial statement in the following

corollary is the statement about canonical modules. Indeed, cores, adjoints,

and S2-fications are all constructed using the canonical module of the Rees

ring.

Remark 5.7. If I is an m-primary ideal generated by forms of degree d,

then the ideal md is integral over I. Hence the ring extension

R(I)⊂R(md)

is not only birational, but also module-finite. Thus applying the functor

−∨ = HomR(I)(−, ωR(I)) induces a containment of the canonical modules

ωR(md) ⊂ ωR(I),

and evaluating −∨ twice yields an inclusion of the S2-ifications

EndR(I)(ωR(I))⊂ EndR(md)(ωR(md)).

Applying −∨ once more to last inclusion returns the previous one. In

particular, one of the two last inclusions is an equality if and only if the

other is.
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Corollary 5.8. Adopt the data of 3.1. In addition, assume that I is

m-primary and the field k is infinite. Statements (1)–(5) are equivalent.

(1) The morphism Ψ is birational onto its image, that is, [B :A] = 1.

(2) The Rees ring R(I) satisfies Serre’s condition (R1).

(3) ωR(I) = ωR(md).

(4) EndR(I)(ωR(I)) = EndR(md)(ωR(md)).

(5) e(A) = ds−1.

Furthermore, statements (1)–(5) all imply

(6) gradedcore(I) = core(I) = core(md) = m(d−1)s+1 = adj(Is).

(7) If R(I) satisfies Serre’s property (S2), then R(I) is Cohen–Macaulay.

Proof. Since I is m-primary the ring A has Krull dimension s. In

particular, mR(I) is a prime ideal of height one. If Q is any other height one

prime ideal of R(I), then Q does not contain m and hence does not contain

I. It follows thatR(I)Q is regular. ThusR(I) satisfies Serre’s condition (R1)

if and only if R(I)mR(I) is a discrete valuation ring. Now the equivalence of

(1) and (2) follows from Corollary 5.6.

To see the equivalence of (2) and (3) notice that R(md) is the integral

closure of R(I). Hence R(I) satisfies Serre’s condition (R1) if and only

if the R(I)-module R(md)/R(I) has codimension at least two, which in

turn is equivalent to the equality ωR(I) = ωR(md). The second equivalence

is obtained by analyzing the long exact sequence of Ext•R⊗kS
(−, ωR⊗kS)

associated to the short exact sequence

0−→R(I)−→R(md)−→R(md)/R(I)−→ 0

and bearing in mind that R(md) is Cohen–Macaulay. The equivalence of (3)

and (4) is explained in Remark 5.7.

To see that (5) is equivalent to the other statements we apply Corol-

lary 5.6. We may assume that k is infinite. It suffices to show the equality

e(R(J)mR(J)) = ds−1 for the ideal J of Corollary 5.6. Since I is m-primary,

the ideal J is generated by a regular sequence of s forms of degree d. There-

fore, [R : k[Jd]] = ds and then e(R(J)mR(J)) = [B : k[Jd]] = ds−1 according to

Theorem 5.3.

We now show that (2) implies (6). We will repeatedly use the fact from

[45, 2.1] that the core of m-primary ideals localizes. The first equality

follows from [12, 4.5] as I is generated by forms of the same degree.

Recall that the Rees ring R[It] and the extended Rees ring R[It, t−1] have

isomorphic projective spectra. Hence if the Rees ring satisfies R1, then so
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does Proj(R[It, t−1]). It follows that R[It, t−1] satisfies R1 as well because

it suffices to consider prime ideals containing t−1 and because the ideal

(It, t−1)R[It, t−1] has height s+ 1> 1. One uses the argument that (2)

implies (3) to see that the R1 property of the extended Rees ring implies

the bigraded isomorphism

ωR[It,t−1]
∼= ωR[mdt,t−1].

By [44, 2.2] and [20, 1.2] the core can be recovered from the canonical module

of the extended Rees ring. Therefore, core(I) = core(md), which is the second

equality in (6). The third equality follows from [13, 4.2]. Finally, one has

m(d−1)s+1 = adj(mds) by [40, 1.3.2(c)] and adj(mds) = adj (Is) because mds

is integral over Is.

To see (7), notice that R(I) is normal, hence R(I) =R(md). The last

ring is Cohen–Macaulay because it is a direct summand of R(m), which is

a Cohen–Macaulay ring and a finitely generated module over R(md).

The canonical module and the S2-ification of R(md) that appear in

Corollary 5.8 are known explicitly.

Remark 5.9. Let R= k[x1, . . . , xs] be a standard-graded polynomial

ring in s variables over a field k, with maximal homogeneous ideal m. Let d

be a positive integer and write s− 1 = qd+ r where q and r are nonnegative

integers with r < d. The bigraded canonical module of the Rees ring of md

is

ωR(md) =

{
xs1tm

d−s+1R(md) if s6 d,

xs1t((1, t)
q−1,md−rtq)R(md) if d < s.

