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Abstract

A unified study is undertaken of finitely generated varieties HSP(_P) of distributive lattices with un-
ary operations, extending work of Cornish. The generating algebra P_ is assumed to be of the form
(P; A, v, 0, 1, {/M)), where each /M is an endomorphism or dualendomorphism of (P; A, V, 0, 1), and
the Priestley dual of this lattice is an ordered semigroup N whose elements act by left multiplication to
give the maps dual to the operations /M. Duality theory is fully developed within this framework, into
which fit many varieties arising in algebraic logic. Conditions on N are given for the natural and Priestley
dualities for HSIP(P) to be essentially the same, so that, inter alia, coproducts in M§IP(_P) are enriched
D-coproducts.

1991 Mathematics subject classification (Amer. Math. Soc): primary 06D05; secondary 06D25, 03G20,
08B99.
Keywords and phrases: Priestley duality, natural duality, free algebra, monoid.

1. Introduction

This is the first of a series of papers developing the duality theory of varieties of
distributive lattices with additional unary operations. Particular varieties of this type
first attracted attention as algebraic models in non-classical propositional logic (Kleene
and de Morgan algebras, for example). They have since been studied extensively as
algebraic structures of interest in their own right, as indicated for example by the
numerous papers by Blyth, Varlet and others on Ockham algebras (the simple case
in which we have a single unary negation operator satisfying de Morgan's laws).
Furthermore, these varieties have provided instructive examples through which the
theory of natural dualities has been much advanced.

Natural duality theory has been most extensively developed for classes s# of the
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166 H. A. Priestley [2]

form i§IP(P), where P_ is a finite algebra. Surveys of this theory can be found in
[15, 26, 10]. It was shown in [17] that the basic theory extends to classes QSPQl),
where U is a finite set of finite algebras of the same type. This generalised theory
allows us to work with a variety rather than a quasivariety even where these do
not coincide, and at no more cost than greater notational complexity. However, as
a concession to readers not yet familiar with the theory in its full generality, we
restrict attention in this paper to classes expressible as IS1P(_P), deferring to [31]
the more general cases DS(P(TI) and H§P(TI)> for a finite set U. of algebras. Even
when s/ := HSIP(P) ^ DSP(P), study of the quasivariety DSP(P) suffices for the
determination of free algebras in si'.

A systematic study of distributive lattices with additional unary operations each of
which is either an endomorphism or dual endomorphism was undertaken some years
ago by Cornish in [11, 12]. These works provide the setting for our investigations
and the starting point for them. Under Priestley duality, the algebraic operations
correspond to maps on the dual spaces, which are order-preserving or order-reversing
depending on whether the operation is an endomorphism or a dual endomorphism.
Cornish exhibited many examples in which the dual maps are given by the continuous
action of a monoid, whose elements are tagged with + (corresponding to an endo-
morphism) and " (dual endomorphism). He then went on to develop a general theory
of ±-monoids to encompass these examples, within a lattice framework in [11] and
in a much wider and more categorical setting in [12].

Cornish considers principally varieties which are generated by a finite algebra
whose underlying lattice is Boolean, treating other varieties of interest as subvarieties
of these. We elect to consider many such subvarieties in their own right. Given such a
variety, the Priestley dual, N, of its generating algebra, P_, is a finite poset, acted on by
a set of self-maps. We show that in many important cases these maps on N are indexed
by the points of N, and given by a semigroup action of A' on itself. The elements of
N are tagged + and ~, to indicate the type of algebraic operations on P_ to which they
correspond; to each ±-element there are two associated fundamental operations, one
endomorphism and one dual endomorphism, and these are linked by a pair of identities
(see Theorem 2.6). We call such structures N = (N; •, e, N+, N~, ^) weak ordered
^-semigroups (the formal definition is given in Section 2). They extend Cornish's
±-monoids in three ways:

(i) a partial order replaces Cornish's tacit discrete order;
(ii) a right identity, rather than an identity, is postulated;

(iii) the sets N+ and N~ are not required to be disjoint.

Reversing the process, we can show that every finite weak ordered ±-semigroup N
gives rise to a variety s/K, generated by the algebra P_ dual to N. We reveal that
N determines in a very direct way a Priestley duality and a natural duality for s/N,
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and thence the free algebras and coproducts in stf™. Our work was motivated by, and
subsumes, the work on Ockham algebra varieties in [22, 17, 25, 1] and (almost) that
on Lukasiewicz algebras in [28].

In this paper we set up the general framework and present examples. These include
varieties in the following overlapping classes:

• varieties generated by finite subdirectly irreducible Ockham algebras (Stone al-
gebras, Kleene algebras, de Morgan algebras, MS-algebras,...);

• double MS-algebras, double Stone algebras, linked weak double Stone algebras
[34];

• regular a-de Morgan algebras [9], involutive Stone algebras [9], Kleene-Stone
algebras [23];

• 3-valued Lukasiewicz algebras, and, with an extension of the definitions, n -valued
Lukasiewicz algebras.

If we are given one of these classes as a variety HSP^P), for some finite algebra P_,
then we can immediately fit it into our general scheme. If, alternatively, it is given
equationally, then to encompass it we need to draw on information already available in
the literature: we require the subdirectly irreducible algebras, and a restricted Priestley
duality. In certain cases we also have to switch to a different, but equivalent, set of
operations to bring the given variety under our umbrella. However, once our variety
has been recognised as a variety ,K/N, we can instantly describe its free algebras, which
may have previously been obtained by algebraic or Priestley duality methods, or may
be hitherto unknown. We stress that our method treats all varieties of the type &/N in
a uniform way. A significant merit of working at the level of generality that we do is
that results which originally looked specific to individual varieties can be re-cast in a
form which reveals that they stem directly from the structure of the semigroups which
determine the varieties. Compare, for example, Lemma 4.4 below with Lemma 3.4 in
[17]. We note that, although Cornish mentions many of the varieties above, he does
not treat them intrinsically. His work also pre-dates the development of the theory
of natural dualities as it applies to these varieties, so that this topic is not covered at
all in [12]. We are able to show that the condition that N be a monoid in which right
multiplication is always order-preserving is exactly that required to ensure that #/N has
natural and Priestley dualities with especially nice properties in relation to coproducts
and free algebras; see Theorem 4.13. Our later papers [31, 29, 30] are concerned
with dualities and identities. In [31] we look at natural dualities in more detail and
show how to derive natural dualities for arbitrary subvarieties, and thereby how to
obtain equational bases for them. This extends to the setting of the present paper the
work carried out for Ockham varieties in [1] and [27], and for individual varieties of
double MS-algebras in [33]. In [29] we reveal an algorithmic relationship between
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the identities satisfied by a finite algebra and the axiomatic theories of the structured
Priestley spaces of algebras in the generated variety. In [31] and in [30] we focus
on one example as an illustration: the variety DMS of double MS-algebras. Here
we have two related but non-commuting Ockham negation operators. The natural
duality for DMS is based on a 5-element schizophrenic object, which is small enough
to analyse with ease, yet is sufficiently complex to show up through its subvarieties
important features of the theory which do not emerge in examples previously studied.
Three chapters of Blyth and Varlet's book Ockham algebras [6] are devoted to DMS
and its subvarieties, using algebraic methods and a little Priestley duality. We obtain
comprehensive results on the natural dualities, and are able in [29] to amplify and
elucidate Blyth and Varlet's results in a significant way. However our principal reason
for choosing this example for detailed study is its suitability for illustrating the general
theory.

The author would like to acknowledge the assistance of Raquel Santos in the
preparation of this paper. In particular, her detailed work on piggyback dualities for
DMS subvarieties in [33] helped lead the way to a number of the general results
presented here.

2. Varieties associated with semigroups

This section is essentially a synthesis and refinement of results of Cornish in [11]
and [12] concerning the action of monoids on distributive lattices and their dual spaces.
Many specialisations of these results are well known, notably for varieties of Ockham
algebras.

We first establish our conventions regarding the action of semigroups. Let (TV; •)
be a semigroup and let 5 be a set. A left action of the semigroup N on S is a map
(fi, y) h-> My for which x("v) = XMy for all y e 5 and A., /x e N. Likewise, a right
action of the semigroup N on S is a map (/x, y) H-> yM such that (yx)M = yM\ On N
itself, the left and right multiplications define left and right actions:

(/A, V) H> MV : = /A, • V,

(/x, v) \-> vM : = v • fi.

We shall wish to take as our fundamental object a semigroup N with the action of
left multiplication. The objects of our dual category, &, will be spaces with a left
Af-action, and N itself will be a member of &. We shall write gM(y) for My (y e Y,
Y e &), so the maps gM compose according to the rule gkll = g^ o gM. The operations
of the corresponding algebraic category should then be given by a right action, since
Priestley duality is set up by contravariant functors. This is not unnatural, since
unary operations are frequently written to the right of their arguments: a+, a° for the
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operations of a DMS-algebra, for example. Notwithstanding, we shall often write
f^ia) for aM, remembering that fkll = /M o fx. These conventions give a familiar
look to the results of this section and the next, and to the theory in [29]. We stress
that Cornish elects to use categories with the semigroup multiplication and actions
reversed, so that, for example, we have left ideals where Cornish has right ideals, and
below we write D-N where Cornish would write N-BD.

We now briefly recall Priestley duality as it applies to categories of distributive
lattices with additional operations. Let srf be a class of algebras (not necessarily a
variety) whose members are algebras A_ = (A; A, v, 0, 1, F) where (A; A, V, 0, 1)
belongs to the variety D of bounded distributive lattices and F is a set, indexed by
a fixed set (later a semigroup), N, of unary operations each of which defines either
an endomorphism or a dual endomorphism of (A; A, v, 0, 1). Throughout, we shall
only be concerned with bounded lattices, and maps between lattices will always be
assumed to preserve these bounds. We shall usually write A rather than A, where
the context makes it clear whether we are referring to the algebra, to its D-reduct or
to its underlying set. Indeed in places it is hard to maintain an entirely consistent
usage without undue pedantry. We retain underlining when we need to distinguish the
different persons of a schizophrenic object, and when it seems helpful for emphasis.

