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LARGE CARDINALS AS PRINCIPLES
OF STRUCTURAL REFLECTION

JOAN BAGARIA

Abstract. After discussing the limitations inherent to all set-theoretic reflection principles
akin to those studied by A. Lévy et. al. in the 1960s, we introduce new principles of reflection
based on the general notion of Structural Reflection and argue that they are in strong agreement
with the conception of reflection implicit in Cantor’s original idea of the unknowability of
the Absolute, which was subsequently developed in the works of Ackermann, Lévy, Gödel,
Reinhardt, and others. We then present a comprehensive survey of results showing that
different forms of the new principle of Structural Reflection are equivalent to well-known
large cardinal axioms covering all regions of the large-cardinal hierarchy, thereby justifying
the naturalness of the latter.

In the framework of Zermelo–Fraenkel (ZF) set theory1 the universe V of
all sets is usually represented as a stratified cumulative hierarchy of sets
indexed by the ordinal numbers. Namely, V =

⋃
α∈OR Vα, where

V0 = ∅,

Vα+1 = P(Vα), namely the set of all subsets of Vα, and

V� =
⋃

α<�

Vα, if � is a limit ordinal.

This view of the set-theoretic universe justifies a posteriori the ZF axioms.
For not only all ZF axioms are true in V, but they are also necessary to
build V. Indeed, the axioms of Extensionality, Pairing, Union, Power-Set,
and Separation are used to define the set-theoretic operation given by

G(x) =
⋃

{P(y) : ∃z(〈z, y〉 ∈ x)}.

The axiom of Replacement is then needed to prove by transfinite recursion
that the operation V on the ordinals given by V (α) = G(V � α) is well-
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20 JOAN BAGARIA

defined and unique. ThenV (α) = Vα is as defined above. The two remaining
ZF axioms are easily justified: the axiom of Infinity leads the ordinal
sequence into the transfinite, and is the essence of set theory, for its negation
(namely, ZFC minus Infinity plus the negation of Infinity) yields a theory
mutually interpretable with Peano Arithmetic; and the axiom of Regularity
simply says, in the presence of the other ZF axioms, that there are no more
sets beyond those in V.

In the context of ZFC (ZF plus the Axiom of Choice), the Axiom of
Choice is clearly true in V, although it is not necessary to build V.

In ZF, or ZFC, other representations of V as a cumulative hierarchy are
possible. By “a cumulative hierarchy” we mean a union of transitive setsXα,
defined by transfinite recursion on a club, i.e., closed and unbounded, class
C of ordinals α, such that:

α ≤ � implies Xα ⊆ X�,
X� =

⋃

α<�

Xα, if � is a limit point of C, and

V =
⋃

α∈C
Xα.

For example, let Hκ, for κ an infinite cardinal, be the set of all sets
whose transitive closure has cardinality less than κ. Then the Hκ also
form a cumulative hierarchy indexed by the club class CARD of infinite
cardinal numbers. (Note however that to prove

⋃
κ∈CARD Hκ = V one

needs the Axiom of Choice to guarantee that every (transitive) set has a
cardinality, and therefore every set belongs to some Hκ.) Nevertheless, all
representations of V as a cumulative hierarchy are essentially the same,
in the following sense: Suppose V =

⋃
α∈C Xα and V =

⋃
α∈D Yα are two

cumulative hierarchies, where C and D are club classes of ordinals. Then
there is a club class of ordinalsE ⊆ C ∩D such thatXα = Yα, for allα ∈ E.

Every representation of V as a cumulative hierarchy is subject to the
reflection phenomenon, namely the fact that every sentence of the first-order
language of set theory that holds in V holds already at some stage Vα of the
hierarchy. Indeed, the Principle of Reflection of Montague and Lévy [20],
provable in ZF , asserts that every formula of the first-order language of set
theory true in V holds in some Vα . In fact, for every formula ϕ(x1, ... , xn)
of the language of set theory, ZF proves that there exists an ordinal α such
that for every a1, ... , an ∈ Vα,

ϕ(a1, ... , an) if and only if Vα |= ϕ(a1, ... , an).

Even more is true: for each natural number n, there is a Πn definable club
proper class C (n) of ordinals such that ZF proves that for every κ ∈ C (n),

https://doi.org/10.1017/bsl.2023.2 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.2


LARGE CARDINALS AS PRINCIPLES OF STRUCTURAL REFLECTION 21

every Σn formula ϕ(x1, ... , xn), and every a1, ... , an ∈ Vκ,

ϕ(a1, ... , an) if and only if Vκ |= ϕ(a1, ... , an).

That is, (Vκ,∈) is a Σn-elementary substructure of (V,∈), henceforth written
as (Vκ,∈) 	n (V,∈), or simply as Vκ 	n V .

The import of the Principle of Reflection is highlighted by the result
of Lévy [20] showing that the ZF axioms of Extensionality, Separation,
and Regularity, together with the principle of Complete Reflection (CR),
imply ZF. The CR principle is the schema asserting that for every formula
ϕ(x1, ... , xn) of the language of set theory there exists a transitive set A
closed under subsets (i.e., all subsets of elements of A belong to A) such that
for every a1, ... , an ∈ A,

ϕ(a1, ... , an) ↔ A |= ϕ(a1, ... , an).

Since the Vα are transitive and closed under subsets, this shows that the
reflection phenomenon, as expressed by the CR principle or the Reflection
Theorem (given the existence of the Vα’s), is not only deeply ingrained in
the ZF axioms, but it captures the main content of ZF.

In the series of papers [20–22] Lévy considers stronger principles of
reflection, formulated as axiom schemata, and he shows them equivalent
to the existence of inaccessible, Mahlo, and Hyper-Mahlo cardinals. The
unifying idea behind such principles is clearly stated by Lévy at the beginning
of [21]:

If we start with the idea of the impossibility of distinguishing, by
specific means, the universe from partial universes we shall be led to
the following axiom schemata, listed according to increasing strength.
These axiom schemata will be called principles of reflection since they
state the existence of standard models (by models we shall mean, for
the time being, models whose universes are sets) which reflect in some
sense the state of the universe.

This idea of reflection, namely the impossibility of distinguishing the
universe from its partial universes (such as the Vα), is also implicit in earlier
work of Ackermann [1], but it is Lévy who demonstrates how it can be used
to find new natural theories strengthening ZF. Indeed, in his review of Levy’s
article [22], Feferman [12] writes:

The author’s earlier work demonstrated very well that the diversity
of known set-theories could be viewed with more uniformity in the
light of various reflection principles, and that these also provided a
natural way to “manufacture” new theories. The present paper can
only be regarded as a beginning of a systematic attempt to compare
the results.
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22 JOAN BAGARIA

More recently, it has been argued by many authors that any intrinsic
justification of new set-theoretic axioms, beyond ZF, and in particular the
axioms of large cardinals, should be based on stronger forms of Lévy’s
reflection principles. In the next section we shall see some of these arguments,
as well as the limitations, clearly exposed by Koellner [16], inherent to all
reflection principles akin to those studied by Lévy. In Section 2 we will
introduce new principles of reflection based on what we call Structural
Reflection and will argue that they are in strong agreement with the notion
of reflection implicit in the original idea of Cantor’s of the unknowability of
the absolute, which was subsequently developed in the works of Ackermann,
Lévy, Gödel, Reinhardt, and others. The rest of the paper, starting with
Section 3, will present a series of results showing that different forms of the
new principles of Structural Reflection are equivalent to well-known large
cardinal axioms covering all regions of the large-cardinal hierarchy, thereby
justifying the naturalness of the latter.2

§1. Set-Theoretic axioms as reflection principles. Cantor [11, p. 205,
note 2] emphasizes the unknowability of the transfinite sequence of all
ordinal numbers, which he thinks of as an “appropriate symbol of the
absolute”:

The absolute can only be acknowledged, but never known, not even
approximately known.

This principle of the unknowability of the absolute, which in Cantor’s work
seems to have only a metaphysical (non-mathematical) meaning (see [13]),
resurfaces again in the 1950s in the work of Ackermann and Lévy, taking
the mathematical form of a principle of reflection. Thus, in Ackermann’s set
theory—in fact, a theory of classes—which is formulated in the first-order
language of set theory with an additional constant symbol for the class V of
all sets, the idea of reflection is expressed in the form of an axiom schema of
comprehension:

Ackermann’s Reflection: Let ϕ(x, z1, ... , zn) be a formula which does
not contain the constant symbol V.
Then for every �a = a1, ... , an ∈ V ,

∀x(ϕ(x, �a) → x ∈ V ) → ∃y(y ∈ V ∧ ∀x(x ∈ y ↔ ϕ(x, �a))).

A consequence of Ackermann’s Reflection is that no formula can define V,
or the class OR of all ordinal numbers, and is therefore in agreement

2The work presented in the following sections started over 10 years ago. After a talk I gave
in Barcelona in 2011 on large cardinals as principles of structural reflection, John Baldwin,
who attended the talk and was at the time editor of the BSL, encouraged me to write a survey
article on the topic for the Bulletin. Well, here it is. I’m thankful to him for the invitation and
I apologise for the long delay.
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with Cantor’s principle of the unknowability of the absolute. However,
Ackermann’s set theory (with Foundation) was shown by Lévy [19] and
Reinhardt [30] to be essentially equivalent to ZF, in the sense that both
theories are equiconsistent and prove the same theorems about sets. Thus
Ackermann’s set theory did not provide any real advantage with respect
to the simpler and intuitively clearer ZF axioms, and so it was eventually
forgotten.

Later on, in the context of the wealth of independence results in set
theory that were obtained starting in the mid-1960s thanks to the forcing
technique, and as a result of the subsequent need for the identification of new
set-theoretic axioms, Gödel (as quoted by Wang [36]), places Ackermann’s
principle (stated in a Cantorian, non-mathematical form) as the main source
for new set-theoretic axioms beyond ZFC:

All the principles for setting up the axioms of set theory should
be reducible to a form of Ackermann’s principle: The Absolute
is unknowable. The strength of this principle increases as we get
stronger and stronger systems of set theory. The other principles
are only heuristic principles. Hence, the central principle is the
reflection principle, which presumably will be understood better as
our experience increases.

Thus, according to Gödel, the fundamental guiding principle in setting up
new axioms of set theory is the unknowability of the absolute, and so any
new axiom should be based on such principle. Gödel’s program consisted,
therefore, in formulating stronger and stronger systems of set theory by
adding to the base theory, which presumably could be taken as ZFC, new
principles akin to Ackermann’s.

So the question is how should one understand and formulate the idea
of reflection embodied in Ackermann’s principle. Some light is provided by
Gödel in the following quote from [36, p. 285], where he asserts that the
undefinability of V should be the source of all axioms of infinity, i.e., all
large-cardinal axioms.

Generally I believe that, in the last analysis, every axiom of infinity
should be derivable from the (extremely plausible) principle that V is
undefinable, where definability is to be taken in [a] more and more
generalized and idealized sense.

One possible interpretation of Gödel’s principle of the undefinability of V
is as an unrestricted version of the Montague–Lévy Principle of Reflection.
Namely: every formula, with parameters, in any formal language with the
membership relation, that holds in V, must also hold in some Vα. This
has been indeed the usual way to interpret Gödel’s view of reflection as
a justification for the axioms of large cardinals. This is made explicit in
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24 JOAN BAGARIA

Koellner [16, p. 208], where he identifies reflection principles with generalized
forms of the Montague–Lévy Principle of Reflection. Namely,

Reflection principles aim to articulate the informal idea that the
height of the universe is “absolute infinite” and hence cannot
be “characterized from below”. These principles assert that any
statement true in V is true in some smaller Vα.

Moreover, he explicitly interprets Gödel’s view of reflection as a source of
large cardinals in this way [16, p. 208]:

Since the most natural way to assert that V is undefinable is via
reflection principles and since to assert this in a “more and more
generalized and idealized sense” is to move to languages of higher-
order with higher-order parameters, Gödel is (arguably) espousing
the view that higher-order reflection principles imply all large cardinal
axioms.

This kind of reflection, namely generalised forms of the Principle of
Reflection of Lévy and Montague allowing for the reflection of second-
order formulas, has been used to justify weak large-cardinal axioms, such
as the existence of inaccessible, Mahlo, or even weakly compact cardinals.
Let us see briefly some examples to illustrate how the arguments work.

The Principle of Reflection also holds with proper classes as additional
predicates. Namely, for every (definable, with set parameters) proper class A,
and every n, there is an ordinal α such that

(Vα,∈, A ∩ Vα) 	n (V,∈, A).

Thus, if we interpret second-order quantifiers over V as ranging only over
definable classes, then for each n, the following second-order sentence, call
it ϕn, is true in V :

∀A∃α(Vα,∈, A ∩ Vα) 	n (V,∈, A).

Now, applying reflection, ϕn must reflect to some Vκ. The second-order
universal quantifier in ϕn is now interpreted in Vκ, hence ranging over all
subsets of Vκ, which are now available in Vκ+1. So we have that for each
subset A of Vκ, there is some α < κ such that

(Vα,∈, A ∩ Vα) 	n (Vκ,∈, A).

If this is so, and even just for n = 1, then κ must be an inaccessible cardinal,
and this property actually characterises inaccessible cardinals [20]. Thus the
existence of an inaccessible cardinal follows rather easily from the reflection
of the single Π1

1 sentence ϕ1 to some Vκ.
Further, the following stronger form of reflection is provable in ZFC (as

a schema): if C is a definable club proper class of ordinals, then for every

https://doi.org/10.1017/bsl.2023.2 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.2


LARGE CARDINALS AS PRINCIPLES OF STRUCTURAL REFLECTION 25

proper class A, and every n, there is a club proper class of α in C such that

(Vα,∈, A ∩ Vα) 	n (V,∈, A).

Hence, for each n, the following Π1
1 sentence, with C as a second-order

parameter, holds in V (again, interpreting the universal second-order
quantifier as ranging over definable classes):

∀A∀�∃α > �(α ∈ C ∧ (Vα,∈, A ∩ Vα) 	n (V,∈, A)).

Applying reflection, there is κ such that for every subset A of Vκ there are
unboundedly many α in C ∩ κ such that

(Vα,∈, A ∩ Vα) 	n (Vκ,∈, A).

But since C is a club, κ ∈ C , and so (in the case of n ≥ 1) κ is an inaccessible
cardinal in C. Now consider the following Π1

1 sentence, which we have just
shown (using Π1

1 reflection) to hold in V :

∀C (C is a club subclass of ordinals → ∃κ(κ inaccessible ∧ κ ∈ C )).