Furthermore, the natural inclusion R(md)⊂ EndR(md)(ωR(md)) is an equal-

ity.

Proof. From the presentation of the Rees ring

R(m) =
R[T1, . . . , Ts]

I2

([
x1 . . . xs
T1 . . . Ts

])
one computes

ωR(m)
∼= x21t(x1, x1t)

s−2R(m),

where the factor x21t is required to make the isomorphism bihomogeneous.

The Rees ring R(md) is obtained by taking the d-Veronese subring of R(m)
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with respect to the grading given by the T -variables and then rescaling

the grading. Since the Veronese functor commutes with taking canonical

modules, we obtain the desired statement.

The natural inclusion R(md)⊂ EndR(md)(ωR(md)) is an equality because

R(md) is Cohen–Macaulay and EndR(md)(ωR(md)) is its S2-ification.

In Corollaries 5.11 and 5.12 we extend the equivalence (1)⇐⇒ (2) from

Corollary 5.8. We begin by comparing the heights of conductors for certain

extensions of Rees rings and special fiber rings.

Proposition 5.10. Adopt the data of 5.1. In addition, assume that I is

m-primary. Let K be an ideal of R which is generated by forms of degree d

and which contains I. Write C for k[Kd]; so, A= k[Id]⊂ C = k[Kd]. Then

ht(R(I) :R(I) R(K)) = 1 + ht(A :A C) = 1 + ht(F(I) :F(I) F(K)).

Proof. Let A′ be the subring k[Idt] ofR(I) =R[Idt] and C ′ be the subring

k[Kdt] of R(K) =R[Kdt]. We first prove that the ideals

(5.10.1) rad(R(I) :R(I) R(K)) and rad((m, A′ :A′ C
′)R(I))

of R(I) are equal.

We prove the inclusion “⊃” for the ideals of (5.10.1). The Rees algebra

R(K) is a module-finite extension of R(I) because I is m-primary; hence,

I is a reduction of K and there is a positive integer t with KtKn ⊂ In
for all nonnegative integers n. It follows that Kt ⊂R(I) :R(I) R(K); and

therefore, m⊂ rad(R(I) :R(I) R(K)). Clearly, A′ :A′ C
′ ⊂R(I) :R(I) R(K)

because R(I) =R[A′] and R(K) =R[C ′].

We prove the inclusion “⊂” for the ideals of (5.10.1). Let α be a

bihomogeneous element of R(I) :R(I) R(K). In particular, α= ftj for

some homogeneous form f in I and some nonnegative integer j. If the

homogeneous form f has degree i+ dj as a polynomial in R= k[x1, . . . , xs],

then the bi-degree of α in R(I) is (i, j). If i is positive, then α is in

mR(I). If i= 0, then α is in A′ and α · C ′ ⊂ α · R(K)⊂R(I). One may

compute x-degree to see that α · C ′ is actually contained in A′. In either

case, α ∈ (m, A′ :A′ C
′)R(I).

Now that the assertion of (5.10.1) has been established, we complete

the proof of the result by applying the natural quotient homomorphism
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R(I)→R(I)/mR(I) to the ideals of (5.10.1). The ring R(I) is a domain

and a finitely generated algebra over a field, and the ideal mR(I) of R(I)

has height 1. Thus,

ht(R(I) :R(I) R(K))− 1 = ht
rad(R(I):R(I)R(K))

mR(I) = ht(m, A′ :A′ C
′) R(I)

mR(I)

= ht(F(I) :F(I) F(K)) = ht(A :A C).

Corollary 5.11. Adopt the data of 5.1. In addition, assume that R=

k[x1, . . . , xs] and I is m-primary. Let i6 s be a fixed positive integer. Then,

the following conditions are equivalent.

(a) R(I) satisfies the Serre condition (Ri).

(b) A satisfies the Serre condition (Ri−1) and A⊂B is a birational

extension.

Proof. When i= 1, the statement is (1)⇐⇒ (2) from Corollary 5.8.

Henceforth, we assume 2 6 i and that A⊂B is a birational extension. Thus,

both extensions R(I)⊂R(md) and A⊂B are module-finite and birational.

Moreover, dimR(I) = s+ 1 and R(md) has an isolated singularity. Hence

for any prime ideal Q of R(I) with dimR(I)Q 6 s, the ring R(I)Q is regular

if and only if R(I)Q =R(md)Q. This shows that R(I) satisfies (Ri) if and

only if i < ht(R(I) :R(I) R(md)).

Similarly, dimA= s and B has an isolated singularity. Hence again, Aq is

regular if and only if Aq =Bq for any prime ideal q of A with dimAq 6 s− 1.

We conclude that A satisfies (Ri−1) if and only if i− 1< ht(A :A B).