There is a dual category equivalence between D, qua category, and the category P
of Priestley spaces (compact totally order-disconnected spaces); see, for example, [15]
or [26] for the duality as it is formulated here, or [18] for a more elementary account.
The duality is given by hom-functors H : D -* P (hom-ing into the 2-element chain
2 in D) and K : P —> D (hom-ing into the discretely topologised 2-element chain 2̂
in P), so that

H(A) := D(A, 2) and K(Y) := P(Y, 2),

# ( / ) : = : - o / and K(<p) := - ocp.

Where we need to make explicit the order, ^ , and topology, 2?, of the dual space
H{A) of A then we write (H(A); 0?, ^ ) . At the object level, the equivalence means
that, given A e D, we have A = KH(A), where the isomorphism kA is given by
evaluation. It is common to suppress kA and to identify A with KH(A), so writing
synonymously a(y) and y(a) (a € A, v e //(A)). We shall frequently do this.

Morphisms in D correspond (contravariantly) to continuous order-preserving maps
in P. Note that the order dual, Ad, of A has dual space (H(A), &, ^ ) , where
(H(A); S7, ;Q is the dual space of A. Therefore dual homomorphisms between
objects in D correspond to continuous order-reversing maps between the dual objects
in P.

Now assume srf is a class of algebras of the same type, each with a D-reduct. The
D-reduct of srf is dually equivalent to a full subcategory of P. We afforce the objects
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of this subcategory with continuous order-preserving and order-reversing maps to
correspond to the algebraic operations in si', and restrict the morphisms appropriately.
We thereby obtain a dual equivalence between si and a category ty** of structured
Priestley spaces; we again denote the functors setting this up by H and K. We then
have the following theorem, originally obtained in [11] and given in [12, Section 6.3].

THEOREM 2.1. Let N = N+ \J N~ be a fixed set. Let si be a class of distributive-
lattice-ordered algebras (A; A, V, 0, 1, FN), where FN = {/M \ fi e N] is such that
/M defines an endomorphism for each /x e N+ and /M defines a dual endomorphism
for each \x e N~. Then there is a duality, set up by (the restrictions of) H and K,
between si and a category <3^s/ whose objects are of the form (Y; GN), where Y is a
Priestley space and GN = {gM \ fi € N) defines a set of continuous maps from Y to
Y such that gM is order-preserving (order-reversing) if /M is an endomorphism (dual
endomorphism). The morphisms of W^ are the continuous order-preserving maps
commuting with the maps g^, for fj, € N. Furthermore, for A € si,

\a(glt(x)) forneN+,
f(a)(x) {

for alia e A and x e H(A).

In the cases in which we shall be interested the set of operations FN on the algebras in
si can be chosen (generally redundantly) in such a way that the maps gM on any given
dual space H(A) form a monoid, or just a semigroup, under functional composition.
Cornish [12, 5.1] defines a ±-monoid to be a structure N = (N; •, e, N+, N~) such
that

(Ml) (N; •, e) is a monoid;
(M2) N = N+ U AT;
(M3) for CT, T € {±}, N" • Nr c NaT;
(M4) N+ n N~ = 0.

Here the multiplication on {+, —} is the expected one, so that, for example, N+ • N~ c
N~. If (M4) is omitted, then N = (N; -, e, N+, N~) is said to be a weak ±-monoid
([12, 5.9]). We define a (weak) ̂ -semigroup analogously, assuming now merely that
e is a (distinguished) right identity. Note that e must belong to N+, by (M3). The
reason for insisting that there be a right identity will be seen in Section 3.

Given a ±-semigroupN we can associate a class D-N of algebras (A; A, v,0, 1, FN)
such that (A; A, V, 0, 1) is a distributive lattice with 0, 1 and the fundamental oper-
ations FN = {/M | /I e iV} of A are indexed by N in such a way that /M is an
endomorphism if /u, e N+ and a dual endomorphism if fx € N~. Additionally we
require that fx o /M = fa for all A, /x e N and that fe — id (if N is a monoid). In
a similar way we define the category N-P consisting of structures which are Priestley
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spaces on which a semigroup of maps g^ifi e N) acts on the left in a continuous man-
ner, with gk o gM = gkll and with g^ order-preserving if /x e N+ and order-reversing
if \i e N~. Morphisms in the two categories are morphisms of the D- and P-reducts
which preserve the semigroup action.

THEOREM 2.2 (cf. [12, 6.3.6]). For any ±-semigroup N the functors H and K set
up a dual equivalence between D-N and N-P.

As an example, we cast the well-known restricted Priestley duality for Ockham
algebras in its monoid form. Recall that the variety O of Ockham algebras consists
of algebras (A; A, v, 0, 1, ~) where (A; A, v, 0, 1) e D and where, for all a, b in A,

~ (a A b) = ~ flV~6, ~ (a V b) = ~ a A ~ &, ~ 0 = 1, ~ 1 = 0.

The dual category W0 (of Ockham spaces) consists of spaces (Y; g) where Y e P
and g is a continuous order-reversing map, with morphisms all continuous order-
preserving maps commuting with g. Here ~a on A and g on H(A) are linked by
(~a)(jc) = 1 - a(g(x)) for all a e A, x e H(A).

We can alternatively (but equivalently) regard each A e O as being equipped not
with the single operation ~ but with the family of operations {~* | k — 0, 1, 2 , . . . } .
In the corresponding description of the dual category, the objects would be the spaces
(Y; {gk | k = 0, 1,...}), where Y and g are as above. We now see that the variety of
Ockham algebras may be identified with D-N, where N = {gk | k = 0, 1, 2 , . . .} is
the monoid freely generated by g, and

W+ = {g
2n |n = 0 , 1 , . . . } , N~ = {g2"+i | n = 0, 1,...}.

We shall henceforth regard O and <¥° as being in their revamped, monoid-oriented,
forms with an infinite family of operations.

We remark that the duality theory that we develop below in the context of finite
semigroups does extend under certain circumstances to varieties associated with in-
finite semigroups. This happens for O, as the analysis in [22, 20] indicates. However,
such varieties are rare, and topological considerations intrude. Therefore we restrict
henceforth to finite semigroups in this paper.

Suppose srf c D-N and t3fB* c N-P are dual categories as in Theorem 2.1. Then
identities satisfied in the class srf will correspond to certain inequality restrictions on
the maps {gM \ (i e N}. In [29] we show that this translation process can be carried
out in a uniform and algorithmic way. The forms of identity we wish to consider at
this stage are covered by the theorem below. For more in the same vein, see [12,
Theorem 6.4.5].

THEOREM 2.3 (from [12, Theorem 6.4.5]). Let si and ^ be as in Theorem 2.1.
Let k, ft e N.

https://doi.org/10.1017/S144678870000063X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000063X


172 H. A. Priestley [8]

(i) Ifk,/x both belong to N+ or both belong to N~ then fk(a) = f^(a) holds
identically in srf if and only ifgk = gM holds on all spaces in <&**.

(ii) If\x € N+ and X e AT then /M(a) A fk(a) = 0 and /M(a) V fk(a) = 1 hold
identically in stf if and only if gk = g^ holds on all spaces in '

We deal principally with finite algebras. An algebra P_ with a D-reduct is finite if
and only if its dual H(P) is finite, and carries the discrete topology (which we always
denote by r). Also, any finite partially ordered set becomes an element of P if it is
given the discrete topology; we shall assume finite sets to carry this topology where
the context presupposes a topology. Note further that any map defined on a finite
object in P is automatically continuous.

We now come to the core of our approach. We are interested in varieties (or
more generally quasivarieties) which are finitely generated. We therefore have a class
s/ — H§P(P) or srf = DSIP(P), where P_ is a finite non-trivial algebra, and whose
Priestley dual space, H(P), is a finite poset with the discrete topology, equipped with
a family of order-preserving and order-reversing maps. Suppose that the operations
{/M} of _P are indexed by the points of N := H{P), and let gM be the map dual to
/M, as in Theorem 2.1. We shall shortly look at some examples. In each of these, N
becomes a ±-monoid when monoid multiplication • is defined by

(fi, v e N),

and elements of N are assigned to N+ and A7" as follows:

ix e N+ if and only if /M is an endomorphism,

yu. 6 A7~ if and only if /M is a dual endomorphism.

(In a non-trivial algebra /M cannot be simultaneously an endomorphism and a dual
endomorphism.) Further, the order and the multiplication on N satisfy

(M5) for all /x, vu v2 e N,

. ,. [MVI ^ fiv2 if ix e N+,
V[ ^ v2 implies <

[ > IXV2 if IX £ N~.

We shall say that the structure N = (N\ •, e, N+, N~, ^) is a (weak) ordered ±-
semigroup if (N; •, e, N+, N~) is a (weak) ±-semigroup and the multiplication and
order are linked by (M5). We denote the class of all finite ordered zt-semigroups by
M, and all finite weak ordered ±-semigroups by J/'. We shall subsume Cornish's
theory within ours by regarding any ±-monoid in his sense as being equipped with the
discrete order, so making it an ordered ±-monoid in our sense. We may also obtain
from N e ^ K a weak it-semigroup N= by forgetting the order.
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Given any N e M (or more generally N e Jf satisfying (M4)) we have, as
indicated above, an algebra we shall henceforth denote by P^ (dropping the superscript
where N is understood). We shall see below (Proposition 3.5) that when N is a
discretely ordered ±-monoid we have H§[P(_PN) = D-N. So, extending our earlier
notation, we let D-N := H§P(_PN), and let N-P be the dual category. The latter
contains (N; {gM}M<=/vX which, by an abuse of notation, we shall denote by N. Where
D-N is some familiar variety srf we shall sometimes write N^ rather than N. Note that
the same algebra _P can arise as P^ for several different structures N, for two reasons.
We have specified a distinguished right identity e in our semigroup. In general, there
will be more than one choice; see 2.8(4) for an example. Also, having specified N as
a weak ±-semigroup, there may be different ways to impose the order. The variety K
of Kleene algebras gives the simplest example; see 2.4(1).

We now turn to the promised examples. Here, and in many examples we present
subsequently, the N= versions of the monoids N e / appear in [12]. In diagrams of
weak ordered ±-semigroups we indicate the subsets N+ and N~ by ± tags against the
points.

2.4. Examples. (1) de Morgan, Kleene and MS-algebras. The variety M of de
Morgan algebras is the subvariety of O consisting of algebras satisfying ~2a = a.
The corresponding dual category ^ M consists of those Ockham spaces (Y; g) for
which g2 = id. The variety M is D§P(M) = H§P(M), where M is the Boolean
lattice {0, a, b, 1}, on which ~ is defined to fix a and b and interchange 0 and 1. The
dual of M_ may be identified with the discretely ordered ±-monoid N = {1, g} in
which g2 = 1, and M = D-N. See [12, 4.11 and 6.3].

