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1. Introduction

The necessity of accurate numerical approximations to the solutions of
differential equations governing physical systems has always been an
important problem with scientists and engineers. Hammer and Hollings-
worth [11] have used Gaussian quadrature for solving the linear second
order differential equations. This method has been further developed by
Morrison and Stoller [3], Korganoff [1], Kuntzman [9], Henrici [12] and
Day [7, 8]. Quadrature methods based upon Lobatto quadrature formulae
have recently been considered by Day [6, 8] and Jain and Sharma [10]
and seem to give better results.

The purpose of this paper is to investigate the use of Lobatto quadrature
formulae for developing one-step methods, of sufficiently high orders, for
the numerical integration of the differential equation

y"{x) = f(x)y(x)+g(x); y{x0) = y0, y'(x0) = y'o.

The numerical integration of this differential equation is often carried out
by solving a system of two first order differential equations but this
approach limits down the accuracy that can be achieved otherwise for
its approximate solution. In order to deal with higher order differential
equations the method has been extended for the linear system of differen-
tial equations Y' = AY-\-B; Y(x0) = Yo. A stability criterion is also
discussed for a second order differential equation. Two sample examples
are used to illustrate the comparison of this method with other well
known methods and with the exact solution.

2. Second order differential equations

Let us consider the general second order linear differential equation
in the normal form
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(2.1) y"(x) = /(x)y(x)+g(x)

with the initial conditions

(2-2) y(x0) = y0, y'{x0) = y'o.

Throughout our discussion we shall assume that the initial-value problem
(2.1, 2.2) has a unique solution in the interval (a, b) and the functions
f(x) and g(x) occurring in (2.1) are sufficiently differentiable. These
assumptions ensure the validity of our subsequent derivations in any
context in which they are used.

After integrating (2.1) from x0 to xo-{-h (h > 0) we obtain the system
of integral equations

(2.3) y(xo+h) = y(xo)+hy'(xo)+ f0+* (xo+h-r). U(r)y(r)+g(r)]dr.
jx0

(2.4) y'(xo+h) = y'(xo)+ I""** Mr)y(r)+g(r)]dT.

Although the integrals in (2.3) and (2.4) may now be approximated by any
quadrature formula but to obtain high accuracy integration formulae with
few function evaluations we shall make use of a class of quadrature formulae
(known as Lobatto quadrature formulae ref. [4]) which utilize the values
of the integrand at some irregularly spaced interior points in addition to
the values of the integrand at the end points of the interval of integration,
which in the present case are known to us.

The w-point Lobatto quadrature formula can be expressed in the form

[Xo+h h " - 2

(2.5) F(x)dx = - -[F(xo)+F(xo+h)]+h2WkF(xo+tkh)+R
Jx0 w(w-l) k=l

where

»( W -l )»[(»-2)I ]M-i
( 2 l ) [ ( 2 2 ) ! ] 3 Kl

0 < tk < 1, x0 < £ < xo+h.

In order to shorten the succeeding equations and calculations we denote

*o = xo I Tn-i = xi = xQ+h'> ik = %0+hh 0 < tk < 1

/(*„)=/o; / (* i )=/»- i ; /(**)=/* A = l ( l )n -1 etc.

Approximation of the integrals in (2.3) and (2.4) by (2.5) leads us to the
equations
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(2.6)
n-i = y0+

hy'o+
n(n— 1)

(foyo+go)

(2.7)

where

(2.8)

(2.9)

Vn-\ =

E = —

E* — —

n - 2

(foVo+go + fn-1 Vn-l+gn-l)

(2M— 1)[(2« — 2)!]3

( 2 W - 1 ) [ ( 2 M - 2 ) ! ] 3

We note that we do not know y{rk) which occur in (2.6) and (2.7) and thus
if such an algorithm is to be of computational value we must obtain accurate
approximate values for y(rk) (k = 1, 2, • • •, n—2). For this we construct
a Hermite interpolating polynomial Y(x), (approximating y{x)) which
coincides with y0, y'o and y"(rk) for k = 0, (1), n—1. These w-f-2 conditions
define the polynomial Y(x) of («+l)st degree uniquely and can be written
in the form

6T0

y(x) 1 x x2 x2 • • xn+1

V(t ) 1 T T2 T3 • • T7^1

a \VO/ 0 0 0 0

y'(r0) 0 1 2T0

(2.10) Y(x) = y"(r0) 0 0 2
"(T,) 0 0 2

0 0

If we make use of the given differential equation (2.1) to replace y"(rk)
by (/*&+&). we can express Y(x) in terms of y'o, fk, gk and y(rk)
k = 1, 2, • • •, w—1. The resulting polynomial Y(x) can now be written
in the form