Any cardinal that reflects the Π1
1 sentence consisting of the conjunction of

ϕ1 above with the last displayed sentence is an inaccessible cardinal � with
the property that every club subset of � contains an inaccessible cardinal,
i.e., � is a Mahlo cardinal.

Furthermore, if we are willing to assume that all Π1
1 sentences with second-

order parameters reflect, we may as well reflect this property of V. So,
consider the following Π1

2 sentence, which says that V reflects all Π1
1 sentences

with parameters,

∀A∀ϕ ∈ Π1
1∃α((V,∈, A) |= ϕ → (Vα,∈, A ∩ Vα) |= ϕ).

If Vκ reflects this sentence, then κ is a Π1
1-indescribable cardinal, i.e., a

weakly compact cardinal (see [14]). Similar arguments, applied to sentences
of order n, but only allowing first-order and second-order parameters, yield
the existence of Σmn and Πmn indescribable cardinals.

While the arguments just given may seem reasonable, or even natural,
we do not think they provide a justification for the existence of the large
cardinals obtained in that way. The problem is that the relevant second-
order statements are true in V only when interpreting second-order variables
as ranging over definable classes, yet when the statements are reflected to
someVα the second-order variables are reinterpreted as ranging over the full
power-set of Vα. It is precisely this transition from definable classes to the
full power-set that yields the large-cardinal strength. Thus, the fundamental
objection is that second-order reflection from V to some Vα , or to some set,
is always problematic because so is unrestricted second-order quantification
over V, as the full power-class of V is not available.
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26 JOAN BAGARIA

Nevertheless, even if one is willing to accept the existence of cardinals κ
that reflect n-th-order sentences, with parameters of order greater than 2,
one does not obtain large cardinals much stronger than the indescribable
ones. Indeed, to start with, and as first noted in [29], one cannot even have
reflection for Π1

1 sentences with unrestricted third-order parameters. For
suppose, towards a contradiction, that κ is a cardinal that reflects such
sentences. Let A be the collection {Vα : α < κ} taken as a third-order
parameter, i.e., as a subset of P(Vκ). Then the Π1

1 sentence

∀X∃x(X ∈ A→ X = x),

where X is a second-order variable and x is first-order, asserts that every
element of A is a set. The sentence is clearly true in (Vκ,∈, A), but false in
any (Vα,∈, A ∩ P(Vα)) with α < κ, because Vα belongs to A ∩ P(Vα) but
is not an element of Vα.

One possible way around the problem of second-order reflection with
third-order parameters is to allow such parameters, or even higher-order
parameters, but to restrict the kind of sentences to be reflected. This is
the approach taken by Tait [35]. He considers the class Γ(2) of formulas
which, in normal form, have all universal quantifiers restricted to first-order
and second-order variables and the only atomic formulas allowed to appear
negated are either those of first order or of the form x ∈ X , where x is a
variable of first order and X a variable of second order. Tait shows that
reflection at some Vκ for the class of Γ(2) sentences, allowing parameters of
arbitrarily high finite order, implies that κ is an ineffable cardinal (see [16]),
and that Vκ reflects all such sentences whenever κ is a measurable cardinal.
A sharper upper bound on the consistency strength of this kind of reflection
is given by Koellner [16, Theorem 9]. He shows that below the first �-Erdös
cardinal, denoted by κ(�), there exists a cardinal κ such that Vκ reflects all
Γ(2) formulas. The existence of κ(�) is, however, a rather mild large-cardinal
assumption, since it is compatible with V = L.

At this point, the question is thus whether reflection can consistently hold
(modulo large cardinals) for a wider class of sentences. But Koellner [16],
building on some results of Tait, shows that no Vκ can reflect the class of
formulas of the form ∀X∃Yϕ(X,Y,Z), where X is of third-order, Y is of
any finite order, Z is of fourth order, and ϕ has only first-order quantifiers
and its only negated atomic subformulas are either of first order or of the
form x ∈ X , where x is of first order and X is of second order. Other kinds
of restrictions on the class of sentences to be reflected are possible (see [26]
for the consistency of some forms of reflection slightly stronger than Tait’s
Γ(2)), but Koellner [16] convincingly shows that the existence of a cardinal κ
such that Vκ reflects any reasonable expansion of the class of sentences Γ(2),
with parameters of order greater than 2, either follows from the existence of
κ(�) or is outright inconsistent.
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These results seem to put an end to the program of providing an intrinsic3

justification of large-cardinal axioms, even for axioms as strong as the
existence ofκ(�), by showing that their existence follows from strong higher-
order reflection properties holding at some Vκ. In particular, the program
cannot even provide justification for the existence of measurable cardinals.
Thus, the conclusion is that if one understands reflection principles as
asserting that some sentences (even of higher order, and with parameters)
that hold in V must hold in some Vα, then reflection principles cannot
be used to justify the existence of large cardinals up to or beyond κ(�).
Moreover, as we already emphasized, a more fundamental problem with
the use of higher-order reflection principles is that either second-order
quantification over V is interpreted as ranging over definable classes, in
which case second-order reflection does not yield any large cardinals unless
one makes the dubious jump from definable classes to the full power-set, or
is ill-defined, as the full power-class of V does not exist.

1.1. A remark on the undefinability of V. Before we go on to propose a
new kind of reflection principle, let us take a pause to consider another
possible interpretation of Gödel’s principle of the undefinability of V as a
justification for large-cardinal axioms.

The statement that a set A is definable is usually understood in two different
senses:

(1) There is a formula ϕ(x) that defines A. That is, for every set a, a
belongs to A if and only if ϕ(a) holds. The formula ϕ may have
parameters, provided they are simpler than A, e.g., their rank is less
than the rank of A.

(2) A is the unique solution of a formula �(x). Again, � may have
parameters simpler than A.

There is, however, no essential difference between (1) and (2). For the
formula ϕ(x) defines a set A in the sense of (1) if and only if the formula
∀x(x ∈ y ↔ ϕ(x)) defines A in the sense of (2). But if A is a proper class,
then (1) and (2) are very different, even if only because (2) needs to be
reformulated to make any sense. If we understand definability as in (1), then
there are many formulas that define V, for instance the formula x = x. So,
the notion of undefinability of V can only be understood in the sense of (2),
once properly reformulated. To express that V is not the unique solution of
a formula, possibly with some sets as parameters, we need to make sense of
the fact that a formula is true of V, as opposed to being true in V.

Let LV be the first-order language of set theory expanded with a constant
symbol ā for every set a, and a new constant symbol v. Define the class T

3See [16] for a discussion on intrinsic versus extrinsic justification of the axioms of set
theory.
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of sentences of LV recursively as follows: ϕ belongs to T if and only if:

ϕ is of the form ā ∈ b̄ or ā ∈ v, for some sets a, b such that a ∈ b, or

ϕ is of the form ā = ā for some set a, or v = v, or
ϕ ≡ ¬�, and � does not belong to T , or
ϕ ≡ � ∧ 	, and both � and 	 belong to T , or
ϕ ≡ ∃y�(y), and there is a set a such that �(ā) belongs to T .

The idea is that if ϕ belongs to T , then ϕ is true in the structure

V̄ := 〈V ∪ {V },∈, V, 〈ā〉a∈V 〉,

where the constant v is interpreted as V. And conversely, if ϕ is a sentence
in the language LV that is true in V̄ , then ϕ ∈ T . Thus one may construe
the principle of undefinability of V, as expressed in Gödel’s quote above, as
follows:

Undefinability of V: Every ϕ ∈ T is true in some

V̄α := 〈Vα ∪ {Vα},∈, Vα, 〈ā〉a∈Vα 〉.
Of course, to express this principle in the first-order language of set theory
one needs to do it as a schema. Namely, for each n let Tn be the class of Σn
sentences of T , and let

Σn-Undefinability of V : Every ϕ ∈ Tn is true in some V̄α.

Given a Σn sentence ϕ of the language of set theory, where n ≥ 1, if it
is true in V, i.e., if |=n ϕ holds, then the sentence ϕv obtained from ϕ by
bounding all quantifiers by v belongs to Tn. Hence, by Σn-Undefinability
of V, ϕv is true in some V̄α, and therefore Vα |= ϕ. Thus Undefinability of
V directly implies the Principle of Reflection of Montague–Lévy (over the
theory ZF minus Infinity). Conversely, by induction on the complexity of ϕ,
it is easily shown that ZF proves Σn-Undefinability of V. Thus, to derive
stronger reflection principles based on the undefinability of V one needs to
understand “definability,” following Gödel’s quote above, in a “more and
more generalized and idealized sense.” One could expand the class T by
adding higher-order sentences that are true of V. However this will not lead
us very far. For if T ′ is any reasonable class of (higher-order) sentences
that are true of V, then Undefinability of V for the class T ′ will imply the
reflection, in the sense of Montague–Lévy, of all sentences in T ′. Therefore,
the limitations seen above of the extensions of the Montague–Lévy Principle
of Reflection to higher-order formulas apply also to these generalized forms
of Undefinability of V.
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§2. Structural Reflection. The main obstacle for the program of finding
an intrinsic justification of large-cardinal axioms via strong principles of
reflection lies, we believe, on a too restrictive interpretation of the notion
of reflection, namely the interpretation investigated by Tait, Koellner, and
others, according to which the reflection properties of V are exhausted by
generalized forms of the Montague–Lévy Principle of Reflection to higher-
order logics.

Let us think again about the notion of reflection as derived from the
Cantor–Ackermann principle of the unknowability of the absolute. A
different interpretation of this principle may be extracted from another
claim made by Gödel, as quoted in [36]:

The universe of sets cannot be uniquely characterized (i.e., dis-
tinguished from all its initial segments) by any internal structural
property of the membership relation in it which is expressible in any
logic of finite or transfinite type, including infinitary logics of any
cardinal number.

This quote does not immediately suggest that the uncharacterizability of V
should be interpreted in the sense of the Montague–Lévy kind of reflection.
Rather, what it seems to suggest is some sort of reflection, not (only) of
formulas, but of internal structural properties of the membership relation.
The quote does also state that the properties should be expressible in some
logic, and any reasonable logic would do. So maybe Gödel is not saying
here anything new, and he is simply advocating for a generalization of the
Montague–Lévy type of reflection to formulas belonging to any (reasonable)
kind of logic. But whatever the correct interpretation of Gödel’s quote above
may be, let us consider in some detail the idea of reflection of structural
properties of the membership relation. Thus, what one would want to reflect
is not the theory of V, but rather the structural content of V.

Whatever one might mean by a “structural property of the membership
relation,” it is clear that such a property should be exemplified in structures
of the form 〈A,∈, 〈Ri〉i∈I 〉, where A is a set and 〈Ri〉i∈I is a family of
relations on A, and where I is a set that may be empty. Moreover, any
such property should be expressible by some formula of the language of set
theory, maybe involving some set parameters. Thus, any internal structural
property of the membership relation would be formally given by a formula
ϕ(x) of the first-order language of set theory, possibly with parameters,
that defines a class of structures 〈A,∈, 〈Ri〉i∈I 〉 of the same type. As we
shall see later on there is no loss of generality in considering only classes of
structures whose members are of the form 〈Vα,∈, 〈Ri〉i∈I 〉. Now, Gödel’s
vague assertion (as quoted above) that V “cannot be uniquely characterized
(i.e., distinguished from all its initial segments) by any internal structural
property of the membership relation” can be naturally interpreted in the
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sense that no formula ϕ(x) characterizes V, meaning that some Vα reflects
the structural property defined byϕ(x). Let us emphasize that what is reflected
is not the formula ϕ(x), but the structural property defined by ϕ(x), i.e.,
the class of structures defined by ϕ(x). This is the crucial difference with
the Montague–Lévy type of reflection. The most natural way to make this
precise is to assert that there exists an ordinal α such that for every structure
A in the class (i.e., for every structure A that satisfies ϕ(x)) there exists a
structure B also in the class which belongs to Vα and is like A. Since, in
general, A may be much larger than any B in Vα, the closest resemblance of
B to A is attained in the case B is isomorphic to an elementary substructure
of A, i.e., B can be elementarily embedded into A. We can now formulate
(an informal and preliminary version of) the general principle of Structural
Reflection as follows:

SR: (Structural Reflection) For every definable, in the first-order language
of set theory, possibly with parameters, class C of relational structures
of the same type there exists an ordinal α that reflects C, i.e., for every
A in C there exist B in C ∩ Vα and an elementary embedding from B
into A.

Observe that when C is a set the principle becomes trivial.
We do not wish to claim that the SR principle is what Gödel had in

mind when talking about reflection of internal structural properties of the
membership relation, but we do claim that SR is a form of reflection that
derives naturally from the Cantor–Ackermann principle of unknowability
of the Absolute and is at least compatible with Gödel’s interpretation of this
principle.

In the remaining sections we will survey a collection of results showing the
equivalence of different forms of SR with the existence of different kinds of
large cardinals. Our goal is to illustrate the fact that SR is a general principle
underlying a wide variety of large-cardinal principles. Many of the results
have already been published [2–4, 7–9, 23] or are forthcoming [6], but some
are new (Theorems 4.1, 4.2, 4.5, and 4.7–4.9, Proposition 5.1, Theorem 5.11,
Proposition 5.17, and Theorems 5.18, 5.19, 5.21, and 7.6). Each of these
results should be regarded as a small step towards the ultimate objective
of showing that all large cardinals are in fact different manifestations of a
single general reflection principle.

§3. From supercompactness to Vopěnka’s Principle. We shall begin with
the SR principle, as stated above, which is properly formulated in the first-
order language of set theory as an axiom schema. Namely, for each natural
number n let
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Σn-SR: (Σn-Structural Reflection) For every Σn-definable, with parame-
ters, class C of relational structures of the same type there is an
ordinal α that reflects C.

Πn-SR may be formulated analogously. We may also define the lightface,
i.e., parameter-free versions (as customary we use the lightface types Σn and
Πn for that). Namely,

Σn-SR: (Σn-Structural Reflection) For every Σn-definable, without param-
eters, class C of relational structures of the same type there exists
an ordinal α that reflects C.

Similarly for Πn-SR.
A standard closing-off argument shows that Σn-SR is equivalent to the

assertion that there exists a proper class of ordinals α such that α reflects all
classes of structures of the same type that are Σn-definable, with parameters
in Vα. Also, Σn-SR is equivalent to the assertion that there exists an
ordinal α that reflects all classes of structures of the same type that are
Σn-definable, without parameters. Similarly for Πn-SR and Πn-SR. Thus,
for Γ a definability class (i.e., one of Σn, Πn, Σn, or Πn), let us say that an
ordinalα witnesses Γ-SR ifα reflects all classes of structures of the same type
that are Γ-definable (allowing for parameters in Vα, in the case of boldface
classes). Then, in the case of boldface classes Γ, Γ-SR holds if and only if
Γ-SR is witnessed by a proper class of ordinals.