The variety K of Kleene algebras is the subvariety of M consisting of algebras
satisfying a A ~a ^ b v ~b. The dual category was first identified by Cornish and
Fowler in [13] as the full subcategory of ^ ° consisting of spaces (Y; g) such that
g2 = 1 and such that Y = {x e Y \ x sC g(x)} U {x e Y \ x > g(x)}. The variety K
is generated (via DSP or IH1SP) by K_, the 3-element chain 0 < a < 1 with ~<z = a.
The dual H(KJ can be thought of as the ordered ±-monoid NK, as shown in Figure
l(a). Alternatively we may switch the two points, placing 1 at the top.

In a similar manner, the variety of MS-algebras (cf. Cornish's 'polar algebras' ,[12,
6.3]) is derived from the ordered monoid N1^ shown in Figure l(b). The associated
discretely ordered monoid N^s gives rise to the Ockham variety P3, i (= Ku i); see 2.5.

(2) Double MS-algebras. The variety DMS of double MS-algebras consists of
algebras (A; A, V, 0, 1, °, +) such that (A; A, v, 0, 1, °) is an MS-algebra,
(A; A, V, 0, 1, +) is a dual MS-algebra, and the identities a°° = a°+ and a++ = a+°
hold. The variety DMS of double MS-algebras is identifiable with D-N, where the
associated ordered ±- monoid has two generators, and is the monoid M(a, j6) of [12,
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+ ? g

— O 1 =

(a)NK

FIGURE 1

5.7], (with g, h replacing a, fi), and ordered as shown in Figure 2. Specifically,

N = {l,g,g2,h,h2} where gh = g\ hg = h\ g3 = g, h* = h.

+ ? r

+

+

1

h2

~ 6 h

FIGURE 2. NDMS

Now let us take as our starting point an arbitrary finite ordered semigroup (N\ ^ ) ,
with right identity e. Define maps gM : N —> N by left multiplication: gM(v) :=
(j.v. We should like to form an algebra _P = (P; A, v, 0, 1, {/M}Mew) whose dual is
(N; {g^}). To do this we wish to assign the elements of N to disjoint sets N+ and N~
so that g^ is order-preserving for /LA e N+ and order-reversing for [i e iV~, and then
to link /M and gM according to the formulae in Theorem 2.1. Define

N + + := {/x e N

N := {/u, e N

is order-preserving},

is order-reversing},

and try to define N+ = A^++ and N~ = N'~. Provided A^++ n N" = 0 then
(A ;̂ •, e , N+, N~) is indeed a ±-semigroup, and by construction, (M5) holds.

Now assume we have a finite structure (N; •, e, N++, N~~, ^ ) , where N++ and
Â  are defined as above, but with Af++ D N ^ 0. Can we associate to this an
algebra whose D-reduct has Priestley dual N, and whose operations are determined
dually by the left semigroup action on A7? The problem is to decide how we should
associate operations to the points /x e N++ ON . Naively, we might try to overcome
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this difficulty simply by requiring /M for /u, € N++ n N to be both an endomorphism
and a dual endomorphism. However, as already noted, this is impossible in a non-
trivial algebra. We might try instead to select disjoint sets N+ and N~ such that

N = N+\JN~, iV+ciV++, N~ c N~,

to make (N; -, e, N+, N~, ^ ) a member of ^ # . Suppose, to take an extreme case,
that N is discretely ordered (equivalently, K (N) is a Boolean lattice). Then N++ =
N = N, so that the sets N++ and N , far from telling us exactly how to assign
elements of N to N+ and N~, give us no indication at all how this should be done.
Certainly we could choose N+ = N, N~ = 0 and get a ±-semigroup (in Cornish's
terminology ([12, 5.1]) we would say N is improper). However this may not lead to
D-N being a variety we wish to study. This is exactly the situation arising in the Pm,«
example below, where it is knowledge of the variety that tells us to seek to place the
generator g of N into N~, and to assign the remaining elements as dictated by (M3).
We shall see that this sometimes leads to an assignment of points to A7"1" and N~ which
is incompatible with the semigroup multiplication.

2.5. Example. The Ockham varieties Pm n. The defining identities within O for
the variety Pm „ are:

for m — n even: ~ m a = ~"a,

f AA | ~ m « A ~ " a = 0,
for m — n odd: <

|~mflV~"fl = 1.

For m — 2 and n = 0 we have the variety M = P2,o of de Morgan algebras.
Theorem 2.3 provides the well-known dual category ^p"'•": it is the full subcategory
of <3/° consisting of spaces (Y; g) on which gm = g".

As is well known, P m n = ISP(P) = HSP(Z) where H(P) is an m-element
antichain. This may be considered as the discretely ordered monoid

A/ — l i p a"1"1) w i th em — p"

Here the cases m — n even and m — n odd diverge. Consider m — n even. Take

N+n = {gk € Nm,n | k even} and N~n = {gk € Nn.n \ k odd}.

This makes Nm<n into an ordered ±-monoid N m n , and P m n = D-Nmn.
Now assume that m — n is odd, and write N for Nmn. Again we wish g to

correspond to a dual-homomorphic negation, so must assign g to N~. Then the rule
Na • Nr c Naz forces us to take gk € N~ for k odd and gk e N+ for k even. Thus
g" = gm forces g" to lie both in N + and in N~. Thus the semigroup multiplication
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o o o
1 g g"

FIGURE 3. Np™" = Nm „ (m - n even)

is incompatible with an assignment of the elements of N to disjoint sets N+ and N~
according to condition (M3) if we demand g e N~.

The preceding example shows that weak ordered ±-semigroups cannot be used in
the same simple way that ordered ±-semigroups can. We now revert to generalities,
and seek to broaden our definitions in order to fit this example and others like it into
our semigroup framework. Let us look more closely at the example P m n (m — n odd).
The clue on how to proceed is to be found in a simple observation about Ockham
algebras, namely that (2m — n) — n is even and the inclusion P m n c P(2m_n),n holds.
Dually this comes from the fact that

gm=gn implies g2m-" = g"+m-" = gm = g";

algebraically it is the statement that P m n lies in the Berman class Km_nn. Define a
map

-* if k < m,

,k-m+n if m<:k < 2m-n,

from N{2m-n).n onto Nmn. Informally, we wind the 2{m — n)-element loop of N{2m-n),n
twice round the (m —n)-element loop of Nm „. The map F is a monoid homomorphism.
We may then define

(Nm,n)
+ := F((N(2m_nU)+) = {gk | k is even or n < * < m },

(Nm.ny := F((Ni2m.n).ny) = {gk\kisoddorn^k<m}.

±
O • • • O • • • O - , „ . . . , t O. O • • • O _ 0 _ , , - - - O
g g

—
o • • •
g

±
o
g"

Nm

±
0

.n

FIGURE 4

We may regard N := Nm.„ as the image of M := N(2m_n).„ under the M-P morphism
F. Thus N is certainly the dual of an algebra _P in D-M, which has operations {/M
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say. It is clear that F~l (v) consists either of a single point (if v = gk for k < n) or of
a pair of points, one in M+ and one in M~. If fX\ and fi2 are distinct points identified
by F then on _P the associated operations f^ and f" are linked by the identities
corresponding to g^ = g^ according to the rule given in Theorem 2.3. We thus have
two algebraic operations linked to points /x € N+ D N~, one an endomorphism and
the other a dual endomorphism.

Thus in building an algebra from N we are led to associate a pair of operations to
each point in N+ D N~ (one endomorphism and one dual endomorphism) and just
one to each point in the symmetric difference 7V+A7V~. To formalise this process we
proceed as follows. We take N = (N; •, e, N+, N~, ^ ) to be a finite weak ordered
±-sernigroup. Let C denote the 2-element cyclic group with elements ± 1 equipped
with the discrete order. Define

~N = (N+ x {1})U(AT x {-1}),

with order, ^ , and multiplication, •, inherited from N x C. With this multiplication,
N is a subsemigroup of N x C, and by defining N — N+ x {1} and N —
N~ x {—1} we make N into a ±-semigroup. Because N satisfies (M5) and the
order on C is discrete, N satisfies (M5) under its product order, ^ ' . Thus N =
(N; •, (e, 1), N , N , ^ ' ) is an ordered ±-semigroup, which we say is canonically
associated to N. Moreover, the natural projection map F from N onto N is an
order-preserving semigroup homomorphism with F(N°) = N" for a e {±}.

Given N e J¥ we define gv as. before to be left multiplication by v and define an
algebra P^ by taking the D-reduct of P_ to be K (N) and assigning operations /„ for
ix e N by

f(v.\)(a)(x) =a(gv(x)),

= 1 -a(gv{x)).

Define, on N, g^ = gv for /x e F \v) and, dually, on K(N),

7, =

These operations are well defined, and make N into an object in N-P and K (N) into
an algebra dual to it, _P in D-N. Furthermore, _P is term-equivalent to /^N.

Because the operations {gM}M£/v
 a c t o n N a s £M = gv for yu, € F~l(v), any two

operations / and f ^ coincide on /^N precisely when /x{ — /z2 or /z, = (v, e) and
ix2 = (v, 1 — s), where v € N and e € C. The equality of g~M| and gM2 leads to a
pair of identities linking ffii and /M, , according to Theorem 2.3. We have shown
that we may associate an algebra _PN to N by assigning an operation /M to each fx in
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N. Otherwise stated, we associate with each v € N+ D N~ a pair of operations, one
an endomorphism and the other a dual endomorphism, one linked to gv qua order-
preserving map and one linked to gv qua order-reversing map. The algebra .PN is the
one we shall henceforth associate to a given weak ordered ±-semigroup N. This is not
at variance with our usage for N e M, since then N = N, as ordered ±-semigroups.
We extend to the wider class ^Y the notations N for N thought of as a dual space
and N^ for a semigroup which acts, as in our discussion above, as the dual space of
an algebra generating a variety s/. Further, we define D-N := D-N, and let N-P be
the corresponding dual category of Priestley spaces with a continuous left N-action.
Again this does not conflict with earlier usage.

Since it is so central to our approach we sum up our preceding discussion in the
following theorem, streamlining the notation a little.