(2.11) Y(x) =
n- l

I,Ck(x,f,g)yk.
ft=2

In this equation we substitute x = rk (k = 1 (1) w— 1) and obtain a system of
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n—1 linear equations in «—1 unknowns Y(TJ.) (& = 1 (1) n—1). These
equations can either be solved by the matrix inversion method (the matrix
of the coefficients being nonsingular) or the equivalent CrameYs Rule.
Since z0 < rk < xo-\-h for all values of k, it follows from the theory of
polynomial interpolation that the error involved in obtaining the approx-
imate value of Yfc from (2.11) is O(hn+*). Substitution of the values in (2.6)
and (2.7) gives the approximate values of yn_t and y'n_1 with local truncation
errors of the order of hn+i and An+3 respectively.

The algorithm to determine the approximate values of yr+1 is as follows.
Replace y0, y'o, y'o', rk occurring in (2.6, 2.7) by yT, y'r, y" and xr-\-tkh
respectively. Calculate Y(xr-\-tkh), (k = 1 (1) n— 1) from (2.11) according
to the new equations. The required approximate values of «/(xr+]) and
y'(xr+1) are then given by the equations,

2/r+l = + % ++ . 7 7 [f

n[n—1)

Wt(l-tk)\f(xr+tth)Y(xr+tkh)+g(xr+tkh)l

C / ( ) (yr+l yr+ , __,, C/(*r)y(
(2-13) J '

+h 2 Wk[j(zr+tkh)Y(xr+tkh)+g(xr+tkh)].
k=.l

Ihe method suggested here gives rise to quadrature methods of arbitrary
orders and corresponding to n evaluations of the functions f(x) and g(x)
one can always construct a one-step method of order (w+4) for the differ-
ential equation (2.1). From application point of view we discuss two
particular cases corresponding to n = 4, 5.

3. Two particular cases

Here we shall discuss in brief the methods corresponding to n = 4, 5
and derive explicit formulae to obtain the solution of (2.1) with local
truncatio errors of h1 and h9 respectively.

3.1 Seventh order method.

In this case the integrals in (2.3) and (2.4) are approximated by the
lobatto four-point rule in which case

(3.1.1) r°+hF(x)dx
Jx0 k=l

where W — W — x • W — W x
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H = *o+ph p = (5—v/5)/10

T3 = *a+qh q =

and

The equations (2.6) and (2.7) take up the form

(3.1.2) yx = 2/0+%;+

(3.1.3) y\ = y'0+ —

where xv — r2, xq = r3 and /„ = f(xP) etc. and E7 and E* are given by
(2.8) and (2.9) with n = 4 and x0 < f4, £4 < xo+A.

The Herrnite interpolating polynomial Y(x) satisfying the conditions
Y(x0) = y0: y'(«o) = Vo> Y"(rk) = y"(rfc) k = 1, 2, 3, 4 is given by

(3.1.4)

We now neglect the terms O(A6) in (3.1.4) and make use of (2.1) to express
y'v< y'q> y'i m tenns of yv, ya and y1. If we now take t = p, q, 1 we obtain
three linear equations in the three required unknowns. The solution of these
equations gives the values of Yp and Ya as follows (here u denotes \/5)

(3.1.5)

(3.1.6)

Ye = -10A«/,«[*ll/i
13M) — 1 2

{/1 y } / | , ] / ( ) + 10s

where
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A = [l20u-h2fs(25+Uu)][1200+hyt(h
2f1{u-l)-lU)]

25— 13M)] [A2/I(M+ 1) - 12 (53+25M)]

and G and G' are functions of g, given by the matrix equation

1G \ = /

\G7 lc21

1G \ / C u C12\ /G

with

Cu = (
Ci2 = A2/i[120«+A2/(,(25— 13M)]/180000

C21 = A2/p[A2/i(«+1) — 3 0 0 M - 6 3 6 ] / 7 2 0 0

C22 = — A2/,ri20M—h2fv{25+Uu)] 1180000

«/, — 162M—

—12g1«]/180000.

Substitution of (3.1.5) and (3.1.6) in (3.1.2) and (3.1.3) gives us the values
of y(xo-{-h) and y'{xo-\-h) with local truncation error 0(h7).

