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Abstract

In this paper, we propose two new optimal reinsurance models in which both premium
budget constraints and the reinsurer’s risk limits are taken into account. To be precise, we
assume that the reinsurance premium has an upper bound, and that the admissible ceded
loss functions have a pre-specified upper limit. Moreover, we assume that the reinsur-
ance premium principle is calculated by the expected value premium principle. Under
the optimality criteria of minimizing the value at risk and conditional value at risk of the
insurer’s total risk exposure, we derive the explicit optimal reinsurance treaties, which
are layer reinsurance treaties. A new approach is developed to construct the optimal rein-
surance treaties. Comparisons with existing studies are also made. Finally, we provide a
numerical study based on real data and an example to illustrate the proposed models and
results. Our work provides a novel generalization of several known achievements in the
literature.
Keywords: Optimal reinsurance; budget constraint; value at risk; conditional value at
risk; expected value premium principle
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1. Introduction

Reinsurance is an effective risk management tool for insurers, as it can enable an insurer to
reduce its underwriting risk. In a typical reinsurance treaty, an insurer cedes part of the loss to a
reinsurer, and incurs an additional cost in the form of a reinsurance premium which is payable
to the reinsurer. This implies that an insurer must address the classical trade-off between the
risk retained and the premium paid to the reinsurer. To develop an optimal reinsurance treaty,
the insurer needs to mathematically determine three things: (i) an optimal objective, (ii) a set of
admissible ceded loss functions, and (iii) a reinsurance premium principle. Any change in one
or more of these three aspects of the problem could potentially lead to a very different optimal
solution. In other words, an important issue in developing a reinsurance treaty is to identify
the optimal ceded loss functions, or equivalently, the optimal retained functions according to

Received 11 November 2021; accepted 14 December 2023.
∗ Postal address: College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang, 830046,
People’s Republic of China. Email address: liuwei_math@sina.com
∗∗ Postal address: School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei, 430072, People’s Republic
of China. Email address: yjhu.math@whu.edu.cn

© The Author(s), 2024. Published by Cambridge University Press on behalf of Applied Probability Trust.

1

https://doi.org/10.1017/apr.2024.2 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.2
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/apr.2024.2&domain=pdf
https://doi.org/10.1017/apr.2024.2


2 W. LIU AND Y. HU

certain optimality criteria. In this paper, we aim to study the optimal reinsurance treaties for
optimal reinsurance models with premium budget constraints and reinsurer’s risk limits.

In relation to the optimal objectives, a seminal work of Borch [5] considers the variance
of the insurer’s retained risk. Similar studies can also be found in Gajek and Zagrodny [24]
and Kaluszka [29]. Another seminal paper by Arrow [3] considered maximizing the expected
utility. For more works within Arrow’s framework, we refer to Young [40], Deprez and Gerber
[21], Promislow and Young [35], and Kaluszka [30]. Over the past 15 years, risk measures
such as value at risk (VaR), conditional value at risk (CVaR), distortion risk measures and
coherent risk measures have been extensively employed as optimal criteria in actuarial studies.
For example, see Gajek and Zagrodny [25], Cai and Tan [8], Cai et al. [9], Bernard and Tian
[4], Tan et al. [37], Weng [39], Chi [14], Chi and Tan [17], Chi and Weng [18], Assa [2],
Cheung et al. [11], Lu et al. [34], Wang and Peng [38], Zhuang et al. [44], Cheung and Lo
[13], Chi et al. [16], Lo [31, 32], Cheung et al. [10], Ghossoub [26], Huang and Yin [27],
Asimit et al. [1], and the references therein.

In relation to admissible ceded loss functions, an important class was first suggested by
Huberman et al. [28], who required that both the ceded and retained loss functions be increas-
ing in order to preclude the moral hazard from a reinsurance treaty. Mathematically, this is
equivalent to requiring that the ceded loss function be increasing and Lipschitz continuous.

Recently, there has been extensive study of optimal reinsurance models with premium bud-
get constraints from a practical point of view, taking into account the various constraints
commonly encountered in practice. Weng [39], Zheng and Cui [41] and Ghossoub [26], to
name just a few, studied optimal reinsurance policies in the case where the reinsurance pre-
mium with an upper bound is calibrated by the expected value premium principle. Optimal
reinsurance policies in the case where the reinsurance premium with an upper bound is cal-
culated by a distortion premium principle have been heavily investigated in the literature; for
example, see Cheung et al. [12], Cui et al. [19], Zhuang et al. [44], Cheung and Lo [13], Lo
[31, 32], Huang and Yin [27], and the references therein. Cheung et al. [10] studied optimal
reinsurance policies in the case where the reinsurance premium with an upper bound is cal-
ibrated by a convex risk measure. Cheung et al. [11] studied optimal reinsurance policies in
the case where the reinsurance premium with an upper bound is assumed to be a functional
of the expectation, VaR, and average value at risk (AVaR) of the insurer’s loss variable. More
recently, Asimit et al. [1] studied Pareto-optimal insurance contracts in the case where the rein-
surance premium is assumed to be a constant with lower and upper bounds, and the upper and
lower bounds stand for premium budget and minimum charge constraints, respectively.