Apply Proposition 5.10, with K = md to complete the proof.

In the situation of Data 3.1, A is the homogeneous coordinate ring of the

image of Ψ. The following geometric consequence of Corollary 5.11 is now

immediate.

Corollary 5.12. Adopt the data of 3.1. In addition assume that I is

m-primary. Then the Rees ring R(I) has an isolated singularity if and only

if the image of Ψ is smooth and Ψ is birational onto its image.

For s= 2 we harvest consequences about canonical modules, S2-fications,

and cores for any ideal generated by forms of the same degree. Indeed,

when s= 2 we can pass by way of a faithfully flat descent to the birational

situation according to Corollary 4.5. We compute canonical modules, S2-

fications, and cores in the birational situation using Corollary 5.8 and
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Remark 5.9. We can pull these objects back because they are preserved

under faithfully flat extensions, whereas adjoint ideals are not preserved

under such extensions.

Theorem 5.13. Adopt the data of 5.1. In addition assume that

R= k[x1, x2] is a polynomial ring in two variables over an infinite field

and I is m-primary. Write r = [B :A] and let f1 and f2 be the forms in R

of degree r of Corollary 4.5. The following statements hold.

(1) ωR(I) = ωR((f1,f2)d/r)
= f21 t(f1, f2)

(d/r)−1R((f1, f2)
d/r).

(2) The S2-fication of the Rees ring R(I) is

End (ωR(I)) =R((f1, f2)
d/r),

which is a Cohen–Macaulay ring.

(3) e(A) = d/r.

(4) gradedcore(I) = core(I) = (f1, f2)
2(d/r)−1.

(5) If R(I) satisfies Serre’s property (S2), then R(I) is Cohen–Macaulay.

Proof. We write R′ = k[f1, f2] and I ′ = I ∩R′. By Corollary 4.5 the ideal

I is extended from I ′, that is, I = I ′R. We think of R′ as a standard-graded

polynomial ring in the variables f1 and f2 with maximal homogeneous ideal

m′. The ideal I ′ is generated by forms of degree d/r in this ring. From

Corollary 4.5, we know that the extension k[I ′d/r]⊂ k[R′d/r] is birational.

Now Corollary 5.8 and Remark 5.9 imply the asserted statements for the

ideals I ′ ⊂ (m′)d/r = (f1, f2)
d/rR′ in R′. To pass back to the ideals I = I ′R⊂

(f1, f2)
d/rR in R we use the fact that the map R′ ⊂R is flat with Gorenstein

fibers. We remind the reader that

core(I) = core(I ′R) = core(I ′)R,

according to [45, 2.1] and [12, 4.8].

Remarkably, if s= 2 then all the statements of Corollary 5.8 are equiva-

lent. More specifically, the integral closedness of the core, which is a single

graded component of the canonical module of the Rees ring, forces the shape

of the entire canonical module.

Corollary 5.14. Adopt the data of 3.1. In addition assume that I is m-

primary, s= 2, and the field k is infinite. Statements (1)–(8) are equivalent.

(1) The morphism Ψ is birational onto its image, that is [B :A] = 1.

(2) The Rees ring R(I) satisfies Serre’s condition (R1).
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(3) ωR(I) = ωR(md).

(4) EndR(I)(ωR(I)) = EndR(md)(ωR(md)).

(5) e(A) = d.

(6) core(I) = m2d−1.

(7) core(I) = adj(I2).

(8) The ideal core(I) is integrally closed.

Furthermore, statements (1)–(8) are all implied by

(9) gcd (column degrees of ϕ) = 1.

Proof. Corollary 5.8 shows that items (1)–(5) are equivalent and that

they imply (6) and (7). Item (8) follows immediately from (6) or (7).

We prove that (8) implies (1). From Theorem 5.13, we have core(I) =

(f1, f2)
2(d/r)−1. Hence core(I) is an m-primary ideal generated by 2d/r forms

of degree 2d− r. If such an ideal is integrally closed, it would have to be

m2d−r, which is minimally generated by 2d− r + 1 forms. This forces r = 1.

Finally we appeal to Corollary 4.6(3) to see that (9) implies (1).

Remarks 5.15.

(a) If I is generated by monomials then statements (1)–(9) of Corollary 5.14

are all equivalent according to Observation 4.7.

(b) When statements (1)–(8) of Corollary 5.14 hold, then it follows from

Corollary 5.8 that all of the equalities

gradedcore(I) = core(I) = core(md) = m2d−1 = adj(I2)

hold.

(c) Kohlhaas [34] has proven that if I ⊂ k[x1, . . . , xs] is an m-primary

monomial ideal which has a reduction generated by s monomials, then

the following three conditions are equivalent.

(2) R[It] satisfies Serre’s condition R1.

(7) core(I) = adj(Is).

(8) core(I) is integrally closed.
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