THEOREM 2.6. Let N be a finite weak ordered ^-semigroup, with canonically as-
sociated ordered -^-semigroup N. Then there exists a finite algebra

PN = (K(N); A, V, 0, 1, {/M
+W+, { / - W - )

in D-N such that HiP") = N and

(i) for all aeP" and all v e N,

f+(a){v) = a(jiv) for all n € N+,

for all n e N~;

(ii) _PN satisfies the identities

f+(a)Af-(a)=0 and f+{a)v f~{a) = 1,

whenever //, € N+ (~) N~.

Different weak ordered ±-semigroups may give rise to the same canonically as-
sociated ordered ±-semigroup. The disjointification of N+ and Af~ serves only to
allow us to define the algebraic operations on the algebra dual to a weak ordered
±-semigroup. It is the order of the original weak semigroup which determines the
identities that these operations are subject to.

The next clutch of examples is of varieties easily recognised to be of the type £^N

for N € Jf but which are not of the type .c/M for M e J{. The first example simply
records the conclusion of our discussion above.

2.7. Examples. (1) Pmn (m — n odd). Write N for the weak ordered monoid Nm „.
Then the ordered monoid N is isomorphic to N<2m-„>,„•
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(2) Stone algebras. The variety S of Stone algebras is D-Ns where Ns is as
shown in Figure 5(a). The canonically associated ±-monoid N is NMS.

(3) Double Stone algebras. The variety of double Stone algebras is D-NDS,
where NDS is as shown in Figure 5. The corresponding monoid N is NDMS.

± 9 8 = g2

+ 1 1

(a)Ns

± o g = g2 =

+ 6 1

± A h = h2 = hg

(b) ND S

FIGURE 5

(4) Linked weak double Stone algebras. This class of algebras was studied by
Sankapannavar in [34]. It forms a variety LWDS, derived from the same weak
±-monoid as in (3), but with the discrete order.

Various distributive-lattice-ordered algebras inspired by non-classical propositional
logics, and related to n -valued Lukasiewicz algebras, have been explored by Cignoli
and Gallego in [9]. The common feature of all these is a de Morgan negation linked
to an operation which preserves either v or A. Two classes of this type—involutive
Stone algebras and regular a-de Morgan algebras—are shown to be finitely generated
varieties which can be cast in the form ^/N.

2.8. Examples. (1) Regular a-de Morgan algebras. In [9], the variety R of
regular a-de Morgan algebras is defined equationally in terms of a de Morgan negation
~ and an operation a, and shown to be generated by an algebra with the 5-element
Kleene chain 0 < a < b = ~b < ~a = 1 as a reduct. On this chain, a acts as
a D-endomorphism sending a and b to 0 and ~a to 1. From this we see easily that
R = &fN, where N = NR is as shown in Figure 6.

.(2) Involutive Stone algebras. The variety of involutive Stone algebras can be
identified with D-N where the monoid N is

N = {l,n, g, gn} with n2 = n, g2 = 1, ng — n,

and the order and ± assignment are as shown in Figure 7(a). The canonically associ-
ated ordered ±-monoid is as shown in Figure 7(b).
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±

±

gm

m = m2 — mg

FIGURE 6. N R

— r.2

+ O (71, +1) - O (71,-1)

+ (1,+D ( l . - i )

+ 6 (gn,+l) - 6 (gn, -1)

(b)NIS

FIGURE 7

(3) Kleene-Stone algebras. MS-algebras provide a common generalisation of
de Morgan and Stone algebras. A different umbrella variety for the varieties K and S
has been studied by Guzman and Squier [23] under the name Kleene-Stone algebras.
It is shown in [23] that the subdirectly irreducible algebras in this variety, KS, are
the subalgebras of the 5-element chain equipped with (necessarily unique) unary
operations under which it is both a Kleene algebra and a Stone algebra. Therefore
KS = DSP(tf(N)) where N e jY is as shown in Figure 8(a).

Comparing the monoid diagrams for IS and KS we recognise KS as a subvariety of
IS: the space NKS is in NIS-P. Observe that the ordered monoid canonically associated
to NKS is the same as that associated to NIS.

(4) 3-valued Lukasiewicz algebras. Consider the monoid N shown in Fig-
ure 8(b). Notice that we have here a semigroup which fails to be a monoid. It is
the dual space of a double Stone algebra and the variety generated by P™ is a sub-
variety &/ of DS. It is well known that the members of the class srf are exactly the
3-valued Lukasiewicz algebras: the class srf can be characterised within DS as the
semi-simple algebras (see [9, Theorem 2.9], or [4, Theorem 5.1]). Alternatively, the
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= h2 =

8

± 6 gh

(a)NKS

FIGURE 8

Kleene negation can be captured through conditions on the complemented elements
(see [8], where attention is drawn to the import of the results on p. 220 of [2]).

Now consider the class Ln, of ^-valued Lukasiewicz algebras without negation,
for n > 3. When n = 3 we have seen that the Kleene negation can be captured in a
fortuitous manner when it is not included in the type. In the cases n = 4, 5 it is shown
in [9], Section 4, that the class Ln consists of those algebras which have reducts lying
in the subvarieties of IS and of R generated by an rc-element chain. This already
suggests that we may not be able to regard the variety Ln, even for n = 4, 5, as being
of the form ^/N, where N € jV.

Cornish presents in [12,5.4.11], a ±-monoid associated with Ln (and gives a similar
discussion for the variety Mn of n-valued Lukasiewicz algebras without negation). The
monoid M for Ln has 2n elements 1, ax,..., an_u a, aat,..., aan_x, with a1 = 1,
ata = aan_j and CT,<T, = CT,, for /, j < n — 1. The first n elements belong to M+,
the remainder to M~. The variety hn is generated by the n-element chain, whose
dual is the (n — 1)-element chain at < a2 < • • • < on_\, with the dual operations
given by the monoid multiplication. This makes the set ox,..., on_x into an element
N in J/. However we have no element to assign to a. We cannot circumvent the
difficulty by working with Mn instead, and giving every point a ±-label, since this
does not give the right algebraic identities. We are forced to concede that we must
think of a as an additional dual operation on N. Formally this can be done by taking
the NK-expansions of the categories N-P and D-N. We do not set up the associated
duality theory for structures of this sort, since varieties like Ln are relatively rare, and
can be treated directly by the piggyback duality method. We have studied in detail in
[28] natural dualities for the varieties Ln and Mn of n-valued Lukasiewicz algebras
with and without negation.

It is natural to ask whether every subvariety generated by a subdirectly irreducible
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algebra in a variety #?** is itself of the same type. We shall show below that this is
not the case, after we have discussed subdirectly irreducible algebras.

3. Properties of the variety #/N for N e ^V

The following lemma will be used both to reveal when the subdirectly irreducible
algebras in a variety &?N generated by a finite subdirectly irreducible algebra P™ are
always subalgebras of Pp

N, and also to tell us which relations we need to include in a
natural duality for g/N. We shall fix N e jV, and write _P in place of £]* and srf in
place of &/N. The Priestley dual category for srf is denoted <3/sa', as usual.

LEMMA 3.1. Let N e Jf. For each 11 e N, the map ^ : v H> Vfx is the dual of an
endomorphism wM : P_—> P_ if and only if it is order-preserving. In this case the dual
map A"(/?M) is given by wM(a)(v) = a(vfj.). Furthermore,

End .P = {Kirjn) | rjM is order-preserving].

PROOF. For any A, /x, v e N,

Thus »7M is an N-P-morphism so long as it is order-preserving.
Write MM := K(r)^). We have, for all a e P_ and v e N,

For the final statement, note that if <p is dual to an endomorphism of f_ then

<p(v) = <p(ve) = (p(gv(e)) = gv{<p(e)) = v(<p(e)),

so that <p = r)v(e).

Note the way in which on N we obtain duals of endomorphisms by right multiplic-
ation (under restricted conditions) and of operations by left multiplication.

Our next task is to extend to our setting some results on congruences and subdirectly
irreducible algebras proved in the ±-monoid setting by Cornish, subsuming results
obtained earlier by those who led the way by studying special cases.

PROPOSITION 3.2. (see [12, 9.6.3]) LetN 6 JV and let A e D-N. There is a lattice
anti-isomorphism between the lattice of closed N-closed subsets of H(A) and the
lattice of congruences of A given byT\-+@T, where

a=b(@T) if and only if a\T = b\T

for all a, b in A. {Here a subset of a space in N-P is N-closed if it is closed under the
action of the maps gv (v e N) on that space.)
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PROOF. Under Priestley duality, D-congruences correspond to topologically closed
subsets Y of H{A) under the mapping 0 r «-»• T, and 0 r is an D-N-congruence if and
only if Y is N-closed.

PROPOSITION 3.3. Let N e Jf. Then any subclass o/D-N has the Congruence
Extension Property.

PROOF. This is proved exactly as in [12, 8.21.4].

Mimicking the notation adopted by Goldberg [22] in the Ockham setting, we
shall write <G and M for the operators dual to H and §. (CEP) implies that (up to
isomorphisms) H and § commute, so <G and Ml do too.

The next result is immediate from Proposition 3.2.

PROPOSITION 3.4. ([12, 9.6.5]) Let N e Jf. Then a finite algebra A e D-N is
subdirectly irreducible if and only if there exists z e H{A) such that

In particular, the algebra P™ is subdirectly irreducible, with e serving as z.

For any z e Y, Y e N-P; we shall henceforth write {gM(z) \ /x e N] as Nz.
We now invoke the standard machinery of universal algebra (see, for example,

[7]). Any variety si generated by a finite algebra P_ with a distributive lattice reduct is
congruence-distributive. By Jonsson's Lemma, the set Si(si) of (isomorphism classes
of) subdirectly irreducible algebras in si is a subset of the set H§(P) of homomorphic
images of subalgebras of P_. Hence by Birkhoff's Subdirect Product Theorem and
BirkhofTs HSP Theorem,

Furthermore, given that (CEP) holds, the right-hand expression simplifies to give us
si = DSP(HCP)). In the case that every homomorphic image of P_ is a subalgebra
of P_, then we have si = 0SP(P). More precisely, iSP(F) <^ sf if and only if
(HOP) \ DS(P)) n Si(si) ^ 0.

The next result extends [12, Theorem 9.6.6]; see also [22, Corollary 2.9].

THEOREM 3.5. Let N e JV. Then the following hold.

(i) P_ € SiGO.
(ii) Si(.aO c

(iii) §(jP) c

https://doi.org/10.1017/S144678870000063X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000063X


184 H. A. Priestley [20]

(iv) The subdirectly irreducible algebras in s/ are precisely the homomorphic
images of subalgebras of _P if and only if every left ideal of the semigroup N is
principal.