The first observation is that, as the next proposition shows, Σ1-SR is
provable in ZFC. Recall4 that, for every n > 0, C (n) is the Πn-definable club
proper class of cardinals κ such that Vκ 	Σn V , i.e., Vκ is a Σn-elementary
substructure of V. In particular, every element of C (1) is an uncountable
cardinal and a fixed point of the � function.

Proposition 3.1. The following are equivalent for every ordinal α:

(1) α witnesses Σ0-SR.
(2) α witnesses Σ1-SR.
(3) α ∈ C (1).

Proof. The implication (2)⇒(1) is trivial. The implication (3)⇒(2) is
proved in [3], using a Löwenheim–Skolem type of argument.

To show that (1) implies (3), letα witness Σ0-SR and supposeϕ(a1, ... , an)
is a Σ1 sentence, with parameters a1, ... , an in Vα, that holds in V. Let C be
the Σ0-definable, with a1, ... , an as parameters, class of structures of the form

〈M,∈, {a1, ... , an}〉,

4See [2].
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where M is a transitive set that contains a1, ... , an. Let M be any transitive
set such thatM |= ϕ(a1, ... , an). By SR, there is an elementary embedding

j : 〈N,∈, {a1, ... , an}〉 → 〈M,∈, {a1, ... , an}〉,

where 〈N,∈ {a1, ... , an}〉 ∈ C ∩ Vα. Since j fixes a1, ... , an, by elementarity
N |= ϕ(a1, ... , an), and by upwards absoluteness for Σ1 sentences with
respect to transitive sets, Vα |= ϕ(a1, ... , an). This shows α ∈ C (1). �

Thus, Σ1-SR is provable in ZFC, and therefore does not yield any large
cardinals. But Π1-SR does, and is indeed very strong. The following theorem
hinges on Magidor’s characterization of the first supercompact cardinal as
the first cardinal that reflects the Π1-definable class of structures of the form
〈Vα,∈〉, α an ordinal [24].

Theorem 3.2 [2, 3]. The following are equivalent:

(1) Π1-SR.
(2) Σ2-SR.
(3) There exists a supercompact cardinal.

The proof of the theorem shows in fact that the following are equivalent
for an ordinal κ:

(1) κ is the least ordinal that witnesses SR for the Π1-definable class of
structures 〈Vα,∈〉, α an ordinal.

(2) κ is the least cardinal that witnesses Π1-SR.
(3) κ is the least cardinal that witnesses Σ2-SR.
(4) κ is the least supercompact cardinal.

The following global parametrized version then follows. Namely,

Theorem 3.3 [2, 3]. The following are equivalent:

(1) Π1-SR.
(2) Σ2-SR.
(3) There exists a proper class of supercompact cardinals.

The proof of the theorem also shows that if κ witnesses Π1-SR, then κ is
either supercompact or a limit of supercompact cardinals.

Some remarks are in order. First, the equivalence of Π1-SR and Σ2-SR, and
also of their boldface forms, is due to the following general fact. Given a Σn+1

definable (possibly with parameters, and with n > 0) class C of relational
structures of the same type, let C∗ be the class of structures of the form
〈Vα,∈, A〉, where α is the least cardinal in C (n) such that A ∈ Vα and Vα |=
ϕ(A), where ϕ(x) is a fixed Σn+1 formula that defines C. Then,

A ∈ C if and only if 〈Vα,∈, A〉 ∈ C∗.
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Now notice that C∗ is Πn definable, with the same parameters as C (see [2]).
Moreover, if a cardinal κ reflects the class C∗, then it also reflects C: for
if A ∈ C, let α be the least cardinal in C (n) such that 〈Vα,∈, A〉 |= ϕ(A),
where ϕ(x) is a fixed Σn+1 formula that defines C. Let j : 〈V�,∈, B〉 →
〈Vα,∈, A〉 be elementary with 〈V�,∈, B〉 ∈ C∗ ∩ Vκ. Then, since � ∈ C (n)

and V� |= ϕ(B), we have that B ∈ C and the restriction map j � A : A→ B
is an elementary embedding.

For P a set or a proper class and Γ a definability class, we shall write
Γ(P)-SR for the assertion that SR holds for all Γ-definable, with parameters
in P, classes of structures of the same type. Thus, e.g., Σn-SR is Σn(V )-SR,
and Σn-SR is Σn(∅)-SR. Our remarks above yield now the following:

Proposition 3.4. For P any set or proper class, the assertions Πn(P)-SR and
Σn+1(P)-SR are equivalent. In particular Πn-SR and Σn+1-SR are equivalent,
and so are Πn-SR and Σn+1-SR.

Second, the remarks above also show that for principles of Structural
Reflection of the form Γ(P)-SR the relevant structures to consider are those
of the form 〈Vα,∈, A〉, where A ∈ Vα. Let us say that a structure is natural
if it is of this form. Therefore, we may reformulate Γ-SR, for Γ a lightface
definability class, as follows:

Γ-SR: (Γ-Structural Reflection. Second version) There exists a cardinal κ
that reflects all Γ-definable classes C of natural structures, i.e., for
every A ∈ C there exist B ∈ C ∩ Vκ and an elementary embedding
j : B → A.

The version for Γ a boldface definability class being as follows:

There exists a proper class of cardinals κ that reflect all Γ-definable,
with parameters in Vκ, classes C of natural structures.

At the next level of definitional complexity, i.e., n = 2, we have the
following:

Theorem 3.5 [2, 3]. The following are equivalent:

(1) Π2-SR.
(2) There exists an extendible cardinal.

The proof of the theorem shows that the first extendible cardinal is
precisely the first cardinal that witnesses SR for one particular Π2-definable
class of natural structures. The parameterized version also holds:

Theorem 3.6 [2, 3]. The following are equivalent:

(1) Π2-SR.
(2) There exists a proper class of extendible cardinals.
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Moreover, if κ witnesses Π2-SR, then κ is either extendible or a limit of
extendible cardinals.

For the higher levels of definitional complexity we need the notion of
C (n)-extendible cardinal from [2, 3]: κ isC (n)-extendible if for every � greater
than κ there exists an elementary embedding j : V� → V
, some 
, with
crit(j) = κ, j(κ) > �, and j(κ) ∈ C (n). Note that the only difference with
the notion of extendibility is that we require the image of the critical point
to be in C (n). Also note that every extendible cardinal is C (1)-extendible. We
then have the following level-by-level characterizations of SR in terms of the
existence of large cardinals:

Theorem 3.7 [2, 3]. The following are equivalent for n ≥ 1:

(1) Πn+1-SR.
(2) There exists a C (n)-extendible cardinal.

Theorem 3.8 [2, 3]. The following are equivalent for n ≥ 1:

(1) Πn+1-SR.
(2) There exists a proper class of C (n)-extendible cardinals.

Similarly as in the case of supercompact and extendible cardinals,
the proofs of the theorems above actually show that the firstC (n)-extendible
cardinal is the first cardinal that witnesses SR for one single Πn+1-definable
class of natural structures. Also, if κ witnesses Πn+1-SR, then κ is either a
C (n)-extendible cardinal or a limit of C (n)-extendible cardinals.

Recall that Vopěnka’s Principle (VP) is the assertion that for every proper
class C of relational structures of the same type there exist A �= B in C such
that A is elementarily embeddable into B. In the first-order language of
set theory VP can be formulated as a schema. The following corollary to
the theorems stated above yields a characterization of VP in terms of SR.
Moreover, it shows that, globally, the lightface and boldface forms of SR
are equivalent.

Theorem 3.9 [2, 3]. The following schemata are equivalent:

(1) SR, i.e., Πn-SR for all n.
(2) Πn-SR for all n.
(3) There exists a C (n)-extendible cardinal, for every n.
(4) There is a proper class of C (n)-extendible cardinals, for every n.
(5) VP.

§4. Structural Reflection below supercompactness. We have just seen that
a natural hierarchy of large cardinals in the region between the first
supercompact cardinal and VP can be characterized in terms of SR. Now
the question is if the same is true for other well-known regions of the large
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cardinal hierarchy. Since Σ1-SR is provable in ZFC and Π1-SR implies
already the existence of a supercompact cardinal, if large cardinals weaker
than supercompact admit a characterization as principles of structural
reflection, then we need to look either for SR restricted to particular
(collections of) Π1-definable classes of structures, or for classes of structures
whose definitional complexity is between Σ1 and Π1 (e.g., Σ1-definability with
additional Π1 predicates), or for weaker forms of structural reflection. Let
us consider first the SR principle restricted to particular definable classes of
structures contained in canonical inner models.

4.1. Structural Reflection relative to canonical inner models. There is one
single class C of structures in L that is Π1-definable in V, without parameters,
and such that SR(C) is equivalent to the existence of 0�. Namely, let C be the
class of structures of the form 〈L�,∈, �〉, with � < � uncountable cardinals
(in V).

Theorem 4.1. The following are equivalent:

(1) SR(C).
(2) 0� exists.

Proof. (1) implies (2): Suppose that α reflects C. Pick V -cardinals
� < � with α ≤ �. By reflection, there are V -cardinals � ′ < � ′ < α and an
elementary embedding

j : 〈L� ′ ,∈, � ′〉 → 〈L�,∈, �〉.
Since j(� ′) = �, j is not the identity. Let κ be the critical point of j. Thus,
κ ≤ � ′ < � ′. Hence by Kunen’s Theorem [18] 0� exists.

(2) implies (1): Assume 0� exists. Let α be an uncountable limit cardinal
in V. We claim that α reflects C. For suppose 〈L�,∈, �〉 ∈ C with α ≤ � . Let
� ′ < � ′ < α be uncountable cardinals in V such that � ′ ≤ �. Let I denote
the class of Silver indiscernibles. Let j : I ∩ [� ′, � ′] → I ∩ [�, �] be order-
preserving and such that j(� ′) = � and j(� ′) = � . Then j generates an
elementary embedding

j : 〈L� ′ ,∈, � ′〉 → 〈L�,∈, �〉,
as required. �

The existence of 0� yields also the SR principle restricted to classes of
structures that are definable in L.

Theorem 4.2. If 0� exists, then SR(C) holds for every class C that is
definable in L, with parameters.

Proof. Fix C and a formula ϕ(x), possibly with ordinals α0 < ··· < αm
as parameters, that defines it in L. Let κ be a limit of Silver indiscernibles
greater than αm. We claim that κ reflects C. For suppose B ∈ C. Without
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loss of generality, B �∈ Lκ. Since 0� exists, there is an increasing sequence
of Silver indiscernibles i0, ... , in, in+1 and a formula �(y, z0, ... , zn), without
parameters, such that

B = {y : Lin+1 |= �(y, i0, ... , in)}.

Choose indiscernibles j0 < ··· < jn < jn+1 < κ, with αm < j0, and let

A = {y : Ljn+1 |= �(y, j0, ... , jn)}.

Thus A ∈ Lκ. Since L |= ϕ(B), we have that

L |= ∀x(∀y(y ∈ x ↔ Lin+1 |= �(y, i0, ... , in)) → ϕ(x)).

By indiscernibility,

L |= ∀x(∀y(y ∈ x ↔ Ljn+1 |= �(y, j0, ... , jn)) → ϕ(x)),

which implies L |= ϕ(A), i.e., A ∈ C.
Let j : L→ L be an elementary embedding that sends ik to jk , all k ≤
n + 1. Then by indiscernibility, the map j � A : A→ B is an elementary
embedding. �

However, the SR principle restricted to classes of structures that are
definable in L falls very short of yielding 0�, as we shall next show. Let
us recall the following definition:

Definition 4.3 [4]. A cardinal κ is n-remarkable, for n > 0, if for all � > κ
in C (n) and every a ∈ V�, there is �̄ < κ also in C (n) such that in V Coll(�,<κ)

there exists an elementary embedding j : V�̄ → V� with j(crit(j)) = κ and
a ∈ range(j).

A cardinal κ is 1-remarkable if and only if it is remarkable, in the sense of
Schindler (see [4] and Definition 7.2).

If 0� exists, then every Silver indiscernible is completely remarkable in L
(i.e., n-remarkable for every n > 0). Moreover, the consistency strength of
the existence of a 1-remarkable cardinal is strictly weaker than the existence
of a 2-iterable cardinal, which in turn is weaker than the existence of an
�-Erdös cardinal (see [4]).

A weaker notion than n-remarkability is obtained by eliminating from its
definition the requirement that j(crit(j)) = κ. So, let’s define:

Definition 4.4. A cardinal κ is almost n-remarkable, for n > 0, if for
all � > κ in C (n) and every a ∈ V�, there is �̄ < κ also in C (n) such that
in V Coll(�,<κ) there exists an elementary embedding j : V�̄ → V� with a ∈
range(j).

We say that κ is almost completely remarkable if it is almost-n-remarkable
for every n.
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Theorem 4.5. A cardinal κ is almost n-remarkable if and only if in
V Coll(�,<κ) κ witnesses SR(C) for every class C that is Πn-definable in V
with parameters in Vκ.

Proof. Assume κ is almost n-remarkable. Fix C and a Πn formula ϕ(x)
that defines it in V, possibly with parameters in Vκ. Suppose B ∈ C. In V,
let � ∈ C (n) be greater than the rank of B. Thus, V� |= ϕ(B). Since κ is
almost n-remarkable, there is �̄ < κ also inC (n) such that inV Coll(�,<κ) there
exists an elementary embedding j : V�̄ → V� with B ∈ range(j). Let A be
the preimage of B under j. So A ∈ Vκ. By elementarity of j, V�̄ |= ϕ(A).
Hence, since �̄ ∈ C (n), A ∈ C. Moreover, j � A : A→ B is an elementary
embedding.

Conversely, assume that in V Coll(�,<κ), κ witnesses SR(C) for every class
C that is Πn-definable in V with parameters in Vκ. Let C be the Πn-definable
class of structures of the form 〈Vα,∈, a〉 where α ∈ C (n) and a ∈ Vα. Given
� ∈ C (n) and a ∈ V�, in V Coll(�,<κ) there exists some 〈V�̄,∈, b〉 ∈ C together
with an elementary embedding

j : 〈V�̄,∈, b〉 → 〈V�,∈, a〉.
Since j(b) = a, a ∈ range(j). This shows κ is almost n-remarkable. �

Corollary 4.6. If κ is an almost completely remarkable cardinal in L, then
inLColl(�,<κ) κ witnesses SR(C) for all classes C of structures that are definable
in L with parameters in Lκ.