The algorithm to determine yn+1 is as follows. Replace y(x0), y'(x0),
y"(xo). *p> x< occurring in (3.1.2) and (3.1.3) by yn, y'n, y'^, xn+p (= xn+ph)
and xn+q (= xn-\-qh) respectively and calculate Yp and YQ according to the
new equations. Denoting these values by Yn+P and Yn+Q, the required
approximate values of yn+1 and y'n+1 are given by

(3.1.7)

(3.1.8)

3.2 Ninth-order method
The derivation of this ninth-order method is similar to the previous

method but to achieve higher accuracy by suitably minimizing the round-off
error at every step, it is suggestive to make use of the results of the following
algorithm.

In this case we shall use the lobatto five point rule, for which the
values of the weights and abscissas are given by
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TIT w -1 •
W \ — W5 — -20'

W 49 • TJ/ JL6.

(3.2.1) T2 = «o+rA r = (7-V21)/14

T3 = xo-\-mh m = J

s=(7+V21)/14

1432729600

The equations (2.6) and (2.7) take the form

h2

Vl = 2/<> + % +

»i = y'o+
(3 2 3)

where £9 & E* are given by (2.8) and (2.9) with n = 5 and
#o < fs> £5 < xoJr^1- The Hermite interpolating polynomial satisfying the
conditions Y(x0) = y0; Y'(x0) = y'o; Y"(rk) = y"(rk) for k = 1 (1) 5 is
given by

Y(xo+th) = yo+hi/o+h2y'o'(30t2—100t3+150tl-105tli+28iP)/60

+49h2y"(xr)(120sts-60{3s+l)ti

(3.2.4)

+49A2y"(a;,)(120r^-60(3r

+ 36(3+2r)<6-48^)/2160

—9<5+7*«)/10080+O(/z8).

We neglect the error terms in (3.2.4) and make use of (2.1) to replace
y"(rk) in terms of y(rk), f(rk), g(rk). We now substitute t — r, m, s, 1 in
this equation and obtain four linear equations in four unknowns yr, ym,
y,, y\- The values of these quantities are given by the matrix equation
(here v denotes \/21)
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(3.2.5)

where

(3.2.6)

X

Y.
= - P " 1

y0+shy'0+y'0'(li5+21v)l5880+h2G3

'i = [420g r +24(124-28% m +21 ( 2 2 7 - 4 9 % , - 1 8 ^ / 5 2 9 2 0

G2 =

G3 =

and the matrix P is given by

2240 (A2/,—126) 128(124—28v)h2fm 112(227—49^7, -96A2/! "

— 72) 49(245—56v)h2fs 147A2/j

h*fm 2240 (A2/,—126) — 96A2/!

_76832sA2/r 50176^2/m 768'S2h2rf, —282240_

It can be easily seen that the matrix P (for small values of A) is non-singular
and therefore the system (3.2.5) can be solved for the required unknowns.
The algorithm to determine yn+1 is as follows.

Replace y0, y'o, y'o', xr, xm, xs occurring in (3.2.2) and (3.2.3) by yn,
y'n> y'n> x

n+f *n+m> xn+s respectively and calculate Yr, YM,'Y, according to
the new equations. Denoting these quantities by Yn+r, Yn+m, Yn+t the
required approximate values of yn+x, y'n+i are given by the equations.

yn+i = yn

h2

(3.2.8)

+±9{s(f(xn+r)Yn+r+g(xn+r))+r(f(xn+,)Yn+s+g(xn+,))}],

180
(3.2.9) +*9(f(xn+T)Yn+r+g(xn+r)+f(xn+,)Yn+8+g(xn+,))

4. Stability considerations

It is of course difficult to discuss the stability of the method for the
most general case but for a particular case it can be studied in a manner
similar to the one adopted by Jain and Sharma [10]. We shall here consider
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the stability of the Seventh order method for the differential equation
y" = xy, a being a real number. We shall discuss three cases a = k%, 0, —k2

respectively. If we insert the values of Y(xP), Y(xa) from (3.1.5), (3.1.6) in
(3.1.2) and (3.1.3) we obtain

(4.1)
U/n+J L«21

where

a3A6 a4/*8

( + ) 31a3 h1

1 h675 Zl' 108000 4 '

xh 9uoLh Hoc2 A3

' i on A'12 594' 1204' 14404'

+ 2880 4 '

and
a/*2

4' = 1- — +25 1000 36000

For a = 0 we have

Vn+i = yn+
hy'n

y'n+i = y'»-

The solution of this system can be written as

yn =
which is an expected result.

We now consider the case a = — k2; the solutions in this case are
oscillating. We therefore consider the eigenvalues of the matrix (4.1) which
are given by

h, K = J(«n+«22)±iV(an—a22)
2+4«12«21.