(v) The subdirectly irreducible algebras in s/ are precisely the {isomorphic copies
of) subalgebras of P_ if and only if every principal left ideal of N is expressible in the
form Np. with the map v i-> v/z order-preserving. This happens in particular if N is
discretely ordered.

PROOF. Statements (i) and (ii) have already been noted.
Consider (iii). Let Q_ be a subalgebra of P_. We have that H(Q) is the image of N

under a ^•B*'-morphism <p. Then H(Q) = { v<p(e) \ v e N }, whence Q is subdirectly
irreducible.

For (iv), suppose that every left ideal in N is principal. Let Q be a homomorphic
image of a subalgebra of P_, so H(Q) is an N-closed subset of an image under a
^•^-morphism <p with domain N. Define

J := {n e N | (p(n) e H(Q)}.

Then J is a left ideal of N, so of the form Nv for some v e N. But then H(Q) =
N(p(v), so Q is subdirectly irreducible. Conversely, let every homomorphic image
of a subalgebra of _P be subdirectly irreducible. This means in particular that every
//-closed subset of TV is of the form N/x, that is, every left ideal of TV is principal.

For (v), note that any homomorphic image Q of P_ has H(Q) identifiable with
some N-closed subset of N, and that Q is subdirectly irreducible if and only if this
subset is a principal left ideal. We now invoke Lemma 3.1.

The following corollary is in the same spirit as [16, Theorem 3.15], which yields
the result [17, 3.2] for Ockham algebras which the corollary generalises.

COROLLARY 3.6. Let N e JV and let

J? := {N/J, | fj, = e or -*((3v)Nv = N/x and r]v is order-preserving)}.

Order ^ by J\ <$C Ji in J? if and only if there exist v, e N such that Jt = NVJ
(i = 1, 2) such that vv2 H> VV, is an order-preserving map from J2 onto J\. Then

HSP(P) = D§P(n) where U = {K(J) | J is maximal in J\.

PROOF. We have H§P(P) = ISP(IHICP)). If the restriction to maximal elements
were removed the stated result would be immediate from Lemma 3.1. The order is
defined so that 7, <g Ji if and only if K(J^) is isomorphic to a subalgebra of K(J2).
Therefore only maximal elements of J? need to be included in U.
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3.7. Examples. (1) Double MS-algebras. Consider DMS, with N = NDMS as
in 2.4(2). In this case the proper principal left ideals are

Ng = Ng2 = Nh = Nh2 = N \ {1}.

We claim that the maps v \-> vg and v i-> vh are order-preserving. We have

h2 <: 1 ^ g2 implies h2g = h ^g = g2g,

h < g implies hg = h2 ^ g2 = gg.

Thus r]g is order-preserving, and a similar argument shows that rjh is also order-
preserving. It follows that the map r\v is order-preserving for every v e N, so that the
subdirectly irreducible algebras in DMS are precisely the subalgebras of the generating
algebra (a result previously proved algebraically (see [5] or [6, Ch. 13]), and we have
that the variety DMS is 0SP(P), where H(P) = NDMS.

(2) Ockham varieties. It was pointed out in [17] that every Ockham variety
generated by a finite subdirectly irreducible algebra is 0§IP(P, Q), where H{Q) =
g{H{P_))- Note that the monoid is commutative, so the left and right monoid actions
by powers of g coincide. Necessary and sufficient conditions are given in [17,
Theorem 3.10], for DSP(£) to coincide with HSP(P, Q). These conditions are those
that guarantee that either g : N —> Ng is order-preserving or g2 maps N onto Ng.
The latter are exactly the ways in which we can have Ng <SC N in the order of
Corollary 3.6. As [17, Theorem 3.10] indicates, the conditions for these to be satisfied
are various, involving the interaction between the order and the monoid action.

(3) Kleene-Stone algebras. Let N := N145. We have one proper left ideal,
namely the principal ideal Nh = Ngh = {gh, hg}. The maps r?i (= id) and r\h (which
identifies the pairs 1, g and g, gh) are order-preserving, while r]g and r)gh are not.
Accordingly, the subdirectly irreducible algebras in KS are exactly the subalgebras of
P_ in this case (as shown in [23]), and the variety and quasivariety generated by this
algebra coincide.

It is easy to exhibit an example in which .e/N is such that not every homomorphic
image of P_ is subdirectly irreducible. We may simply take N to be the monoid with
two generators a and fi for which a2 = fia = a and 01 = afi = fi, and make this into
an ordered ±-monoid by taking the discrete order and N+ = N. The subset {a, ft) is
a left ideal which is not principal.

By moving from Cornish's discretely ordered ±-monoids to our larger class Jf,
we have extended the class of varieties which can be treated intrinsically. As a
consequence of Jonsson's Lemma, the set of join-irreducible elements in the (finite
distributive) lattice of subvarieties of si := s/N is order-isomorphic to Si(^) , as
described in [14]. We may ask whether our class J/ is closed under the operators
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G> and Ml. Consider a proper principal ideal J = Nz of N, where N e jV. Then
J, with the inherited structure, belongs to Jf if and only if J has a right identity, ej.
Certainly e} cannot be the original right identity e of N, since J is proper. Writing ej
as ixz we see that we must have (VZ)(IJLZ) = vz for all v, which is a rather restrictive
condition; in particular we would need (nz)2 = ixz- For a simple example of failure,
take N = Np"3 and J = N \ {1}. Then the 3-element loop J is generated by each of
its elements, but none of these is idempotent. Hence JY is not closed under G.

Now suppose N' € MI(N). If N' is obtained from N e «/f simply by replacing
the order ^ of N by a stronger order ^ ' in such a way that the identity map is an
N-P-morphism, then N' certainly belongs to Jif. In general N-P-morphic images of
N do not have the structure of objects in J/. To illustrate, consider the variety DMS.
In this case, the finite subdirectly irreducible algebras are exactly the subalgebras of
the generating algebra P_. Consider the subdirectly irreducible algebra whose dual is
given by collapsing the points g and h in NDMS. Denote the map effecting the collapse
by \}r; see Figure 9. This algebra, Q, is that denoted SIDi9 in [6]. Suppose we try to
make this into a semigroup AT, so that the left semigroup action gives the maps dual to
the DMS operations. The right identity element eN' is forced to be \/s(1), since it fails
to be an image under any of the operations g, h, g2, h2. Denote the common image of
g and h under \\r by v. We must have the g-map given by left multiplication by some
element of the semigroup N', and this element must be v, so that v2 would have to be
v2 = \jf(h2), so we would have a contradiction. So J/ is not closed under Ml.

o * ( / , ) =

FIGURE 9

The above discussion shows that we must continue to regard certain varieties
merely as subvarieties of varieties of type ,K/N, and to obtain natural dualities for
them by a restriction process. It could therefore be argued that we have gained little
by working intrinsically with any varieties outside Cornish's class of ±-monoids.
We contend that our focus on J/ is justified because it allows the direct analysis
of many varieties important in their own right, and because the natural dualities
we obtain for these varieties are so closely tied to the structure of the associated
ordered semigroups. Arbitrary subvarieties of such varieties, by contrast, are often
best analysed as subvarieties. As we show in [31], this allows us to determine
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natural dualities simultaneously for all subvarieties, and easily to address questions
on equational bases.

Before leaving the topic of subdirectly irreducible algebras we make a final re-
mark on non-uniqueness, attributable to the semigroup structure, not the order. The
generating element z in a principal ideal J is generally not uniquely determined. In
the Ockham case this occurs precisely when J is a loop, when, in the terminology of
[22], every element is an end. It happens also, for example, for J = N \ {1} when
N = Np'•'; see 2.5. This phenomenon is more a nuisance than a serious impediment:
it can make the statements of results more involved than they would otherwise be, and
adds extra code to computer programs for determining the ordering (Q < R_ if and
only if Q e H §(/?)) on Si(sf) used to analyse the lattice of subvarieties of s/ [14].

In [22, Theorem 2.11], Goldberg presented a description of the category W dual
to a variety si generated by a finite subdirectly irreducible Ockham algebra P_. This
showed that the spaces in W* 'mimicked' the spaces H(Q) forQ_ € H§CP): the
orbit under the g-map of a point in Y e W satisfies the same inequalities as does the
orbit of some end e of some H(Q). This theorem was refined and simplified in [16,
Theorem 3.15], (and used in this simplified form to derive the natural dualities given in
[17]). It was shown that it sufficed to consider inequalities satisfied within the g-orbits
of just two points of H(P), namely e and g(e), where e is some (arbitrarily chosen)
fixed end of H(P). This comes about through the arguments given in connection with
Proposition 3.6. For the general case we are content with the brute force result below,
involving the inequalities in the orbits of all points of H(£). The proof is essentially
the same as that for Goldberg's original theorem.

Until further notice we fix N e Jf and si := s/N. We need some notation,
following [22, 17]. Let B be a finite algebra (not necessarily subdirectly irreducible)
in s/ and denote H(B) by W. For y e Y, Y e <&a', let

J , ( y ) \weW],

where

<^(y) := / \ {g^y) ^ gv(y) \ g»(w) ^ gv(w) in W}.
li.veN

Furthermore, let

Yw := [y e Y \ Y \= aw(y)},

so that Yw is the subspace of points which mimic the orbit Nw in W. (The set Yw is
topologically closed since the operations gH and gv are continuous.) Finally, for any
Aesf, define <J>W : s/(A, K{W)) -+ H(A) by <t>w(x) :=wox.

We shall need the following result drawn from [17].
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LEMMA 3.8. Let~H & JY and let 38 := OSPCG,,... , g r ) , where Q{,..., Q^ are
finite. Then, for A e 9&,

w

where W := H(Qx) U • • • U H{Qr).

PROOF. Theorem 2.5 of [17] implies that every element of H(A) is of the form
Wi o xi, where x, e 38 {A, £?.) and wt e H{Q_). To get the result in the stated form,
regard wt as a member of W and compose xt with 7r,-, the canonical projection from
G, x . . . xQ_r(=K{W)) onto Q..

THEOREM 3.9. Let N e JY. Let 08 = DSPC^, ...,QJbea subvariety, where
each Q. is finite. Then

38 = {K(Y) | Y G N-Pflrtd 7 |= (Vy)a(y)},

where a(y) := aw(y), W = H{Q_x) U • • • U H(Qr).