Similar arguments yield analogous results for X�, for every set of
ordinals X. Given a set of ordinals X, let CX be the class of structures of the
form 〈L� [X ],∈, �〉, where � and � are cardinals (in V) and sup(X ) < � < � .
Clearly, CX is Π1 definable with X as a parameter.

Theorem 4.7.

(1) SR(CX ) holds if and only if X� exists.
(2) If X� exists, then SR(C) holds for all classes C that are definable in
L[X ], with parameters.

These results suggest the following forms of SR restricted to inner models.
Let M be an inner model. Writing Mα for (Vα)M , consider the following
principle for Γ a lightface definability class:

Γ-SR(M): (Γ-Structural Reflection for M) There exists an ordinal α that
reflects every Γ-definable class C of relational structures of the
same type such that C ⊆M , i.e., for every A in C there exist
B in C ∩Mα and an elementary embedding j from B into A.
(Warning: j may not be in M.)

The corresponding version for a boldface Γ being as follows:
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There exists a proper class of ordinals α that reflect every
Γ-definable, with parameters in Mα , class C of relational
structures of the same type such that C ⊆M .

The last theorem shows that, for every set of ordinals X, the existence of X�

implies SR(L[X ]), i.e., Σn-SR(L[X ]), for every n.
Similar results may be obtained for other canonical inner models, e.g.,
L[U ], the canonical inner model for one measurable cardinal κ, where U is
the (unique) normal measure on κ inL[U ]. Let CU be the class of structures
of the form 〈L� [U ],∈, �〉, with � < � uncountable cardinals (in V). The
class CU is Π1-definable in V, with U as a parameter. By using well-known
facts about 0† due to Solovay (see [15] 21), and arguing similarly as in
Theorems 4.1 and 4.2, respectively, one obtains the following:

Theorem 4.8. The following are equivalent:

(1) SR(CU ) holds if and only if 0† exists.
(2) If 0† exists, then SR(C) holds for every class C that is definable in L[U ],

with parameters.

Also, similarly as in Theorem 4.7, one can obtain the analogous result for
X †, for every set of ordinals X. Namely, given a set of ordinals X, let CUX
be the class of structures of the form 〈L� [U,X ],∈, �〉, where � and � are
cardinals (in V) and sup(X ) < � < � . Then CUX is Π1-definable with U and
X as parameters.

Theorem 4.9.

(1) SR(CUX ) holds if and only if X † exists.
(2) If X † exists, then SR(C) holds for all classes C that are definable in
L[U,X ], with parameters.

Analogous results should also hold for canonical inner models for stronger
large-cardinal notions. For example, for the canonical inner model L[E] for
a strong cardinal, as in [17] or [27], and its sharp, zero pistol 0¶. Also for a
canonical inner model for a proper class of strong cardinals, as in [32], and
its sharp, zero hand grenade. For inner models for stronger large cardinal
notions, e.g., one Woodin cardinal, the situation is less clear, although
analogous results should hold given the appropriate canonical inner model
and its corresponding sharp.

§5. Product Structural Reflection. Recall that for any set S of relational
structures A = 〈A, ...〉 of the same type, the set-theoretic product

∏
S is the

structure whose universe is the set of all functions f with domain S such that
f(A) ∈ A, for every A ∈ S, and whose relations are defined point-wise.
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In this section we shall consider the following general product form of
structural reflection, which is a variation of the Product Reflection Principle
(PRP) introduced in [9]:

PSR: (Product Structural Reflection) For every definable class of rela-
tional structures C of the same type, 
, there exists an ordinal α
that product-reflects C, i.e., for every A in C there exists a set S of
structures of type 
 (although not necessarily in C) with A ∈ S and
an elementary embedding j :

∏
(C ∩ Vα) →

∏
S.

Similarly as in the case of SR (see Section 2), we may formally define PSR
as a schema. Thus, we say that an ordinal α witnesses Γ(P)-PSR (where
Γ is a definability class and P a set or a proper class) if α product-reflects
all classes C that are Γ-definable with parameters in P. Our remarks in
Section 2 also apply here. In particular, an ordinalα witnesses Πn-PSR if and
only if it witnesses Σn+1-PSR. Moreover, we obtain equivalent principles by
restricting to classes of natural structures. Thus, for Γ a lightface definability
class, we define:

Γ-PSR: (Γ-Product Structural Reflection) There exists an ordinal α that
product-reflects all Γ-definable classes C of natural structures.

The corresponding version for Γ boldface being as follows:

There exists a proper class of ordinals α that product-reflect all
Γ-definable, with parameters in Vα , classes C of natural struc-
tures.

As in [9, Proposition 3.2] one can show that every cardinal κ in C (1)

witnesses Σ1-PSR. The converse also holds, and in fact we have the following:

Proposition 5.1. For every n, if κ witnesses Πn-PSR, then κ ∈ C (n+1).

Proof. We shall prove the case n = 1. The general case follows by
induction, using a similar argument. The case n = 0 is similar to the case
n = 1, but simpler, as it suffices to consider a class of structures with domain
a transitive set (see the proof of Proposition 3.1). So, suppose ϕ(x, y) is a
Π1 formula with x, y as the only free variables, a ∈ Vκ, andV |= ∃xϕ(x, a).
Let C be the Π1-definable, with a as a parameter, class of structures of the
form Aα = 〈Vα,∈, a, {Rαϕ}ϕ∈Π1〉 with α ∈ C (1), and where {Rαϕ}ϕ∈Π1 is the
Π1 relational diagram for 〈Vα,∈, a〉, i.e., if ϕ(x1, ... , xn, a), a a constant
symbol, is a Π1 formula in the language of 〈Vα,∈, a〉, then

Rαϕ = {〈a1, ... , an〉 : 〈Vα,∈, a〉 |= “ϕ[a1, ... , an, a]”} .

Let � > κ be in C (2), so that V� |= ∃xϕ(x, a). By PSR there exists a set S
that contains A� and an elementary embedding
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j :
∏

α<κ

Aα →
∏
S.

Since A� |= ∃xϕ(x, a), we have R�ϕ �= ∅. Hence, since A� ∈ S,
∏
S �|= 〈Rαϕ〉Aα∈S = ∅,

and therefore, by elementarity of j,
∏

α<κ

Aα �|= 〈Rαϕ〉α<κ = ∅,

which implies thatAα |= Rαϕ �= ∅, for someα < κ. Hence,Aα |= ∃xϕ(x, a).
Note that, if ϕ(x, y) had been a bounded formula, instead of Π1, then

we would have, by upward absoluteness, thatAκ |= ∃xϕ(x, y), thus showing
thatκ ∈ C (1). Thus, sinceα, κ ∈ C (1), we have thatVα 	Σ1 Vκ, and therefore
Vκ |= ∃xϕ(x, a).

Now suppose Vκ |= ∃xϕ(x, a). Since κ ∈ C (1), by upward absoluteness,
V |= ∃xϕ(x, a). �

Recall that a cardinal κ is �-strong, where � > κ, if there exists
an elementary embedding j : V →M , with M transitive, crit(j) = κ,
j(κ) > �, and with V� contained in M. A cardinal κ is strong if it is
�-strong for every cardinal � > κ.

The following proposition is proved similarly as in [9, Proposition 3.3].

Proposition 5.2. If κ is a strong cardinal, then κ witnesses Π1-PSR.

Proof. Let κ be a strong cardinal and let C be a Π1-definable, with
parameters in Vκ, proper class of structures in a fixed relational language

 ∈ Vκ. Let ϕ(x) be a Π1 formula defining it.

Given any A ∈ C, let � ∈ C (1) be greater than or equal to κ and with
A ∈ V�.

Let j : V →M be an elementary embedding, with crit(j) = κ, V� ⊆M ,
and j(κ) > �.

By elementarity, the restriction of j to C ∩ Vκ yields an elementary
embedding

h :
∏

(C ∩ Vκ) →
∏

({X :M |= ϕ(X )} ∩ VMj(κ)).

Let S := {X :M |= ϕ(X )} ∩ VM
j(κ). Since A ∈ V� and ϕ(x) is Π1, by

downward absoluteness V� |= ϕ(A). Hence, since the fact that � ∈ C (1) is
Π1-expressible and therefore downwards absolute for transitive classes, and
sinceV� ⊆M , it follows thatV� 	Σ1 M and thereforeM |= ϕ(A). Moreover
A ∈ V� ⊆ VMj(κ). Thus, A ∈ S. �
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Since the Product Reflection Principle (PRP) introduced in [9] when
restricted to Π1-definable classes is an easy consequence of Π1-PSR, from
[9] we obtain the following:

Theorem 5.3. The following are equivalent:

(1) Π1-PSR.
(2) There exists a strong cardinal.

as well as its boldface version:

Theorem 5.4. The following are equivalent:

(1) Π1-PSR.
(2) There exists a proper class of strong cardinals.

This shows that strong cardinals are related to PSR as supercompact
cardinals are to SR (Theorems 3.2 and 3.3). For the higher levels of
definability, i.e., n > 1, the large cardinal notion that corresponds to Πn-
PSR, analogous to the notion of C (n)-extendible cardinal in the case of SR,
is the following:

Definition 5.5 [9]. For Γ a definability class and an ordinal �, a cardinal
κ is �-Γ-strong if for every Γ-definable (without parameters) class A there
is an elementary embedding j : V →M , with M transitive, crit(j) = κ,
V� ⊆M , and A ∩ V� ⊆ j(A).

A cardinal κ is Γ-strong if it is �-Γ-strong for every ordinal �.

As with the case of strong cardinals, standard arguments show (cf. [15]
26.7(b)) that κ is �-Γ-strong if and only if for every Γ-definable (without
parameters) class A there is an elementary embedding j : V →M , with M
transitive, crit(j) = κ, V� ⊆M , j(κ) > �, and A ∩ V� ⊆ j(A). As shown
in [9], every strong cardinal is Σ2-strong. Also, a cardinal is Πn-strong if and
only if is Σn+1-strong. Moreover, if n ≥ 1 and � ∈ C (n+1), then the following
are equivalent for a cardinal κ < �:

(1) κ is �-Πn-strong.
(2) There is an elementary embedding j : V →M , with M transitive,

crit(j) = κ, V� ⊆M , andM |= “� ∈ C (n).”

Similarly as in Proposition 5.2, one can prove the following (see [9] for
details):

Proposition 5.6. If κ is a Πn-strong cardinal, then κ witnesses Πn-PSR.

The following theorem then follows from the main result in [9]:

Theorem 5.7. The following are equivalent for n ≥ 1:

(1) Πn-PSR.
(2) There exists a Πn-strong cardinal.
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The corresponding boldface version also holds. Namely,

Theorem 5.8. The following are equivalent for n ≥ 1:

(1) Πn-PSR.
(2) There exists a proper class of Πn-strong cardinals.

Finally, for the PSR principle, the statement analogous to Vopěnka’s
Principle in the case of SR is the following:

Definition 5.9 [9]. Ord is Woodin if for every definableA ⊆ V there exists
some α which is A-strong, i.e., for every � there is an elementary embedding
j : V →M with crit(j) = α, � < j(α), V� ⊆M , and A ∩ V� = j(A) ∩ V� .

Note that if � is a Woodin cardinal (see [15] for the definition of
Woodin cardinal and its equivalent formulation in terms of A-strength),
then V� satisfies Ord is Woodin. The following equivalences then follow
(cf. Theorem 3.9):

Theorem 5.10 [9]. The following schemata are equivalent:

(1) PSR, i.e., Πn-PSR for all n.
(2) Πn-PSR for all n.
(3) There exists a Πn-strong cardinal, for every n.
(4) There is a proper class of Πn-strong cardinals, for every n.
(5) Ord is Woodin.

A close inspection of the proofs of Propositions 5.2 and 5.6 reveals that,
for n > 0, if κ is a Πn-strong cardinal, then for every Πn-definable (with
parameters in Vκ) class C of relational structures of the same type 
, and for
every � ≥ κ, there exists a set S of structures of type 
 (although possibly
not in C) that contains C ∩ V� and there exists an elementary embedding
h :

∏
(C ∩ Vκ) →

∏
S with the following properties:

(1) Faithful: For every f ∈
∏

(C ∩ Vκ), h(f) � (C ∩ Vκ) = f.
(2) ⊆-chain-preserving: If f ∈

∏
(C ∩ Vκ) is so that f(A) ⊆ f(A′)

whenever A ⊆ A′, then so is h(f).

Moreover, if κ witnesses Πn-PSR, then some cardinal less than or equal to κ
is Πn-strong. Thus, the following is an equivalent reformulation of Γ-PSR,
for Γ = Γn a lightface definability class with n > 0:

Γ-PSR: (Γ-Product Structural Reflection. Second version) There exists
a cardinal κ that product-reflects all Γ-definable proper classes
C of relational structures of the same type 
, i.e., for every �
there exists a set S of structures of type 
 that contains C ∩ V� ,
and there exists a faithful and ⊆-chain-preserving elementary
embedding h :

∏
(C ∩ Vκ) →

∏
S.
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The corresponding version for a boldface Γ being as follows:

There exists a proper class of cardinals κ that product-reflect all
Γ-definable, with parameters in Vκ, proper class C of relational
structures of the same type.

The next theorem implies that strong cardinals can be characterized in
terms of Π1-PSR. The proof follows closely [9, Theorem 5.1], with the
properties of faithfulness and ⊆-chain preservation ((1) and (2) above)
playing now a key role.

Theorem 5.11. There is a Π1-definable, without parameters, class C of
natural structures such that if a cardinal κ product-reflects C (second version),
then κ is a strong cardinal.

Proof. Let C be the class of all ordinals α < κ of uncountable cofinality
such that α is the α-th element of C (1). Let C be the Π1-definable class of all
structures

Aα := 〈V�α ,∈, α〉,

where α ∈ C , and �α is the least cardinal in C (1) greater than α
Note that, since by Proposition 5.1, κ ∈ C (2), κ is a limit point of C.
Pick any � in C greater than κ. We will show that κ is �-strong.

By PSR there is a faithful ⊆-chain-preserving elementary embedding
j :

∏
(C ∩ Vκ) →

∏
S, where S is some set with (C ∩ Vκ) ∪ {A�} ⊆ S.

Now pick any A� ∈ C ∩ S and let

h� :
∏
S → A�

be the projection map. Let I := C ∩ κ and define

k� : Vκ+1 → V�+1

by

k�(X ) = h�(j({X ∩ Vα}α∈I )).