If we substitute the values of the coefficients irom the equation (4.1) and
carry out the computation of the eigenvalues for a sufficiently wide range
of h2k2, we find that the eigenvalues are real except in the range (approx-
imately)

(4.2) 15.3 ^ AaAa < 16.9

in which case the roots are complex. If we further use the value of 4 '
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as given by (3.1.10) we find a sub range of (4.2) in which the roots are
complex and have a unit modulus. This however indicates that the range
of stable operation of the method is very small and therefore the method
in general cannot be suggested to be always trustworthy in automatic
computation.

For the case y" = k2y, of which the solutions are exponential in
nature, one can again proceed on the lines of Jain and Sharma [10] and
discuss the stability of the method. But in this case the calculations seem
to be too lengthy to be considered here. Nevertheless it can be seen that
the series for \\A' converges if (A2&2)/25 < 1 and therefore for small values
of h, stability in this case is also expected.

5. Higher-order differential equations

Let us consider the system of linear ordinary differential equations

(5.1) Y' = AY+B, Y(zo) = Yo

where A is a mxm matrix with elements as functions of x. Integrating
(5.1) over the interval [x0, xo+h] (h > 0), we get

(5.2) Y(xo+h) = y(xo)+ *0T" [A(t)Y(t) + B(t)]dt.

Application of (2.5) to the integral in this equation gives

Y(xo+h) = Yo+ —A— [A(xo)Y(xo)+A(x1)Y(x1)+B(x0

(5-3) „ 2

+ lWk[A(rk)Y(rk)+B(rk)]+R
k=l

where

R= -
(2M-

xo< £ < xo+h.

To calculate the approximate values of the unknown quantities Y(rk) for
k — 1 (I) n—l,we can construct the Hermite interpolating polynomial

(5.4) Y(xo+th) = ao

by requiring that the Taylor series expansion of both the sides about the
point x0 agrees with each other up to the terms of order h". We make use
of (5.1) and rewrite (5.4) in the form
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(5.5) Y(xo+th) = ao(t)Yo+
nZak(t)[A (rk)Y(rk) + B(rk)].

Equation (5.5) is linear in the unknown vectors Y(rk) and if we substitute
t = rk, k = 1 (1) n— 1 we get a linear system of matrix equations to
determine the n—1 unknown vectors Y(rh), k = 1, 2, • • •, n— 1. These
values may now be substituted in (5.3) to obtain the required values of
Y(xo-}-h) with a local truncation error of 0(hn+2). The stability of a particular
method in this general case can be considered exactly in the same way
as in the previous case.

6. Illustrations

For the purpose of computational comparison of this method with
other methods, we consider the following two sample examples. We have
written programs for the ATLAS COMPUTER in FORTRAN (in single
precision) for the methods under consideration and the results have been
compared with the exact results.

EXAMPLE 1. Bessel differential equation

y"(x)+(100+1/(4x*))y(z) = 0.

We take the initial conditions at x = 1 such that the exact solution is
T/XJ0(10X). Starting values were taken from the tables of Bessel Functions
in [2] to 10 decimal places. The Runge-kutta method used for comparison
is the simple single-step method which as well employs four evaluations
of the functions in each of the subintervals. The results obtained by using
the algorithms of section 3 with h = 0.02 are given in table 1.

EXAMPLE 2. The differential equation

y"(x)+(167t*e-**-i)y(x) = 0

with initial conditions y(0) = 1, y'(0) = 0.5 has the solution

y(x) = eix • cos (ine~x).

In this ease also we took h = 0.02 and used the algorithms of section 3.
The results obtained have been listed in Table 2.

7. Conclusions

We observe that the one-step Lobatto method developed here (which
utilizes very few function evaluations) gives a good agreement of the
computed values with the exact values in the case of differential equations
and compares quite favourably with the other methods under consideration.
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The method has been tried for many other problems and the results obtained
were quite satisfactory in all these cases. The method suggests the con-
struction of one-step methods of arbitrary order and it is expected that
in the case of differential equation (4.1) one should always get the value of
Yr+1 with a local truncation error 0(hn+2) for n evaluations of A and B
for arbitrary n. However the present method does not find extension for
non-linear differential equations, but in this case the reader is suggested
to ref. [5].

Although the general second-order differential equation

Y" = P(x)Y'+f(*)Y+g(x),

can be considered by the method of section 5, but to make use of the algo-
rithms listed in section 3 it is suggestive to either eliminate the term Y'
from the above differential equation or treat the term P(x)Y' by integration
by parts, depending upon whether or not P(x) is explicitly integrable.
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