PROOF. SupposeK e N-P is such that Y \= (Vy)a(y). Fixu e Y. ThenY \= a(u).
Therefore there exists wu G W such that Y \= aWu(u). Note that Nwu is in G(W),
so in ty®. The map <pu : g^iwu) \-> g^iu) is a well-defined N-P-morphism from
Nwu into Y, because crWu(u) holds. Let a ^ b e K(Y) and assume without loss
of generality that there exists u e Y such that u(a) = 1 and u(b) = 0. But then
<pu(wu)(a) =£ <pu(wu)(b), since wu e Nwu. Therefore K(<pu)(a) ^ K(<pu)(b). Hence

ueY}: K(Y) - • r]{ ^ ( ^ w , , ) I u 6 Y

is an embedding, whence K(Y) e 0SP(H(A"(W))) = ^ .
Conversely, we assume that A = K(Y) e 38. We shall show that Y is the union of

the subspaces Yw (w e W). By Lemma 3.8, Y e <&m implies that

Y = \J{im<Pw\weW}.

Now let y = w o x e im<Pw. We have, remembering that x is a ^^-morphism and
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that we have identified KH(B) with B, that for any a € K(Y),

189

_ Uwox)(f+(a))

~\l-(wox)(f-(a))

l-(w(f-(x(a)))) if VL

if ti€

We claim that crw(y) holds. Suppose that vi, v2 € Â  are such that gv,(w) ^ gV2{w).
From above,

gv,(y) ^ gV2(y) if and only if (Va e A) gVl(y)(a) ^ gV2()')(a)

if and only if (Va 6 A) x(a)(^, (u;))

if (Vb eK(W)) b(gVl(w))

if and only if gv,(w) ^ ^ ( I U ) ,

as required.

It was appropriate to include the preceding result here, since we had the necessary
machinery assembled. We shall not need to use it in this paper. However we note that
it plays a key role in [29].

4. Natural dualities

In this section we present a natural duality for any class DSP(_P), where P_ — _PN

(N e JV"). Classes of this form include those varieties H§P(_P) for which H§P(£) =
i§P(_P), and even where this fails, allow us to describe the free algebras in H§P(_P).
In many cases the duality for D§PCP) can be based on the piggyback method in its
original form, as presented in [21, 20] (or see [15]). Such varieties include Pm n , S and
MS. We shall give necessary and sufficient conditions on N for simple piggybacking
to suffice, and show that this happens if and only if coproducts in H§P(jP) (= 0SP(P))
are D-coproducts with a suitable N-action.

https://doi.org/10.1017/S144678870000063X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000063X


190 H. A. Priestley [26]

In certain cases the generalised piggyback method from [17] is needed. Indeed,
it was an analysis of the variety K which led to the theory in [17]. This theory, as
it applies to distributive-lattice-ordered algebras, has been presented many times, in
survey form in [26], and, for particular varieties of the type we are considering here, in
[17, 1]. We shall not repeat the definitions here. We apply the Generalised Piggyback
Duality Theorem in its brute force 'multiple algebra, single carrier' formulation, using
copies of P_ indexed by N. This is more convenient for translating to the Priestley
duality than the equivalent 'single algebra, multiple carrier' version. In [31] we
discuss arbitrary varieties HSP(n)» for II a set of subdirectly irreducible algebras in
J2^N. In this situation a 'multiple algebra, multiple carrier' approach is required.

To aid readers not already familiar with [17] we treat simple piggybacking first.

THEOREM 4.1 (Simple Piggyback Duality Theorem, for distributive-lattice-ordered
algebras). Suppose that srf = I§P(_P), where .P is a finite algebra having a D-reduct.
Let a be a fixed element of H(P). Let P = (P; r, R) be the topological relational
structure in which

(i) r is the discrete topology,
(ii) R = S U T, where

(a) S is the collection of maximal &tf -subalgebras of sublattices of the form

o r ' « ) :={(a,b) eP2 \a(a) <«(&)}, and

(b) T is the set of graphs of a subset <§ o/End(_P).

Let 3£ := DSCH(P). Assume that the following separation condition (S) is satisfied:

(S) given a, b e P_ with a ^ b, there exists u e S such that a(u(a)) ^
a(u(b)).

Then the hom-functors D := si(—, P_) and E := i£~(—, P) set up a duality between
si and SC. ~

Our candidate for a will be our right identity e in N. We begin by applying the
theorem in the simplest case of all, when N e Jf and iV is discretely ordered. This
means that the D-reduct of _P = K(N) is the Boolean lattice 2N. We write a typical
element a e 2N as (av), where av = a(v) (v e N). In examples, we take a fixed
listing of the elements of Af and write {ax, a2,..., ak) more compactly as the binary
string a\a2... ak. In view of the distinguished, schizophrenic, status we give to 2N

we shall adopt special symbols <p* and yM for the operations instead of the generic f*
dgM.
We make 2N into an object 2N in D-N as follows. Define operations <p+ (/J, e JV+)
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and <p~ (fi € N~) by

where 5 = 1 — 5 for S = 0, 1. In the case of the Ockham variety P m n , where
N = {1, y,..., ym~x\ and ym = y", we have the formula ~ a — (py({av)) = (a^),
as given in [17].

We check now that the algebraic structure of P_, in which the operations are dual
to the operations g^ given by the left action of N on itself, is exactly that we have
defined on 2N, when (av) stands for (a(v)). We have cp^ given by

( ifveN+,

\<p-(a)(v) =a(fxv) =a(gll(v)) ifv€N~,

which agrees with the definition of cp* given by 2.6.
The same set 2N carries an alternative structure, in the following way. We define

\av = 1 implies bv = 1 if v <= ./V+,
a ^4 b if and only if <

\bv = 1 implies av = 1 if v e N~.

This is a partial order on 2N, which we refer to as the ±-order. In the case of the
Ockham monoid Nm,„ it is called the alternating order. We also define operations
yM {li e N) as follows: )/M((«u)) := (am). For a = {av), b = yM(a) we have
b(v) = 1 if and only if a(v/x) = 1. Therefore for k, /x, v e N we have

n( / M («) ) ( y ) = ! if and only if yM(a)(vA) = 1

if and only if a(vk/x) = 1

if and only if (yklx(a))(v) = 1.

Hence yk o y^ — y^. Also, for any [i e N+,

. . ., . . ,. \av^bv ifveN+,
(av) =4 (bv) implies {

yav ^ bv if v e N

\aVn ^ bvlx if v € N+,
implies <

[aVM ^ bVil ifveN"

implies (av/x) =̂  (£„„}.

Hence yM preserves =̂  if /j. e N+, and, likewise, yM reverses =̂  if/x € A^". Therefore
(2W; T, =̂ , (yM}Me/v) becomes a space in N-P.
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Summing up, we have two structures with underlying set 2N:

2N := (2"; A, v, 0, 1, W+}^N+, {?; W - ) e D-N,

2N := (2N; t, < {y,}^) e N-P,

the first of which is the original algebra P_. There should not be any confusion with
the usage here and that in Section 2, where 2, denoted the 2-element chain in P.

The following duality theorem, based on these objects, generalises that obtained
for Pm „ in [20], and applies to any of the Cornish varieties D-N (N a ±-monoid).

THEOREM 4.2. Let N e jV be a weak ±-monoid. Let &/ := H S P ^ ) and
SC := 0§cP(2"). Then the horn-functors D and E given on objects by

E : X H* %(X, 1N) < 2N e srf

set up a natural duality between srf and SE.

PROOF. Lemma 3.5 of [ 17] implies that there exists a unique maximal ^/-subalgebra
)° of e~'(^) and that this is given by

(a, b) € e"1 (^)° if and only if e{f(a)) ^ e(f(b)) for all unary operations /

if and only if (Vv e N)

•f A 1 -f/w AM \a{ve)^b(ve) if v e N+,if and only if (Vv € N) {
\a(ye)^b{ve) if v € N~

I a(v)^b(v) ifveN+,

if and only if a =4 b.

For the separation condition, (S), we use the fact that each map r?M : v h-» v/x is
the dual of an endomorphism wM € End_P; see Lemma 3.1. Given a / b in _P there
exists n € N such that /x(a) ^ fj,(b). Then

Hence (S) holds. (Note that we have used here the fact that e is a left identity in the
monoid N.)
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There are other varieties &/N which come within the scope of the Simple Piggyback
Duality Theorem besides those covered by Theorem 4.2. We shall work towards
identifying these, at the same time preparing for the application of the Generalised
Piggyback Duality Theorem to arbitrary quasivarieties 8§F(_P).

THEOREM 4.3 (Generalised Piggyback Duality Theorem, for distributive-lattice-
ordered algebras). Suppose that srf = 0§P(IT)> where Y\ is a finite set of finite
algebras of a given fixed type each having a D-reduct. For each P^ in F[ let Q.^ be a
(possibly empty) subset o/D(/ \ 2).

Let FT = (11; T, R) be the topological relational structure on \J {P | P_ e FT] in
which

(i) r is the discrete topology,
(ii) R = S U T, where

(a) S is the collection of maximal si -subalgebras of sublattices of the form

(«, £)- ' (^) := {{a, b) € P x Q | a(a)^ fi(b)},

where a e QL, P e QQ (£, Q € U), and
(b) T is the set of graphs of a~set S c (J{^(Z> Q) I Z, Q e n } of

endomorphisms satisfying the following separation condition (S):
for all P_ e JT, given a, b e _P with a ^ b, there exist Q e II, u €
£?(£., 2 )n<? and a e QQ such that a(u (a)) ^ a(u(b)).

Then R yields a duality on &/.

In the statement of the theorem we have used terminology adopted since [17] was
written. When we say that the set R yields a duality on srf we mean that the structure
n generates a class 3C := l§cIP(n) of multi-sorted structures such that the natural
hom-functors D and E into £1 and n set up a dual equivalence, as described in [17]
or in [26]. ~

We want to apply this theorem in the case that #/ = iSP(P), where _P is of the
form _PN. The separation condition (S) in 4.3 is automatically satisfied if we take FI
to consist of copies P^ of P_ indexed by the points a of N and, for each a e N, take
^£« = {a}, where a is here regarded as an element of Na :— H(Pa). (Alternatively
we can take FI to contain the single algebra P_, and take £2^ = N.) The next lemma
tells us when we can satisfy (S) more economically. The endomorphisms of P_ were
described in Lemma 3.1. We shall define

ÂEnd := (M e N | ??„ is order-preserving}.