Since j is elementary, for all formulas ϕ(x1, ... , xn) and all a1, ... , an ∈∏
(C ∩ Vκ), if

∏
(C ∩ Vκ) |= ϕ[a1, ... , an], then

∏
S |= ϕ[j(a1) ... , j(an)]. It

easily follows that k� preserves Boolean operations, the subset relation, and
is the identity on � + 1.

Note that k�(κ) = h�(j({α}α∈I )) = �.
For each a ∈ [�]<�, define E�a by

X ∈ E�a iff X ⊆ [κ]|a| and a ∈ k�(X ) .

Since k�(κ) = � and k�(|a|) = |a|, we also have k�([κ]|a|) = [�]|a|, hence
[κ]|a| ∈ E�a . Sincek� preserves Boolean operations and the⊆ relation,E�a is a
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proper ultrafilter over [κ]|a|. Moreover, since k�(�) = �, a simple argument
shows that E�a is �1-complete, hence the ultrapower Ult(V,E�a ) is well-
founded. Furthermore, since j is faithful, if � < κ, then E�a is the principal
ultrafilter generated by {a}. Let

j�a : V →M�a ∼= Ult(V,E�a ),

withM�a transitive, be the corresponding ultrapower embedding. Note that
if � < κ, thenM�a = V and j�a is the identity.

Let E� := {E�a : a ∈ [�]<�}. As in [9], one can show that E� is normal and
coherent. Thus, for each a ⊆ b in [�]<� the maps i�ab :M�a →M�b given by

i�ab([f]
E
�
a
) = [f ◦ �ba ]E�b

for all f : [κ]|a| → V , are well-defined and commute with the ultrapower
embeddings j�a (see [15, p. 26]).

LetME� be the direct limit of the directed system

〈〈M�a : a ∈ [�]<�〉, 〈i�ab : a ⊆ b〉〉,
and let jE� : V →ME� be the corresponding direct limit elementary
embedding, i.e.,

jE� (x) = [a, [cax ]
E
�
a
]E�

for some (any) a ∈ [�]<�, and where cax : [κ]|a| → {x}.
As in [9] one can also show thatME� is well-founded. So, let �� :ME� →
N� be the transitive collapse, and let jN� : V → N� be the corresponding
elementary embedding, i.e., jN� = � ◦ jE� . Then, as in [9] we can show that
V� ⊆ N� and jN� (κ) ≥ � . If� > κ, this implies that crit(jN� ) ≤ κ. (If� < κ,
then jN� : V → V is the identity.)

Let IS := {� : A� ∈ C ∩ S}.

Claim 5.12. If � ≤ � ′ are in IS , then E�a = E�
′

a , for every a ∈ [�]<�. �
Proof of claim. Since E�a , E

� ′

a are proper ultrafilters over [κ]|a|, it is
sufficient to see that E�a ⊆ E�

′

a . So, suppose X ∈ E�a . Then a ∈ k�(X ) =
h�(j({X ∩ Vα}α∈I )). Since {X ∩ Vα}α∈I forms a ⊆-chain and j is ⊆-chain-
preserving, so does j({X ∩ Vα}α∈I ). Hence, k�(X ) ⊆ k� ′(X ), and therefore
a ∈ k� ′(X ), which yields X ∈ E�

′

a . �
By the claim above, for every � < � ′ in IS the map

k�,� ′ :ME� →ME�′

given by

k�,� ′([a, [f]
E
�
a
]E� ) = [a, [f]

E
�′
a

]E�′
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is well-defined and elementary. Moreover, it commutes with the embeddings
jE� : V →ME� and jE�′ : V →ME�′ . Let M be the direct limit of

〈〈ME� : � ∈ I ′〉, 〈k�,� ′ : � < � ′ in IS〉〉,
and let jM : V →M be the corresponding direct limit elementary embed-
ding, which is given by

jM (x) = [�, [a, [cax ]
E
�
a
]E� ]

for some (any) a ∈ [�]<�. Let �M :M → N be the transitive collapse, and
let jN = �M ◦ jM : V → N .

Let � = sup(IS). Note that, as � ∈ IS , � > κ.

Claim 5.13. jN (κ) = �.

Proof of claim. As in [9], we can show that jN� (κ) ≥ � , for every
� ∈ IS \ κ. So, for such a � , letting ��,N be the unique elementary embedding
such that jN = ��,N ◦ jN� , we have

jN (κ) = ��,N (jN� (κ)) ≥ ��,N (�) ≥ �.
Hence, jN (κ) ≥ �. Also, j

E
�
a
(κ) can be computed in V� , for all a ∈ [�]<�,

and therefore jN� (κ) ≤ � . Hence, jN (κ) ≤ �. �
Since κ < �, it follows from the claim above that crit(jN ) ≤ κ. But since

for � < κ the map jN� is the identity, we must have crit(jN ) = κ. Also, since
� ∈ IS , V� ⊆ N� , hence V� ⊆ N . This shows that κ is �-strong, as wanted.

From Proposition 5.2 and Theorem 5.11 we obtain now the following
characterization of strong cardinals.

Corollary 5.14. A cardinal κ is strong if and only if it witnesses Π1-PSR
(second version).

Similar results can be proven for Γ-strong cardinals (Definition 5.5). On
the one hand, Proposition 5.6 shows that if κ is Πn-strong, then κ witnesses
Πn+1-PSR. On the other hand, similarly as in Theorem 5.11, we can prove
that if κ witnesses Πn-PSR, then κ is Πn-strong. This yields the following
characterization of Πn-strong cardinals:

Theorem 5.15. For every n > 0, a cardinal κ is Πn-strong if and only if it
witnesses Πn-PSR (second version).

5.1. Strong Product Structural Reflection. Let us consider next the
following, arguably more natural, strengthening of PSR:

SPSR: (Strong Product Structural Reflection) For every definable class of
relational structures C of the same type, 
, there exists an ordinal
α that strongly product-reflects C, i.e., for every A in C there
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exist an ordinal � with A ∈ V� and an elementary embedding
j :

∏
(C ∩ Vα) →

∏
(C ∩ V�).

Similarly as in the case of PSR, let us say that a cardinal κ witnesses
Γ(P)-SPSR if κ strongly product-reflects all classes C that are Γ-definable
(with parameters in P). Also, a cardinal κ witnesses Πn-SPSR if and
only if it witnesses Σn+1-SPSR, and similarly for the lightface definability
classes. Moreover, we obtain equivalent principles by restricting to classes of
natural structures. Thus, we may formally define Γ-SPSR, for Γ a lightface
definability class, as follows:

Γ-SPSR: (Γ-Strong Product Structural Reflection) There exists a cardinal
κ that strongly product-reflects all Γ-definable classes C of
natural structures.

The boldface version is as follows:

There exists a proper class of cardinals κ that strongly product-
reflect all Γ-definable, with parameters in Vκ, class C of natural
structures.

Note that Γ-SPSR implies Γ-PSR, for any definability class Γ.
We shall see next that the large cardinal notions that correspond to

the SPSR principle are those of superstrong, globally superstrong, and
C (n)-globally superstrong cardinals.

Definition 5.16 [10]. A cardinal κ is superstrong above �, for some � ≥ κ,
if there exists an elementary embedding j : V →M , with M transitive,
crit(j) = κ, j(κ) > �, and Vj(κ) ⊆M .

A cardinal κ is globally superstrong if it is superstrong above �, for every
� ≥ κ.

More generally, a cardinal κ is C (n)-superstrong above �, for some � ≥ κ,
if there exists an elementary embedding j : V →M , with M transitive,
crit(j) = κ, j(κ) > �, Vj(κ) ⊆M , and j(κ) ∈ C (n).

A cardinal κ is C (n)-globally superstrong if it is C (n)-superstrong above �,
for every � ≥ κ.

Note that every globally superstrong cardinal is C (1)-globally super-
strong. Also, every globally superstrong cardinal is superstrong, and every
C (n)-globally superstrong cardinal belongs to C (n+2) [10]. As shown in [10],
on the one hand, if κ is C (n)-globally superstrong, then there are many
C (n)-superstrong cardinals below κ. On the other hand, if κ is (κ + 1)-
extendible, then Vκ satisfies that there is a proper class of C (n)-globally
superstrong cardinals, for every n. Moreover, if κ is C (n)-extendible, then
there are many C (n)-globally superstrong cardinals below κ.

Similarly as in Proposition 5.2 we can prove the following:
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Proposition 5.17. If κ is C (n)-globally superstrong, then it witnesses
Πn-SPSR.

Proof. Letκ beC (n)-globally superstrong and letC be a class of relational
structures of the same type that is definable by a Πn formula ϕ(x), with
parameters in Vκ.

Given any A ∈ C, let � ∈ C (n) be greater than or equal to κ and with
A ∈ V�.

Let j : V →M be an elementary embedding witnessing that κ is C (n)-
superstrong above �. Then the restriction of j to C ∩ Vκ yields an elementary
embedding

h :
∏

(C ∩ Vκ) →
∏

({X :M |= ϕ(X )} ∩ VMj(κ)).

Let S := {X :M |= ϕ(X )} ∩ VM
j(κ). Since j(κ) > � and j(κ) ∈ C (n), we

have Vj(κ) |= ϕ(A). Hence, since κ ∈ C (n) (in fact κ ∈ C (n+2)) [10], by
elementarity Vj(κ) = VM

j(κ) 	Σn M , and thus M |= ϕ(A). It follows that

A ∈ S. Moreover, if B ∈ S, then M |= ϕ(B). Hence, since VM
j(κ) 	Σn M ,

we have thatVM
j(κ) = Vj(κ) |= ϕ(B). Since j(κ) ∈ C (n), ϕ(B) holds in V, and

therefore B ∈ C. This shows that S = C ∩ Vj(κ), and so

h :
∏

(C ∩ Vκ) →
∏

(C ∩ Vj(κ)).

Hence, h witnesses SPSR for A. �

Observe that since the function h in the proof of the last proposition is the
restriction of j to

∏
(C ∩ Vκ), and j is elementary, it preserves all first-order

properties. In particular, it is ⊆-chain-preserving, and since κ = crit(j), h is
faithful. Thus, taking into consideration our remarks from Section 2, as well
as those made in the previous section before we stated the second version of
the PSR schema, we may reformulate Γ-SPSR for Γ a lightface definability
class as follows:

Γ-SPSR: (Γ-Strong Product Structural Reflection. Second version) There
exists a cardinal κ that strongly product-reflects all Γ-definable
classes C of natural structures, i.e., for everyA ∈ C there exist an
ordinal � with A ∈ V� and a faithful and ⊆-chain-preserving
elementary embedding h :

∏
(C ∩ Vκ) →

∏
(C ∩ V�).

The corresponding version for boldface Γ being:

There exists a proper class of cardinals κ that strongly product-
reflect all Γ-definable, with parameters in Vκ, proper classes C
of natural structures.
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Arguing similarly as in the proof of Theorem 5.11 (and [9]), we can now
prove the following:

Theorem 5.18. For every n > 0, there is a Πn-definable, without parameters,
class C of natural structures such that if a cardinalκ strongly product-reflects C,
then κ is a C (n)-globally superstrong cardinal.

Proof. Let C be the Πn-definable class of all structures

Aα := 〈V�α ,∈, α〉,

where α has uncountable cofinality and is the α-th element of C (n), and �α
is the least cardinal in C (n) greater than α.

Let κ witness SPSR for C. Let I := {α : Aα ∈ Vκ}. Since κ ∈ C (n+1)

(Proposition 5.1), sup(I ) = κ.
Pick any ordinal � ≥ κ and let us show that κ is �-C (n)-superstrong. Let

A� in C with � < � . Let κ′ be such that A� ∈ Vκ′ and there is a faithful
⊆-chain-preserving elementary embedding

j :
∏

(C ∩ Vκ) →
∏

(C ∩ Vκ′).

Let

h� :
∏

(C ∩ Vκ′) → A�

be the projection map and define k� : Vκ+1 → V�+1 by

k�(X ) = h�(j({X ∩ Vα}α∈I )).

As in Theorem 5.11, for each a ∈ [�]<�, define E�a by

X ∈ E�a iff X ⊆ [κ]|a| and a ∈ k�(X ) .

Then E�a is an �1-complete proper ultrafilter over [κ]|a|, and so the
ultrapower Ult(V,E�a ) is well-founded. Furthermore, since j is faithful, if
� ∈ I , then E�a is the principal ultrafilter generated by {a}. Let

j�a : V →M�a ∼= Ult(V,E�a ),

and let E� := {E�a : a ∈ [�]<�}. As in [9], E� is normal and coherent. Let
ME� be the direct limit of

〈〈M�a : a ∈ [�]<�〉, 〈i�ab : a ⊆ b〉〉,

where the i�ab are the standard projection maps, and let jE� : V →ME� be the
corresponding limit elementary embedding. As in [9],ME� is well-founded.
So, let �� :ME� → N� be the transitive collapse, and let jN� = � ◦ jE� :
V → N� . We have that V� ⊆ N� and jN� (κ) ≥ � (see [9]).
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By Claim 5.12, if � ≤ � ′ are in I ′ := {α : Aα ∈ Vκ′}, then E�a = E�
′

a , for
every a ∈ [�]<�. Hence, for every � < � ′ in I ′, the map

k�,� ′ :ME� →ME�′

given by

k�,� ′([a, [f]Ea ]E� ) = [a, [f]Ea ]E�′

is well-defined, elementary, and commutes with the embeddings jE� : V →
ME� and jE�′ : V →ME�′ . Let M be the direct limit of

〈〈ME� : � ∈ I ′〉, 〈k�,� ′ : � < � ′ in I ′〉〉,
and let jM : V →M be the corresponding limit elementary embedding. Let
�M :M → N be the transitive collapse, and let jN = �M ◦ jM : V → N .

Let � = sup(I ′). Note that � ∈ C (n) and � > κ. As in Claim 5.13,
jN (κ) = �, hence crit(jN ) ≤ κ. But since for � ∈ I the map jN� is the
identity, crit(jN ) = κ. Also, sinceV� =

⋃
�∈I V� , andV� ⊆ N� for all� ∈ I ,

it follows that V� ⊆ N . This shows that κ is �-superstrong, hence also �-
C (n)-superstrong, as wanted. �

We have thus proved the following:

Theorem 5.19. For every n ≥ 1, the following are equivalent for any
cardinal κ:

(1) κ witnesses Πn-SPSR.
(2) κ is a C (n)-globally superstrong cardinal.

Corollary 5.20. The following are equivalent:

(1) SPSR, i.e., Πn-SPSR for every n.
(2) Πn-SPSR for every n.
(3) There exists a C (n)-globally superstrong cardinal, for every n.
(4) There exists a proper class of C (n)-globally superstrong cardinals.

5.2. Bounded Product Structural Reflection. Let us consider next some
bounded forms of PSR. Namely, for Γ a lightface definability class and any
ordinal � let:

Γ-PSR� : There exists a cardinal κ that �-product-reflects every Γ-
definable proper class C of natural structures, i.e., for every
A in C of rank ≤ κ + � there exist a set S with A in S and an
elementary embedding h :

∏
(C ∩ Vκ) →

∏
S.

Thus Γ-PSR holds if and only if there exists a cardinal κ that witnesses
Γ-PSR� for all (equivalently, a proper class of) ordinals � .

The following theorem shows that measurable cardinals can be character-
ized in terms of bounded PSR.
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Theorem 5.21. The following are equivalent:

(1) Π1-PSR1.
(2) There exists a measurable cardinal.

Proof. (1) implies (2): Let C be the Π1-definable class of 〈V�,∈〉, � ≥ �.
Let κ witness PSR1 for C, and let S be a set that contains Vκ+1 such that
there exists an elementary embedding

h :
∏

(C ∩ Vκ) →
∏
S.

Define k : Vκ+1 → Vκ+2 by

k(X ) = hκ+1(h({X ∩ V�}�<κ)),

where hκ+1 is the projection on Vκ+1. Then k preserves Boolean operations
and the subset relation, and is the identity on � + 1. Moreover, k(κ) =
κ + 1. Now for each a ∈ Vκ+1, define Ua by

X ∈ Ua iff X ⊆ κ and a ∈ k(X ) .

Clearly, κ ∈ Ua . Also, since k preserves Boolean operations and the ⊆
relation, Ua is a proper ultrafilter over κ. Moreover, since k(�) = �, Ua
is �1-complete. Furthermore, since |Vκ+1| = 2|Vκ| > |κ|, some Ua is non-
principal. So, some cardinal less than or equal to κ is measurable.

(2) implies (1): Let κ be a measurable cardinal, and let ϕ(x) be a Π1

formula (we may allow parameters in Vκ) that defines a proper class C of
natural structures. We claim that κ 1-product-reflects C.

Let j : V →M be an ultrapower elementary embedding, given by some
κ-complete normal measure over κ. Thus, crit(j) = κ andVMκ+1 = Vκ+1. By
elementarity, the restriction of j to C ∩ Vκ yields an elementary embedding

h :
∏

(C ∩ Vκ) →
∏

({X :M |= ϕ(X )} ∩ VMj(κ)).

Let S := {X :M |= ϕ(X )} ∩ VM
j(κ). If A = 〈V�,∈〉 ∈ C, with � ≤ κ + 1,

then A ∈M , and since ϕ(A) holds in V, by Π1 downward absoluteness
for transitive classes it also holds in M. Moreover, since j(κ) > κ + 1,
A ∈ VM

j(κ), hence A ∈ S. �

Let us note that the proof of the theorem above also shows that the least
measurable cardinal is precisely the least cardinal κ that witnesses PSR1 for
all classes C that are Π1-definable with parameters in Vκ.

§6. Large cardinals below measurability. We shall next consider Structural
Reflection for classes of relational structures that are Σ1-definable in the
language of set theory extended with additional Π1 predicates. That is,
classes of structures of complexity between Σ1 and Σ2.
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Let R be a set of Π1 predicates or relations. A class C of structures in a
fixed countable relational type is said to be Σ1(R)-definable if it is definable
by means of a Σ1 formula of the first-order language of set theory with
additional predicate symbols for the predicates in R, without parameters.
We define the following form of SR:

Σ1(R)-SR: For every Σ1(R)-definable class C of structures of the same
type there exists a cardinal κ that reflects C, i.e., for every A in
C there exist B in C ∩ Vκ and an elementary embedding from
B into A.

For the rest of this section we shall write SRR instead of the more
cumbersome Σ1(R)-SR. Also, if R = {R1, ... , Rn}, then we may write
SRR1,...,Rn for SRR.

We have that SR∅, i.e., Σ1-SR, is provable in ZFC (Proposition 3.1).
However, if R is the Π1 relation “x is an ordinal and y = Vx ,” then SRR
holds if and only if there exists a supercompact cardinal ([2, 3]; see also
Theorem 3.2). Moreover, if κ is supercompact, then SRR holds for κ, for
any set R of Π1 predicates (cf. Theorem 3.2).

6.1. The principle SR–
R. For Γ any lightface definability class, the

following is a natural restricted form of Γ-SR:

Γ-SR–: There exists a cardinal κ such that for every Γ-definable class C of
structures of the same type and everyA ∈ C of cardinality κ there
exist B ∈ C ∩Hκ and an elementary embedding from B into A.
We say that the cardinal κ κ-reflects C.

The restriction of SR– to Σ1(R)-definable classes of structures was first
introduced in [8]. Namely, for R a finite set of Π1 predicates or relations, let

SR–R: There exists a cardinal κ that κ-reflects every Σ1(R)-definable
(with parameters inHκ) class C of structures of the same type.

6.1.1. The Cardinality predicate. Let Cd be the Π1 predicate “x is a
cardinal.” Magidor and Väänänen [25] show that the principle SRCd implies
0�, and much more, e.g., there are no good scales. The principle SR–

Cd is much
weaker, but it does have some large-cardinal strength, as the next theorem
shows.

Theorem 6.1 [8]. SR–
Cd holds, witnessed by κ, then there exists a weakly

inaccessible cardinal � ≤ κ.

It is shown in [25] that, starting form a supercompact cardinal, one can
produce a model of ZFC in which SRCd holds for the first weakly inaccessible
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cardinal. Thus, no large-cardinal properties beyond weak inaccessibility may
be proved in ZFC to hold for the least cardinal witnessing SRCd .

6.1.2. The Regularity predicate. LetRg be the Π1 predicate “x is a regular
ordinal.”

Theorem 6.2 [8]. If SR–
Rg holds, witnessed by κ, then there exists a weakly

Mahlo cardinal � ≤ κ.

It follows from [25] that one cannot hope to get from SRRg more than a
weakly Mahlo cardinal ≤ κ, for starting from a weakly Mahlo cardinal one
can obtain a model in which SRRg is witnessed by the least weakly Mahlo
cardinal. One cannot hope either to show that the least κ witnessing SRRg is
strongly inaccessible, for in [34] it is shown that one can have SRRg witnessed
by κ = 2ℵ0 .

Let us note that, since the predicate Cd is Σ1(Rg)-definable (see [8]), the
principle SRCd,Rg is equivalent to SRRg .

6.1.3. The Weakly Inaccessible predicate. There is a principle between
SR–
Cd and SR–

Rg , namely SR–
Cd,WI , where WI is the Π1 predicate “x is

weakly inaccessible.”

Proposition 6.3 [8]. If SR–
Cd,WI holds, witnessed by κ, then there exists a

2-weakly inaccessible cardinal � ≤ κ.

We may also consider predicates α-WI , for α an ordinal. That is, the
predicate “x is α-weakly inaccessible.” Then, similar arguments as in [8]
would show that the principle SR–

Cd, α -WI holding for κ implies that there is
an (α + 1)-weakly inaccessible cardinal � ≤ κ.

6.1.4. Weak compactness. LetWC (x, α) be the Π1 relation “α is a limit
ordinal and x is a partial ordering with no chain of order-type α.”

Theorem 6.4 [8]. If SR–
Cd,WC holds, witnessed by some κ such that if � ≤ κ

is weakly inaccessible, then 2� ≤ � for all cardinals � < �, then there exists a
weakly compact cardinal � ≤ κ.5

Since the first weakly Mahlo cardinal may satisfy SRRg [25], we cannot
prove the existence of a weakly compact cardinal≤ κ just from SRRg . Hence,
SRCd,WC is stronger than SRRg .

Let PwSet be the Π1 relation {(x, y) : y = P(x)}. Then we have the
following:

5In [8] it is only assumed that κ witnesses SR–
Cd,WC . However, Lücke [23] has shown that

some additional assumption on κ is needed. Note that our assumption on κ in the current
statement of the theorem follows form the GCH.
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Theorem 6.5 [24]. κ is the least cardinal witnessing SRPwSet if and only if
κ is the first supercompact cardinal.

It follows from Theorem 3.2 that SRPwSet is in fact equivalent to Π1-SR,
and also equivalent to Σ2-SR. However, Lücke [23] has established that
SR–
PwSet is much weaker than SRPwSet . Indeed, he shows that SR–

PwSet is
equivalent to the existence of a weakly shrewd cardinal, a large cardinal
notion obtained by weakening the definition of shrewd cardinal studied by
Rathjen in [28] and whose consistency strength is strictly between the large
cardinal notions of total indescribability and subtleness. However, as shown
in [23], shrewd and weakly shrewd cardinal are equiconsistent.

Definition 6.6 [23]. A cardinal κ is weakly shrewd if for every formula
ϕ(x, y) of the language of set theory, every cardinal 	 > κ, and everyA ⊆ κ
such that ϕ(A, κ) holds in H	 , there exist cardinals κ̄ < 	̄ such that κ̄ < κ
and ϕ(A ∩ κ̄, κ̄) holds in H	̄ .

Theorem 6.7 [23]. The following are equivalent:

(1) κ is the least weakly shrewd cardinal.
(2) κ is the least cardinal witnessing SR–

PwSet .
(3) κ is the least cardinal witnessing Σ2-SR–.

Since, as shown in [23], weakly shrewd cardinals may be smaller than
2ℵ0 , the principle Σ2-SR–, and therefore also SR–

R, for any set R of Π1

predicates, does not imply the existence of a strongly inaccessible cardinal.
Moreover, [23] shows that it is consistent, modulo the existence of a weakly
shrewd cardinal that is not shrewd (a large cardinal notion consistency-wise
weaker than subtleness), that there exists a cardinal less than 2ℵ0 witnessing
the principle SR– for all definable classes of structures of the same type,
taken as a schema, i.e., Σn-SR–, for all n < �. Thus, even SR– cannot imply
the existence of a strongly inaccessible cardinal.

6.2. Strong Σ1(R)-definability. Notice that a class C is Σ1-definable iff
there is a Σ1 formula ϕ such that for every A, A ∈ C if and only if some
transitive structure 〈M,∈〉 that contains A satisfies ϕ(A). Now let LṘ be
the language of set theory expanded with an additional predicate symbol
Ṙ, and suppose R is a predicate. Naturally, one may define a class C to be
Σ1(R) if it is Σ1-definable in the language LṘ with Ṙ being interpreted as R.
However, unlike the case of Σ1-definability, this is not equivalent to saying
that there is a Σ1 formula ϕ of the language LṘ such that for every A, A ∈ C
if and only if some transitive structure 〈M,∈, RM 〉 that contains A satisfies
ϕ(A). For the equivalence to hold we need to require that RM is precisely
R ∩M . Namely,

Proposition 6.8. The following are equivalent for all classes C and
predicates R:
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(1) C is Σ1(R), i.e., there exists a Σ1 formula ϕ(x) of LṘ such that

C = {A : ϕ(A), with Ṙ interpreted as R}.
(2) There is a Σ1 formula ϕ(x) of the language LṘ such that for every A,
A ∈ C if and only if

〈M,∈, R ∩M 〉 |= ϕ(A)

for some transitive structure 〈M,∈〉 that contains A.

Notice also that if C is a Σ1-definable class of structures of the same type,
then the closure of C under isomorphisms is also Σ1-definable, and we have
the following equivalences:

Proposition 6.9. The following are equivalent for any class C of structures
of the same type that is closed under isomorphisms:

(1) C is Σ1.
(2) There is a Σ1 formula ϕ(x) of the language of set theory such that for

every A, A ∈ C if and only if

〈M,∈〉 |= ϕ(B)

for some transitive structure 〈M,∈〉 of size |A| that contains B, where
B is isomorphic to A.

Based on the considerations above, the following is therefore a natural
definition for a class of structures closed under isomorphisms to be
Σ1-definable with an additional predicate R. This is a reformulation, for
the case n = 1, of Lücke’s [23] definition of local Σn(R)-class:

Definition 6.10. A class C of structures of the same type and closed under
isomorphisms is Σ1(R)∗ if there is a Σ1 formula ϕ(x) of the language LṘ
such that for every A, A ∈ C if and only if

〈M,∈, R ∩M 〉 |= ϕ(B)

for some transitive structure 〈M,∈〉 of size |A| that contains B, where B is
isomorphic to A.

Observe that although every Σ1(R)∗ class C is Σ1(R), the converse is not
true, even assuming closure under isomorphisms. An example is the class C
of all structures isomorphic to some transitive 〈M,∈,Cd ∩M 〉, where Cd is
the class of cardinals.

The closure under isomorphisms of the Σ1(R)-definable classes of
structures that are used in the proofs of Theorems 6.1 and 6.2, Proposition
6.3, and Theorem 6.4 (as given in [8]) are easily seen to be Σ1(R)∗, for
the corresponding R. Thus, the results follow from the weaker Σ1(R)∗-SR–

corresponding assumptions. Also, the argument in the proof of Theorem 5.5
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from [8] can be adapted to show that if L∗ and R are symbiotic, then the
SLST (L∗) property implies Σ1(R)∗-SR– (see [8]).6 Thus, from the results
in Section 8 of [8] one may obtain the following equivalences:

Theorem 6.11.

(1) [23] κ is the least weakly inaccessible cardinal iff κ is the least cardinal
witnessing Σ1(Cd )∗-SR–.

(2) [23] κ is the least weakly Mahlo cardinal iff κ is the least cardinal
witnessing Σ1(Rg)∗-SR–.

(3) κ is the least α-weakly inaccessible cardinal iff κ is the least cardinal
witnessing Σ1(Cd, α-WI )∗-SR–.

(4) Suppose κ is such that if � ≤ κ is weakly inaccessible, then 2� ≤ � for
all cardinals � < �. Then κ is the least weakly compact cardinal iff κ is
the least cardinal witnessing Σ1(Cd,WC )∗-SR–.

Under the assumption of GCH, or just assuming that every weakly
inaccessible cardinal is inaccessible, the theorem above yields exact char-
acterizations in terms of SR for the first inaccessible, Mahlo, α-inaccessible,
and weakly compact cardinals.

Corollary 6.12 (GCH).

(1) κ is the least inaccessible cardinal iff κ is the least cardinal witnessing
Σ1(Cd )∗-SR–.

(2) κ is the least Mahlo cardinal iff κ is the least cardinal witnessing
Σ1(Rg)∗-SR–.