LEMMA 4.4. Let N € JV. Let C c N be such that N = CNEnd. Then for a ^ b
there exists a € C and v € Â nd such that a(uv(a)) ^ a(uv(b)). Conversely, if this
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separation condition is to be satisfied, then the set C of points a required above is
such that N — CNEnd.

PROOF. For a e £ and v e NEnd, a(uv(a)) = (r]v(a))(a) = (av)(a). Since every
element of N is expressible in the form av, where a e C and v e NEnd, the first part
follows.

Conversely, for any fi e N, let a, b e P be defined by a{v) = 1 if and only if
v ^ /x and b(v) = 1 if and only if v > /x. Then a and b are distinct, and the only
element X e N for which k(a) ^ k(b) is A = ix. To satisfy the separation condition
we therefore have to be able to express \x as a product av, where a e C,v e ̂ End-

As was revealed in [17], there is an interaction between the separation condition
(S), joint-ontoness of the maps <S>a (as in 3.9, and the choice of carrier sets £2^ for
P e n . To explore this, we first give a lemma characterising im 4>a, generalising [17,
Lemma 3.3].

LEMMA 4.5. LetN e ^ and let si — DSP(F). For each a e N take P^ to be a
copy of Pj and regard a as an element of H{Pa). Define maps

<&a := a o - : sf{A, PJ ^ H{A)a,

&a •= M - ) o K : H(A)a -

where

H{A)a := {y € H(A) | 3<p e W{Na, H{A)) <p(a) = y)

and ha{y)(v) := gv{y). Then <$>a and ®a are mutually inverse bijections, for each a.
Furthermore, for each a and each A, H(A)a c H{A)a.

PROOF. We do not suppress the isomorphism kA : A -> KH(A) in this proof and
we write Na = {va \ v e N}. Let sa be the natural bijection from ^(Na, H(A)) to

, PJ and ta that from &(Na, H(A)) to H(A)a:

Qitp e &(Na, H(A))) sa(<p) = M - ) o <p

<p) :=<p(a).
We now need <t>0oj0 = ta and @a o ta = sa. For any a e A and <p e

(<S>a(sa(<p)))(a) = (sa((p)(a))(a) = <p(a)(a) = ta(<p){a).

This shows that <t>a o sa = ta. For any v e N and any <p e ^(Na, H(A)),

(ha o fM)(<p)(y") = (ha(<p(a)Mva) = gv(<p(oc)) = <p(va).
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H{A))

H(A)a

Hence ha o ;„ is the identity on
Furthermore, for each a,

H{A)a = im <t>a =

a, H(A)), whence &a o ta = sa.

<p

We now claim that im<f>a c H(A)a: let vu v2 e N and suppose v,a ^ v2a in N.
Then Vi<p(a) = (p{v\a) ^ <p(v2a) = v2<p(a).

We can now derive the following proposition.

PROPOSITION 4.6. LetN £ J/ be a monoid with identity e and let stf := 0§P(£),
where P_ := _PN. Then the following conditions are equivalent:

(i) there exists a € N such that N = aNEnd;
(ii) there exists a € TV such that for a ^ b in _P, there exists u e End_P such that

a(u{a)) ^ a(u(b));
(iii) N = AfEnd, that is, for each /x e N, V) ^ v2 implies Vi/x ^ v2M;
(iv) fora ^ b in P_, there exists u € End_P such that e(u(a)) ^ e(u(b));
(v) Oe : #/(A, P) —*• H(A) is surjective for every A e stf';

(vi) for all A € srf,

H(A) \= (V.y)((v, < y2 implies gv,(y) ^ gV2(y)).

Furthermore, //(i)-(vi) hold then WSP(P) = USP(P).

PROOF. By Lemma 4.4, (i) is equivalent to (ii) and (iii) is equivalent to (iv), the
latter using the fact that e is a left identity. Assume that (i) holds. Then

\N\ = \aNEnd\ ^ \NEnd\ ^ \N\.
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We deduce that (i) implies (iii), and (iii) implies (i) trivially. Therefore (i)-(iv) are
equivalent. The equivalence of (iv) and (v) comes from [17, Lemma 2.4].

If <$>e is surjective for every A, then, by Lemma 4.5,

H{A) = H(A)e = {ye H(A) | v, ^ v2 implies gVl(y) ^ gV2(y)}.

Hence (v) implies (vi). To prove that (vi) implies (iii) take A = _P, so that H(A) = N.
For the final statement, note that if the variety and quasivariety do not coincide

then we can find a subdirectly irreducible algebra Q which is a homomorphic image
of P_ but not isomorphic to a subalgebra of P_. This means that there is a point K G N
such that there is no N-P-morphism from N onto NK. In particular r\K is not such a
morphism, so (i) cannot hold.

The conditions in the preceding proposition are exactly those required for simple
piggybacking to work for IStPQP). The schizophrenic object for this has P as its
underlying set. This set sits inside 2N as the order-preserving maps from _P to 2. In
fact the objects P̂ and P inherit their structure from 2N and 2", as the following
lemma implies. For the Ockham case, see [17, Proposition 3.14].

LEMMA 4.7. Let N € J/ be a monoid with identity e. Then

P_ = [a : JV - • 2 | 2N \= ae{a)\ < 2N,

where

ae(a) := f\[ v, ^ v2 => yVl(a) 4 yV2(a) | vu v2 e N}.

Furthermore,

(i) forany/x e N,themapv i->- vfj. is order-preserving if and only if y^(P) c P;
(ii) the unique maximal subalgebra e~l (^)° ofe~] (^) is =̂  DP2.

PROOF. Suppose a : N -» 2 is order-preserving and suppose Vi ^ v2. For v e N,

I VV] < vv2 if v e N+,

W\ ^ vv2 it v e N

. ,. \aVVl < avv, if v € N + ,
implies \

yaVVl ^ aVV2 if v € /V

. .. \yVl(a)(v)^y^(a)(v) iiveN+,
implies <

\yv,(a)(v) ^ yV2(a)(v) if v e N~

implies yV](a) =4 yV2(a).
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Hence a is such that 2^ \= ae(a).
Conversely, assume 2" \= ae{d). Recall that e e N+. We have

v, ^ v2 implies yV[(a) =4 yVl(a)

implies (aVVl) ^ (avn)

implies aV[ = aeVl ^ aevi = an

if and only if a(vi)

Now consider (i). Assume that v h-> v/x is order-preserving and let a e P_. Then

V) ^ v2 implies v\ix ^ vtii

implies (avwwl) =̂  {aVV2li)

implies yU|(

Hence cre()/M(a)) holds, so yM(a) e P . Conversely, suppose we have yM(P) c P .
This means that for every order-preserving map a : N —>• 2, yM(a) is also order-
preserving. Take vx ^ v2 in N. We have Vi/x ^ v2/i if and only if a{v\n.) ^ a(v2M)
for all a e P, that is, if and only if yM(a)(v!) ^ y^(a)(v2).

Finally, (ii) is proved exactly as in 4.2.

As a corollary we have the following generalisation of Theorem 4.2.

THEOREM 4.8. Assume that the equivalent conditions of Proposition 4.6 hold. Then
i§P(P) has a natural duality based on the single algebra .P and single carrier a,
where a is the identity e of the monoid N. In this duality, the relations are the
±-order =4 on P (the unique maximal subalgebra ofe~l(^)) and the graphs of the
endomorphisms

4.9. Example. Double MS-algebras. Take N to be the monoid NDMS as in 2.4(2),
3.7(1). From the facts assembled there we see, from Proposition 4.6, that Theorem 4.8
applies.

We have P as the set of quintuples (ah2, ah,a\,ag,agi) in which ahi ^ ax ^ ag2
and ah ^ ag. We shall represent these 12 elements as binary strings of length 5. The
algebra P_ is as shown in Figure 10(a). The same set under its ±-order is shown in
Figure 10(b). Here we have a ±-monoid, and hence only a single operation assigned
to each member of N. The operations are given by

<pg({ah2,ah,auag,ag2)) = (0^,0^,0^,0^,0^),

(ph{(ah2,ah,auag,agi)) = (0^,0^,0^,0^,0^).
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LEMMA 4.11. Under the assumptions of Theorem 4.10,

(«>, <^» € {a,P)-\Q° ifandonlyifqa(«)) *4 ? , «#»

and qfi o iaj o ga — yfi o qa.

PROOF. Let a = {a") e P^,b = {b%) € P_fi. Then, arguing as in the proof of 4.2.

•f A , -f/w w , f(«v(a))(a)<(ft( /8))(A) i f v e i V + ,
if and only if (Vv e N) {

if and only if (Vv e N) {
\a(va) ^ b{vp) ifveAT.

Also

W e c o n c l u d e tha t q$ o ia^o ga — y ^ o qa.

We may use the maps qa simultaneously to embed all our copies Pa of P into 2N.
Lemma 4.11 says that (J im qa becomes a subspace of 2̂ ^ in N-P. The process we
have carried out here on n is a special case of the translation process from a natural
dual of an algebra to its Priestley dual, which we now outline. A more comprehensive
account of this appears in [31], and, for the Ockham case which we generalise, in [17,
Theorem 3.8].

Recall that the natural dual of an algebra A e srf is defined to be the disjoint
union of the hom-sets #/(A, P^), structured pointwise by the relations described in
Theorem 4.10. When A = Fsrf{\), there is a bijective correspondence between Pa

and .c/(A, Pa). Thus n , the disjoint union of the sets Pa equipped with the relational
structure defined above, belongs to the dual category ^", and serves as the dual
D(F&/(\)) of F&/(\). See [17, Lemma 1.2].

Fix A € srf. Define an equivalence relation p on D(A) := Ua€N£?(A, P^) by

xpy if and only if (x, y) e (J{ker(a, /?)" | a, $ e N}.
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Note that for* e ^(A,P^),y e

xpy if and only if (x, y) e ker(a, /3)°

if and only if (Va e A)(x(a), y(a)) e ker(a, $)"

if and only if (Va e A)a(x(a)) = P(y(a))

if and only ifaox = fioy

if and only if <t>a(x) = <t>p(x),

from which we see that p is indeed an equivalence relation. The maps <&a (a e N)
map jointly onto H(A), so that the map which sends u e H(A) to the equivalence
class x/p, where x e D(A) is such that u = <$>a(x) for some a € N, is a well-defined
bijection from //(A) to D(A)/p. Also

if and only if (Va e A)<t>o(jt)(a)

if and only if (Va e A)aU(a)) < P(y(a))

ifandonlyif (x, y) e (a, P)~l(iQo.