(3) κ is the least α-inaccessible cardinal iff κ is the least cardinal witnessing
Σ1(Cd, α-WI )∗-SR–.

(4) κ is the least weakly compact cardinal iffκ is the least cardinal witnessing
Σ1(Cd,WC )∗-SR–.

In items (1)–(4) above one may, equivalently, strengthen Σ1(R)∗-SR– by
allowing κ-reflection for classes of structures C that are Σ1(R)∗-definable
with parameters inHκ.

§7. Generic Structural Reflection. If A and B are structures of the same
type, we say that an elementary embedding j : A→ B is generic if it exists
in some forcing extension of V. We shall next consider the following generic
version of SR:

GSR: (Generic Structural Reflection) For every definable (with parame-
ters) class C of relational structures of the same type there exists an
ordinal α that generically reflects C, i.e., for every A in C there exist
B in C ∩ Vα and a generic elementary embedding from B into A.

6However, as shown in [23], it does not imply (SR)–
R, as claimed in [8].
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Thus, GSR is just like SR, but the elementary embeddings may not exist in
V but in some forcing extension of V. The next proposition shows that this is
equivalent to requiring that the elementary embedding exists in any forcing
extension resulting from collapsing the structure B to make it countable.

Proposition 7.1 [4]. The following are equivalent for structures B and A of
the same type.

(1) V Coll(�,B) |= “There is an elementary embedding j : B → A.”
(2) For some forcing notion P,
V P |= “There is an elementary embedding j : B → A.”

Taking into account similar considerations as in the case of SR and PSR,
we may properly formulate GSR as a schema. Namely, for Γ a lightface
definability class, let:

Γ-GSR: (Γ-Generic Structural Reflection) There exists a cardinal κ that
generically reflects all Γ-definable, with parameters inVκ, classes
C of natural structures, i.e., for every A in C there exists B in
C ∩ Vα such that inV Coll(�,B) there is an elementary embedding
from B into A.

The boldface version being:

There exists a proper class of cardinals κ that generically reflect
all Γ-definable, with parameters in Vκ, classes C of natural
structures.

The assertion that κ witnesses Γ-GSR, for Γ a boldface definability class,
is equivalent to the Generic Vopěnka Principle gVP(κ,Γ) introduced in [4].

Similar considerations as in the case of SR (see the remarks before and
after Proposition 3.4) show that Πn-GSR and Σn+1-GSR are equivalent,
and also Πn-GSR and Σn+1-GSR are equivalent.

We shall see next that some large cardinals, such as Schindler’s remarkable
cardinals, can be characterized in terms of GSR.

Definition 7.2 [31, 33]. A cardinal κ is remarkable if for every regular
cardinal � > κ, there is a regular cardinal �̄ < κ such that in V Coll(�,<κ)

there is an elementary embedding j : HV
�̄

→ HV� with j(crit(j)) = κ.

A cardinal is remarkable if and only if it is 1-remarkable (Definition 4.3).
Remarkable cardinals are downward absolute to L and their consistency
strength is strictly below a 2-iterable cardinal. Remarkable cardinals are
in C (2), and they are totally indescribable and ineffable, hence limits of
totally indescribable cardinals (see [4]).
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Theorem 7.3 [4]. The following are equiconsistent:

(1) Π1-GSR.
(2) There exists a cardinal κ that witnesses Π1-GSR.
(3) There exists a remarkable cardinal.

Let us say that a cardinalκ is almost remarkable if it is almost-1-remarkable
(Definition 4.4), namely: for all� > κ inC (1) and everya ∈ V�, there is �̄ < κ
also in C (1) such that in V Coll(�,<κ) there exists an elementary embedding
j : V�̄ → V� with a ∈ range(j). Then Theorem 4.5 yields the following:

Theorem 7.4. A cardinal κ witnesses Π1-GSR if and only if κ is almost
remarkable.

It follows that the notions of remarkable cardinal and of almost-
remarkable cardinal are equiconsistent.

Magidor [24] shows that a cardinal κ is supercompact if and only if
for every regular cardinal � > κ there is a regular cardinal �̄ < κ and an
elementary embedding j : H�̄ → H� with j(crit(j)) = κ. One can thus view
a remarkable cardinal as a virtually supercompact7 cardinal. In analogy
with Theorem 3.2 one might therefore expect Π1-GSR to be not just
equiconsistent, but actually equivalent with the existence of a remarkable
cardinal. Even more, since the first supercompact cardinal is precisely the
first cardinal that witnesses Π1-SR, one might conjecture that the first
remarkable cardinal is the first cardinal that witnesses Π1-GSR. This is
almost true, but not exactly. On the one hand, if κ is a remarkable cardinal,
thenκwitnesses Π1-GSR [4]. On the other hand, as shown in Theorem 7.6, if
there is no�-Erdös cardinal in L, then the least cardinal witnessing Π1-GSR
is also the first remarkable cardinal.

The following equivalent definition of remarkability was given in [4]: a
cardinal κ is remarkable if and only if for every � > κ there exist some �̄ < κ
and a generic elementary embedding j : V�̄ → V� with j(crit(j)) = κ.

Wilson [37] defines the notion of weakly remarkable cardinal by not
requiring that �̄ is strictly below κ. Namely,

Definition 7.5 [37]. κ is weakly remarkable if and only if for every � > κ
there exist some �̄ and a generic elementary embedding j : V�̄ → V� with
j(crit(j)) = κ.

Wilson shows that if there exists a weakly remarkable non-remarkable,
cardinal κ, then some ordinal greater than κ is an �-Erdös cardinal in L.
Moreover, the statements “There exists an �-Erdös cardinal” and “There

7We choose to call it virtually supercompact, as in [4], instead of the perhaps more natural
generic supercompact, for the latter notion already exists in the literature with a different
meaning.
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exists a weakly remarkable non-remarkable cardinal” are equiconsistent
modulo ZFC, and equivalent assuming V = L.

Observe that if κ is cardinal witnessing Π1-GSR, then κ also witnesses
Π1-GSR in L. Thus, ifκwitnesses Π1-GSR and inL� is the least inaccessible
cardinal above κ, then L� is a model of ZFC in which κ satisfies Π1-GSR
and there is no �-Erdös cardinal above κ. By combining arguments from
[4, 37] we have the following:

Theorem 7.6. Assume there is no �-Erdös cardinal in L. Then, the least
cardinal that satisfies Π1-GSR, if it exists, is remarkable.

Proof. Let κ be the least cardinal witnessing Π1-GSR. Let C be the
Π1-definable class of structures of the form 〈V�+1,∈〉 with � ∈ C (1). Pick a
singular cardinal � ∈ C (2) greater than κ. By Π1-GSR, let j : V�̄+1 → V�+1

be a generic elementary embedding with �̄ < κ. Let ᾱ = crit(j). Note that
ᾱ < �̄, because ᾱ is regular and �̄ is not.

We claim that ᾱ is weakly remarkable up to �̄. So, fix some � > ᾱ smaller
than �̄. Consider the restriction j : V� → Vj(�), which has j(crit(j)) = j(ᾱ).
Then V�+1 satisfies that for some �̄ there exists a generic elementary embed-
ding j∗ : V�̄ → Vj(�) such that j∗(crit(j∗)) = j(ᾱ). Hence, by elementarity
V�̄+1 satisfies that for some �̄ there exists a generic elementary embedding
j∗ : V�̄ → V� with j∗(crit(j∗)) = ᾱ.

By elementarity, α := j(ᾱ) is weakly remarkable up to �, and since � ∈
C (2), α is weakly remarkable. Since the existence of a weakly remarkable
non-remarkable cardinal implies the existence of an �-Erdös cardinal in L
[37], by our assumption we have that α is in fact remarkable. Hence, since
every remarkable cardinal witnesses Π1-GSR [4], we have that κ ≤ α.

The theorem will be proved by showing that α = κ. For suppose, aiming
for a contradiction, that κ < α. Since α is remarkable and therefore belongs
to C (2), we have

Vα |= “κ witnesses Π1-GSR.”

By elementarity, there is some � < ᾱ such that

Vᾱ |= “� witnesses Π1-GSR.”

Hence, since j(�) = �, again by elementarity,

Vα |= “� witnesses Π1-GSR”

and therefore � witnesses Π1-GSR, thus contradicting the minimality
of κ. �

Corollary 7.7. Assume there is no �-Erdös cardinal in L. Then, the
following are equivalent for a cardinal κ:

(1) κ is the least cardinal witnessing Π1-GSR.
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(2) κ is the least cardinal witnessing Π1-GSR.
(3) κ is the least almost remarkable cardinal.
(4) κ is the least weakly remarkable cardinal.
(5) κ is the least remarkable cardinal.

We don’t know if the assumption that there is no �-Erdös cardinal in L is
necessary for the equivalence above to hold. However, we have the following:

Proposition 7.8. For every n > 0, if κ witnesses Πn-GSR, thenκ ∈ C (n+1).
In particular, if κ witnesses Π1-GSR, then κ ∈ C (2).

Proof. Let us prove the casen = 1. The general case follows by induction,
using a similar argument. So, suppose a ∈ Vκ, ϕ(x, y) is a Π1 formula with
x, y as the only free variables, andV |= ∃xϕ(x, a). Pick� ∈ C (2) greater than
κ, so thatV� |= ∃xϕ(x, a). Since the class of structures of the form 〈Vα,∈, a〉
is Π1-definable with a as a parameter, there exists a generic elementary
embedding j : 〈V�̄,∈, a〉 → 〈V�,∈, a〉 with �̄ < κ. Note that, on the one
hand, since � belongs to C (1) so does �̄, hence by downward absoluteness
for Π1 sentences, Vκ |= “�̄ ∈ C (1).” On the other hand, by elementarity of
j, V�̄ |= ∃xϕ(x, a). Hence by upwards absoluteness, Vκ |= ∃xϕ(x, a).

A simpler similar argument, using the fact that Σ1 sentences are absolute
for transitive sets, shows that κ ∈ C (1). Hence, if ϕ(x, y) and a are as above,
and Vκ |= ∃xϕ(x, a), then by upwards absoluteness, V |= ∃xϕ(x, a).

For the general case n > 1, assume κ ∈ C (n), and consider the Πn-
definable (with a as a parameter) class of structures of the form 〈Vα,∈, a〉
with α ∈ C (n). �

As Wilson [37] shows that a cardinal is remarkable if and only if it is weakly
remarkable and belongs to C (2), if the least cardinal κ that witnesses Π1-
GSR is not remarkable, then is not weakly remarkable. Thus, the question
is if it is provable in ZFC that the least cardinal κ witnessing Π1-GSR, if it
exists, is weakly remarkable. Notice, however, that the proof of Theorem 7.6
does show that if κ is the least cardinal witnessing Π1-GSR, then either κ is
remarkable or there is a weakly remarkable cardinal below κ. Also, if κ is
the least cardinal witnessing Π1-GSR, then either κ is remarkable or there
are unboundedly many weakly remarkable cardinals below κ.

More generally, recall (Definition 4.3) that a cardinal κ is n-remarkable,
for n > 0, if for every � > κ in C (n), there is �̄ < κ also in C (n) such
that in V Coll(�,<κ), there is an elementary embedding j : V�̄ → V� with
j(crit(j)) = κ. Equivalently, we may additionally require that for any given
a ∈ V�, a is in the range of j. A cardinal κ is completely remarkable if
it is n-remarkable for every n > 0. Remarkable cardinals are precisely the
1-remarkable cardinals.
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As shown in [4], if 0� exists, then every Silver indiscernible is completely
remarkable in L. Moreover, if κ is 2-iterable, then Vκ is a model of ZFC in
which there exists a proper class of completely remarkable cardinals.

Theorem 7.3 also holds for n-remarkable cardinals. Namely,

Theorem 7.9. The following are equiconsistent for n > 0:

(1) Πn-GSR.
(2) There exists a cardinal κ that witnesses Πn-GSR.
(3) There exists an n-remarkable cardinal.

As it turns out, (n + 1)-remarkable cardinals correspond precisely to the
virtual form of C (n)-extendible cardinals. Namely,

Definition 7.10 [4]. A cardinal κ is virtually extendible if for every α > κ
there is a generic elementary embedding j : Vα → V� such that crit(j) = κ
and j(κ) > α.

A cardinal κ is virtually C (n)-extendible if additionally j(κ) ∈ C (n).

Note that virtually extendible cardinals are virtually C (1)-extendible
because j(κ) must be inaccessible in V.

In contrast with the definition of extendible cardinal, in which the
requirement that j(κ) > α is superfluous, in the definition of virtually
extendible cardinal it is necessary. The reason is that while there is no non-
trivial elementary embedding j : V�+2 → V�+2, such an embedding may
exist generically (see [4]).

Theorem 7.11 [4]. A cardinal κ is virtually extendible if and only if it is
2-remarkable. More generally, κ is virtually C (n)-extendible if and only if it is
(n + 1)-remarkable.

The requirement that j(κ) > α in the definition of virtually extendible
cardinals suggests the following strengthening of GSR. Let us say that an
elementary embedding j : Vα → V� is overspilling if j has a critical point
and j(crit(j)) > α. For Γ a lightface definability class, let:

Γ-SGSR: (Γ-Strong Generic Structural Reflection) There exists a cardinal
κ that strongly generically reflects all Γ-definable classes C
of natural structures, i.e., for every A in C there exists B in
C ∩ Vα such that in V Coll(�,B) there is an overspilling elemen-
tary embedding from B into A.

With the boldface version being:

There exists a proper class of cardinals κ that strongly
generically reflect all Γ-definable, with parameters inVκ, classes
C of natural structures.
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Then we have the following:

Theorem 7.12. The following are equivalent for every n ≥ 1:

(1) Πn-SGSR.
(2) There exists an (n + 1)-remarkable cardinal.
(3) There exists a virtually C (n)-extendible cardinal.

§8. Beyond VP. We have seen that a variety of large cardinal notions,
ranging from weakly inaccessible to Vopěnka’s Principle, can be char-
acterised as some form of Structural Reflection for classes of relational
structures of some degree of complexity. The question is now if the same
is true for large-cardinal notions stronger than VP, up to rank-into-rank
embeddings, or even for large cardinals that contradict the Axiom of Choice
(see [5]). This is largely a yet unexplored realm, although there are some
very recent results showing that this is indeed the case. In [7], we introduce
a simple form of SR, which we call Exact Structural Reflection (ESR), and
show that some natural large-cardinal notions in the region between almost-
huge and superhuge cardinals can be characterised in terms of ESR. Also,
sequential forms of ESR akin to generalised versions of Chang’s Conjecture
yield large-cardinal principles at the highest reaches of the known large-
cardinal hierarchy, and beyond. We give next a brief summary of the results.

Given infinite cardinals κ < � and a class C of structures of the same type,
let

ESRC(κ,�): (Exact Structural Reflection) For everyA ∈ C of rank �, there
exist some B ∈ C of rank κ and an elementary embedding
from B into A.

We let Γ(P)-ESR(κ, �) denote the statement that ESRC(κ, �) holds for every
class C of structures of the same type that is Γ-definable with parameters
from P.

The general ESR principle restricted to classes of structures that are closed
under isomorphic images is just equivalent to VP:

Theorem 8.1 [7]. Over the theory ZFC, the following schemata of sentences
are equivalent:

(1) For every class C of structures of the same type that is closed under
isomorphic images, there is a cardinal κ with the property that
ESRC(κ, �) holds for all � > κ.

(2) VP.

However, even the principle Π1-ESR(κ, �) holding for some κ < � already
implies the existence of large cardinals, the weakly exact cardinals, whose
consistency strength is beyond that of VP.
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Definition 8.2 [7]. Given a natural number n > 0, an infinite cardinal
κ is weakly n-exact for a cardinal � > κ if for every A ∈ V�+1, there exist
a transitive, Πn(Vκ+1)-correct set M with Vκ ∪ {κ} ⊆M , a cardinal �′ ∈
C (n–1) greater than ��, and an elementary embedding j :M → H�′ with
j(κ) = � and A ∈ range(j).

If we further require that j(critj) = κ, then we say that κ is weakly
parametrically n-exact for �.

We have the following equivalence:

Theorem 8.3 [7]. The following statements are equivalent for all cardinals
κ and all natural numbers n > 0:

(1) κ is the least cardinal such that Πn(Vκ)-ESR(κ, �) holds for some �.
(2) κ is the least cardinal that is weakly n-exact for some �.
(3) κ is the least cardinal that is weakly parametrically n-exact for some �.

In contrast with the SR principles considered in previous sections, the
ESR principles for Πn-definable and Σn+1-definable classes of structures are
not equivalent. Indeed, for Σn-definable classes, the relevant large cardinals
are the exact cardinals:

Definition 8.4 [7]. Given a natural number n, an infinite cardinal κ is
n-exact for some cardinal � > κ if for every A ∈ V�+1, there exist a cardinal
κ′ ∈ C (n) greater than �κ, a cardinal �′ ∈ C (n+1) greater than �, an X 	
Hκ′ with Vκ ∪ {κ} ⊆ X , and an elementary embedding j : X → H�′ with
j(κ) = � and A ∈ range(j).

If we further require that j(crit(j)) = κ holds, then we say that κ is
parametrically n-exact for �.

The characterization of ESR for Σn-definable classes of structures in terms
of exact cardinals is now given by the following:

Theorem 8.5 [7]. The following statements are equivalent for all cardinals
κ and all natural numbers n > 0:

(1) κ is the least cardinal such that Σn+1(Vκ)-ESR(κ, �) holds for some �.
(2) κ is the least cardinal that is n-exact for some �.
(3) κ is the least cardinal that is parametrically n-exact for some �.

The strength of weakly n-exact and n-exact cardinals, and therefore also
of their corresponding equivalent forms of ESR, goes beyond VP, for as
shown in [7] they imply the existence of almost huge cardinals:8 If κ < �
are cardinals such that κ is either parametrically 0-exact for � or weakly

8Recall that a cardinal κ is almost huge if there exist a transitive class M and a non-trivial
elementary embedding j : V →M with critj = κ and <j(κ)M ⊆M . We then say that a
cardinal κ is almost huge with target � if there exists such a j with j(κ) = �.
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parametrically 1-exact for �, then the set of cardinals that are almost huge
with target κ is stationary in κ. Also, if κ is parametrically 0-exact for some
cardinal � > κ, then it is almost huge with target �.

As for upper bounds, if κ is huge with target �, then it is weakly
parametrically 1-exact for �. Hence, Π1(V
)-ESR(
, �) holds for some

 ≤ κ and � > 
. Moreover, Π1(Vκ)-ESR(κ, �′) holds in V�, for some �′.
However, if κ is the least huge cardinal, then κ is not 1-exact for any cardinal
� > κ. The best upper bound for the consistency strength of exact cardinals
is given by the following:

Proposition 8.6 [7]. If κ is a 2-huge cardinal,9 then there exist an
inaccessible cardinal � > κ and a cardinal � > � such that V� is a model
of ZFC and, in V�, the cardinal κ is weakly parametrically n-exact for �, for
all n > 0.

As for direct implication, the best known upper bound for the existence
of exact cardinals is given by the following:

Proposition 8.7 [7]. Let κ be an I 3-cardinal,10 witnessed by j : V� → V� .
If l, m, n < �, then, in V� , the cardinal jl (κ) is parametrically n-exact for
jl+m+1(κ).

The existence of an I 3-cardinal is a very strong principle which implies the
consistency of n-huge cardinals, for every n, and much more (see [15, p. 24],
also [2, Theorem 7.1]). Yet even stronger large-cardinal principles bordering
the inconsistency with ZFC are implied by the following sequential forms
of ESR, also introduced in [7].

8.1. Sequential ESR. Let 0 < � ≤ � and let L be a first-order language
containing unary predicate symbols �P = 〈Ṗi | i < �〉.

Given a sequence �
 = 〈
i | i < �〉 of cardinals with supremum 
, an
L-structure A has type �
 (with respect to �P) if the universe of A has rank 

and rank(ṖAi ) = 
i for all i < �.

Given a class C of L-structures and a strictly increasing sequence �� =
〈�i | i < 1 + �〉 of cardinals, let

ESRC(��): (Sequential ESR) For every structure B in C of type
〈�i+1 | i < 1 + �〉, there exists an elementary embedding of a
structure A in C of type 〈�i | i < �〉 into B.

9That is, there is an elementary embedding j : V →M with M transitive, crit(j) = κ,

and j
2(κ)M ⊆M .

10That is, the critical point of a non-trivial elementary embedding j : V� → V� , for some
limit ordinal �. Then V� is a model of ZFC and the sequence 〈jm(κ) |m < �〉 is cofinal in �.
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The large-cardinal notions corresponding to sequential ESR are the
sequential analogs of weakly exact and exact cardinals (given in
Definitions 8.2 and 8.4). Namely,

Definition 8.8 [7]. Let 0 < � ≤ � and let �� = 〈�m | m < �〉 be a strictly
increasing sequence of cardinals with supremum �.

(1) Given 0 < n < �, a cardinal κ < �0 is weakly n-exact for �� if for
everyA ∈ V�+1, there are a cardinal �, a transitive, Πn(V�+1)-correct
set M with V� ∪ {�} ⊆M , a cardinal �′ ∈ C (n–1) greater than ��,
and an e. e. j :M → H�′ with A ∈ rangej, j(�) = �, j(κ) = �0, and
j(�m–1) = �m, all m.

If we further require that j(critj) = κ, then we say that κ is
parametrically weakly n-exact for ��.

(2) Given n < �, a cardinal κ < �0 is n-exact for �� if for every A ∈ V�+1,
there are a cardinal �, a cardinal κ′ ∈ C (n) greater than ��, a cardinal
�′ ∈ C (n+1) greater than �, anX 	 Hκ′ withV� ∪ {�} ⊆ X , and an e.
e. j : X → H�′ withA ∈ rangej, j(�) = �, j(κ) = �0, and j(�m–1) =
�m, all m.

If we further require that j(critj) = κ, then we say that κ is
parametrically n-exact for ��.

Then we have the following equivalences:

Theorem 8.9 [7]. Let 0 < n < �, let 0 < � ≤ �, and let �� = 〈�i | i < 1 + �〉
be a strictly increasing sequence of cardinals.

(1) The cardinal �0 is weakly n-exact for 〈�i+1 | i < �〉 if and only if
Πn-ESR(��) holds.

(2) If �0 is weakly parametrically n-exact for 〈�i+1 | i < �〉, then Πn(V�0
)-

ESR(��) holds.

Also:

(1) The cardinal �0 is n-exact for 〈�i+1 | i < �〉 if and only if Σn+1-ESR(��)
holds.

(2) If �0 is parametrically n-exact for 〈�i+1 | i < �〉, then Σn+1(V�0
)-

ESR(��) holds.

In the case of finite sequences �� of length n, the sequentially 1-exact
cardinals correspond roughly to n-huge cardinals. More precisely [7]: If κ
is an n-huge cardinal, witnessed by an elementary embedding j : V →M ,
then κ is weakly parametrically 1-exact for the sequence 〈jm+1(κ) |m < n〉.
Also, if κ is a cardinal and �� = 〈�m | m ≤ n〉 is a sequence of cardinals such
that κ is either weakly 1-exact for �� or 0-exact for ��, then some cardinal less
than κ is n-huge.
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As for infinite sequences �� = 〈�m |m < �〉, there is a dramatic increase in
consistency strength, as shown by the following facts proved in [7]: Let � be
the supremum of �� and let κ < �0 be a cardinal. If κ is either weakly 1-exact
for �� or 0-exact for ��, then there exists an I 3-embedding j : V� → V�. Also,
if κ is either parametrically weakly 1-exact for �� or parametrically 0-exact
for ��, then the set I 3-cardinals is stationary in κ.

To prove the existence of a weakly parametrically 1-exact cardinal, for
some infinite sequence ��, the best known upper bound is an I 1-cardinal11

[7]: If κ is an I 1-cardinal and k > 0 is a natural number, then κ is weakly
parametrically 1-exact for the sequence 〈jk(m+1)(κ) |m < �〉. In particular,
for k = 1, κ is weakly parametrically 1-exact for 〈j(m+1)(κ) |m < �〉, hence
Π1(Vκ)-ESR(��) holds.

Many open questions remain (see [7]), the most pressing one being the
consistency with ZFC of the principle Σ2-ESR(��) for some sequence �� of
length �.

§9. Summary. The following tables summarize the results exposed in
previous sections. Presented in this form, the equivalences between the
various kinds of SR and (mostly already well-known) different large cardinal
notions illustrate the fact that SR is a general reflection principle that
underlies (many stretches of) the large cardinal hierarchy, thus unveiling
its concealed uniformity. Table 1 encompasses the region of the large-
cardinal hierarchy comprised between supercompact and VP, Table 2 the
region between strong and “Ord is Woodin,” and Table 3 the region between
globally superstrong and C (n)-globally superstrong, all n. The tables are

Table 1. Between supercompact and VP.

Complexity SR

Σ1 ZFC
Π1, Σ2 Supercompact
Π2, Σ3 Extendible

Π3, Σ4 C (2)-Extendible
...

...

Πn , Σn+1 C (n–1)-Extendible
...

...

Πn , all n VP

11That is, the critical point of a non-trivial elementary embedding j : V�+1 → V�+1 for
some limit ordinal �.
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Table 2. Between strong and “Ord is Woodin”.

Complexity PSR

Σ1 ZFC
Π1, Σ2 Strong
Π2, Σ3 Π2-Strong
Π3, Σ4 Π3-Strong
...

...

Πn , Σn+1 Πn-Strong
...

...

Πn , all n Ord is Woodin

Table 3. Between globally superstrong and C (n)-globally
superstrong, all n.

Complexity SPSR

Σ1 ZFC
Π1, Σ2 Globally Superstrong

Π2, Σ3 C (2)-Globally Superstrong

Π3, Σ4 C (3)-Globally Superstrong
...

...

Πn , Σn+1 C (n)-Globally Superstrong
...

...

Πn , all n C (n)-Globally Superstrong, all n

Table 4. SR relative to inner models.

Class Inner Model M SR(M )

Σ1 Any ZFC
C L 0� exists
CX L[X ] X� exists
CU L[U ] 0† exists
CUX L[U,X ] X † exists
...

...
...

read as, e.g., Γ-SR for Γ being Π1 or Σ2 is equivalent to the existence of
a supercompact cardinal (Table 1). For the boldface definability classes we
have the equivalence of Γ-SR with a proper class of the corresponding large
cardinals. In the limit cases, i.e., VP in Table 1, “Ord is Woodin” in Table 2,
andC (n)-globally superstrong, all n, in Table 3, the lightface and the boldface
versions are equivalent.
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Table 5. Small large cardinals.

Complexity SR– SR– + GCH

Σ1(PwSet), Σ2 Weakly shrewd
Σ1(Cd )∗ Weakly inaccessible Inaccessible
Σ1(Cd, α-WI )∗ α-Weakly inaccessible α-Inaccessible
Σ1(Rg)∗ Weakly Mahlo Mahlo
Σ1(Cd,WC )∗ Weakly compact

Table 6. From almost remarkable to virtually C (n)-extendible.

Complexity GSR GSR+No �-Erdös in L SGSR

Π1, Σ2 Almost- Remarkable
Remarkable Almost-remarkable

Weakly remarkable
Πn , Σn+1 Almost- (n + 1)-Remarkable

n-remarkable Virt. C (n)-Extend.

Table 7. Beyond Vopěnka’s Principle.

Complexity ESR

Π1 Weakly 1-exact
(Between almost huge and huge)

Πn Weakly n-exact
(Consistency-wise below 2-huge)

Σn+1 n-Exact
(I3-embedding is an upper bound)

Table 8. Beyond I3-cardinals.

Complexity ESR(��), lh(��) = � + 1 ESR(��), lh(��) = �

Π1 Weak. 1-exact for �� of lh. � Weak. 1-exact for �� of lh. �
(Implied by �-huge) (Implies I3-cardinals.

I1-cardinal an upper bound)
Πn Weak. n-exact for �� of lh. � Weak. n-exact for �� of lh. �
Σn+1 n-Exact for �� of length � n-Exact for �� of length �

We also have the equivalence between Π1-PSR1 and the existence of a
measurable cardinal (Theorem 5.21).

Table 4 summarizes the results on SR relative to inner models. The classes
C, CX , CU , and CUX are defined in Section 4.1. Similar results should hold for
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canonical inner models for stronger large cardinals, and their corresponding
sharps.

Tables 5 and 6 summarize the results characterizing large cardinals of
consistency strength below 0� in terms of restricted SR and generic SR,
respectively.

Finally, Tables 7 and 8 cover some equivalences in the region above
Vopěnka’s Principle.
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cardinals, and the weak proper forcing axiom. Archive for Mathematical Logic, vol. 56 (2017),
nos. 1–2, pp. 1–20.

[5] J. Bagaria, P. Koellner, and H. Woodin, Large cardinals beyond choice, this Journal,
vol. 25 (2019), no. 3, pp. 283–318.
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