Now consider the operations gM on H(A). We have, using the fact that x is a
morphism,

if and only if (Va e

a))) if f i e
if and only if (Va € A)

1 " ~;a))) if/xe

if and only if (Va G A
= l - a ( ^ U ( a ) ) ) if/xe

if and only if (Va e A)0(y(a)) = gv(a)(x(a))

if and only if (Va e A)/5(y(a)) = (/xa)(x(a))

if and only if 4>̂  (y) = <t>Ma (A: ).

Hence gM(3>o(x)) = <I>Ma(A:) for any /x, a and x.
The topology on Z)(A) is the sum topology on a disjoint union, from which D(A)/p

acquires its quotient topology. As in [17], the bijection from D(A)/p to H(A) is a
homeomorphism.

As a special case, consider the object Fl, which belongs to SC and acts as
D(F£/(1)). We regard this as a collection of copies of P. The statement and
proof of the result below follow those of the special case given in [17, Theorem 3.15].
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THEOREM4.12. LetN e JY andletsrf := ISP(PN). Then, for s ^ 1,

H(Fs/{s)) = [y^yXfi e N) | (2N)S \= ae(y)},

= {y€ (2NY | (2")* |= aN(y)}.

PROOF. Since products in 3£ are concrete products, it will suffice to consider 5 = 1.
Carry out the translation process on n = D(Fs?{\)). We have that the algebra _P,

regarded as a subset of 2N, consists exactly of those y satisfying ae(y), by Lemma 4.7.
The translation gives us an equivalence relation p on Fl such that Fl/p is isomorphic
in ty°* to H(F£?(l)). Furthermore, by Lemma 4.11, U/p can be identified, by
means of the union of the maps qa, with the subset {J{ya(P) | or e N], with inherited
= -̂order and maps yM (/x e N).

Now we wish to characterise this set as those ya(y) such that 2s \= oe(y) (a e N).
Note that the image of PM under q^ is yM (P). Since we know P is characterised as those
points v in 2̂ ^ which satisfy oe{y). This gives the first description of

For the alternative description we have

Ya(P) = {{ava) I y = (av) satisfies ae(y)}

= {(civa) I v, ^ y2 implies ^ ( j ) ^

= { ( O I vi ^ v2 implies (aVV]) 4 (aVV2)}

= {(ava) | u,a ^ v2a implies {avv,a) =4 {aVVia)}

= {ya({av)) | ^ a ^ v2a implies yVl(ya((av)) =4 yV2(ya((av)))}

This completes the proof.

To find free algebras in practice we need not concern ourselves with simplifying our
brute force duality by indexing the algebras P^ by a minimal set of points a sufficient
to achieve the separation condition. All we do is to calculate the sets ya(P), for all
a G N, and to discard those which are not maximal with respect to inclusion.

Coproducts in general can be obtained in the same manner. Given a family {Af}/€/

of algebras in ISP(_P), we form HQJ A,-) by taking the product in the dual category
SE of the family {£)(A,)} (see [17]) and then applying the translation process.

It has long been known that coproducts in the variety M of de Morgan algebras are
D-coproducts enriched with a (necessarily unique) de Morgan negation ([2, p. 214]).
One way to prove this is to show that the natural and Priestley dualities for M are
essentially the same (see [20]). We now present conditions for the two dualities for
DSIP(_PN) to coincide.

THEOREM 4.13. L f i N e / t e a monoid with identity e, let P^ := P™ and let
£/ := D§P(P). Then the following are equivalent:
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(i) every map rjM : v i-> Vfj, is order-preserving;
(ii) for every A e si, the map <be : si (A, P) —> H(A) is a bijection;

(iii) H(Fsi(l))s is isomorphic in P to H(Fs/(s))for I ^ s < co;
(iv) products in ty** are concrete products;
(v) for any family {A,},€/ of algebras in si, the D-reduct of s/-\Jiel A, is the

D-coproduct of the D-reducts of the algebras Ai (i e I).

If(iHy) hold then OSPCP) = HSP(P) .

PROOF. Conditions (i) and (ii) are equivalent by Proposition 4.6, and imply that si
has a natural duality as in Theorem 4.8. The translation process applied to this duality
tells us that <£>e sets up a bijection between the natural dual, D(A), of A e si and its
Priestley dual H(A). Since products in P are concrete, we conclude that (ii) implies
(iv). Trivially (iv) implies (iii) and by Priestley duality (iv) is equivalent to (v).

Now assume that (i) fails, and assume that v i->- vk is not order-preserving. By
the contrapositive of Lemma 4.7(i), Yx{P) £ P- Take the brute force duality for
si supplied by Theorem 4.10, and apply the translation process to U, embedding its
components as the subsets y^P) of 2N (/x e N) via the maps q^ defined above. We
have

H(Fsi(l)y = (J y
Ml M J 6 W

Put m = \P\ and consider the (m + l)-tuple ( a ( , . . . , am, b), where at,..., am are
the distinct points of P and b e yx{P) \ P. Because |yM(P)| ^ \P\ for all /x e N,
we deduce that (au ...,am,b) e H(Fs/(l))m+l \ H(Fs/(m + 1)). Since also
H(Fsi(m + 1)) c H(Fsi(l))m+l, these two dual spaces cannot be isomorphic
posets. Thus (iii) fails. This completes the proof of the equivalence of (i)-(v).

Finally note that it was proved in 4.6 that (i) implies that ISP(_P) =

The varieties MS and DMS come within the scope of this theorem, and, more
generally, the varieties DMSn and Km,« studied by M. Sequiera in [35] do too. We
conclude with descriptions of free algebras for some other examples.

4.14. Example. Varieties generated by Boolean lattices. We generalise the well-
known characterisation of free de Morgan algebras. Suppose that N is any weak
±-monoid, so that the dual algebra P_ := _PN is a Boolean lattice. Since the or-
der is discrete, condition (i) in Theorem 4.13 holds. Take si := H§PC£). Then
H(Fsi{s)) = (2N)S. Let m = \N\, p = \N+ n N~\ and q = m - p. The ±-order
on 2 ^ gives a poset U which can be regarded as the product of 2P and V1 (where 2
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and .2 denote respectively the 2-element antichain and the 2-element chain in P). We
see that U is the disjoint union of 2p copies of V1 if p > 0 and V1 if p = 0. Adopt
the convention that r S means the disjoint union of r copies of 5 for r > 0 and for any
poset 5. Then

Remembering that the Priestley dual of FD(k) is 2^ for any k, we conclude that the
D-reduct of Fsrf{s) is (FD(qs))2ps if p > 0, and FD(qs) if p = 0 and q = m = \N\.
Notice this result depends only on the parameters p and q and not on the semigroup
structure of N. The latter gives the family of operations j / M , and combines with the ±
assignment to determine the algebraic operations of Fsrf{s).

4.15. Example. Involutive Stone algebras. The monoid NIS was given above, in
Figure 7. Free algebras in IS and its subvarieties were first considered by Santos
in [32]. We show how our general framework yields FIS(s). It is easily checked
that the maps rjn, r]g and rjgn are order-preserving. Therefore Theorem 4.8 applies to
IS = DSP(£) = HSPCP), where H(P) = NIS. We represent the elements of P as
4-tuples (a\,an,ag, agm), with

Yn((ai,an,ag,agn)) = {an,an,agn,agn),

Yg({ai,an,ag,agn)) = {ag,an,auagn),

and the ±-order is given by

(auan,ag,agn) =$ (bubn,bg,bgn)

if and only if a, ^ bu an = bn, ag ^ bg, agn — bgn,

as shown in Figure 11.
We see immediately from this that for 1 ^ s < co,

FlS(s) =
k=0

where FD(2k), qua involutive Stone algebra, is just the &-fold copower of the gener-
ating algebra P_.

4.16. Example. Kleene-Stone algebras. In this case the elements of _PN are given
by 4-tuples {agh, ag,auah), with agh ^ ag ^ a, ^ ah. The operations yg and yh are
given by

yg((agh,ag,auah)) = (agh,auag,ah),

Yh((agh, ag, auah)) = (agh, agh, ah, ah).
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1111

ollOO

1100 c^ >> 0110 OOOOo 0100 c/ \ 1110 o 1111

V0110

0000

P P = D(FIS(1)) = //(FIS(l))

FIGURE 11

The ±-order is given by

(agh, ag, ax,ah) ^ {bgh, bg, bu bh)

if and only if agh = bgh, ag ^ bg, ai < by, ah = bh.

Because r)g fails to be an endomorphism, we need a 2-sorted schizophrenic object,
consisting of the sets of 4-element strings

B = {0000, 0001, 0101, 0111, 1111},

= {0000, 0001, 0011, 0111, 1111}.

With the two components drawn with their ±-order, B Ug(B) is as shown in Figure 12.

An algebraic description of the free Kleene-Stone algebras was given in [23], and
has also been obtained by Santos in [32]. We can see very easily from our monoid
formalism how the free KS-algebras arise. The translation process applied to our 2-
sorted object simply glues the minimal points of the component B to the corresponding
maximal points of the component g(B). This, made into a Kleene-Stone algebra dual
space in the unique way possible, is H(FKS(1)). If the isolated points 0000 and
1111 were not present, we should have just the structure giving the natural duality for
Kleene algebras, so the D-reducts related by

FKS(l) = FK(1) x 22.
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nOOll

B oOOOO c/0001 \ o i l l o 1111

g(B) oOOOO ĉ OOOl o O l l l o 1111

V0101

FIGURE 12. D(FKS(l))

More generally we obtain H(FKS(s)) by taking the 5-fold products of the ordered
sets B and g(B), glueing corresponding minimals and maximals. On each order
component the map g dual to the Kleene negation is the same as if we were dealing
with the dual of a free Kleene algebras, while the map h just takes each point to the
unique maximal point above it. Since these maps are completely specified this way we
consider just the underlying ordered sets. Let P be the 2-element antichain, and Q the
2-element antichain with a top element adjoined, so B = P U Q and g(B) = P U Qs.
For a poset S let rS denote the disjoint union of m copies of 5, with the convention
that 05 means a 1-element chain. Then

BS= U (*V-'*G')

and dually, whence by the translation process,

H(FKS(s))= ( J 2*-'

Dualising, we get

as Kleene algebras, with the Stone operation given by the pseudocomplement. The
formula for the cardinality of FKS(s) derived from this is given in [23]; the algebra
isomorphism is not given explicitly there.
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