The premium budget constraints mentioned above can also be understood as a sort of
insurer’s risk control, in the sense that the insurer would control the premium payoff due
to the financial budget. On the other hand, from the perspective of reinsurer’s risk control,
some optimal reinsurance models with reinsurer’s risk limits have been studied in the litera-
ture. Two basic types of reinsurer’s risk limits have been investigated. One type was proposed
by Cummins and Mahul [20], who suggested that the ceded loss function should have a pre-
specified upper limit constraint, which means that the reinsurer would control his/her maximal
underwriting coverage; see also Raviv [36]. Recently, along the lines of Cummins and Mahul
[20], Lu et al. [34] studied optimal reinsurance treaties minimizing the VaR and CVaR of the
insurer’s total risk exposure. Another type of reinsurer’s risk limit was proposed by Zhou and
Wu [42], who imposed some constraints on the amount of the ceded loss minus premium,
which means that the reinsurer would control the risk of his/her net loss. For more studies
along these lines, we refer to Zhou et al. [43], Cheung et al. [12], Chi and Lin [15], Lu et al.
[34], and Lo [32].
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FIGURE 1. Relationship between reinsurance’s risk limit L and premium budget constraint M.

While premium budget constraints and reinsurer’s risk limits are prevalent both in academia
and in the insurance industry, they are not well studied in the literature on optimal reinsurance
models. Therefore, from both the theoretical and the practical point of view, it is natural and
reasonable to expect optimal reinsurance models that can simultaneously take into account
premium budget constraints and reinsurer’s risk limits. Such optimal reinsurance models are
worth studying because, compared to models involving either premium budget constraints or
reinsurer’s risk limits alone, they are apparently more suitable for modeling realistic insurance
markets. Motivated by this observation, in this paper we strive to interweave the aforemen-
tioned lines of research on premium budget constraints and reinsurer’s risk limits. It should be
noted that the optimal reinsurance models that arise here are far from simple hybrids of models
involving either premium budget constraints or reinsurer’s risk limits alone. Indeed, it turns out
not only that it is a delicate problem to develop an appropriate method for deriving the optimal
reinsurance treaties, but also that the solutions to such models are also more complicated; see
especially the preparatory results given in Lemmas 3.1–3.4 (Subsection 3.1), Theorem 3.2, and
Remark 3.2(1) below.

In the present paper, we assume that both the reinsurance premium and the ceded loss
function have pre-specified upper limits, which respectively represent the premium budget
constraint and the Cummins–Mahul-type reinsurer’s risk limit constraint. Moreover, in order to
exclude the moral hazard, we assume that the ceded loss functions are increasing and Lipschitz
continuous, as there is no incentive for the insurer to go for large risk while they know their
loss is close to the reinsurer’s risk limit. Furthermore, we suppose that the reinsurance premium
is calculated by the expected value premium principle. Under the optimality criteria of mini-
mizing the VaR and CVaR of the insurer’s total risk exposure, we construct explicit optimal
reinsurance treaties, which are layer reinsurance treaties. We compare our results with those of
existing studies. Finally, we provide a numerical study based on real data and an example to
illustrate the proposed models and results. Our work provides a novel generalization of several
known achievements in the literature.

Figure 1 shows the intuitive relation between the Cummins–Mahul-type reinsurer’s risk
limit and the reinsurance premium budget. In Figure 1, the premium budget constraint Mi cor-
responds to the reinsurer’s risk limit Li, i=1, 2. Intuitively, compared with a lower reinsurer’s
risk limit L1, if the reinsurer sets a higher risk limit L2, then it means that the reinsurer is willing
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to undertake higher coverage, and thus the reinsurer will most likely require a higher premium.
In this situation, the insurer is supposed to make the premium budget as high as possible so
that he/she can purchase more expensive reinsurance from the reinsurer. In other words, in
this situation, the reinsurance premium budget M2 should not be less than M1. Alternatively,
if the insurer has a high enough premium budget M, then the reinsurer’s risk limit L should
significantly affect the insurer’s optimal reinsurance treaty. This consideration will also be
demonstrated in the real-data-based numerical study in the sequel.

It might be helpful for us to briefly comment on the main contributions of the present paper.
First, we propose two new optimal reinsurance models that simultaneously take into account
premium budget constraints and reinsurer’s risk limits, which are not well studied in the lit-
erature. Explicit optimal reinsurance treaties are obtained. This paper significantly generalizes
recent works of Lu et al. [34] by imposing budget constraint on the reinsurance premium; see
Remark 2.1, Theorems 3.1 and 3.2, Remarks 3.1 and 3.2, and Example 3.1 below. From the
viewpoint of behavioral finance and in practice, considering the perspective of the insurer, we
believe that it is also reasonable to impose a pre-specified upper limit on the reinsurance pre-
mium, and this consideration is the starting point of the present study. Note that such a budget
constraint on the reinsurance premium was previously studied by Weng [39, Chapters 3 and 4],
where it was interpreted in the context of insurance economics. Second, compared with the rel-
evant works of Lu et al. [34], the generalizations achieved in the present paper are non-trivial,
because new arguments need to be developed to construct the optimal reinsurance treaties,
which are two-layer reinsurance treaties. Although the optimal reinsurance contracts in both
the present paper and that of Lu et al. [34] are two-layer reinsurance treaties, the imposition
of a premium budget constraint on the reinsurance premium makes it more difficult and com-
plicated to correctly obtain the two-layer reinsurance treaties. Inspired by Lu et al. [34], we
develop a new approach to showing the existence of the optimal two-layer reinsurance treaties.
These newly developed arguments are far more delicate and complicated; see the preparation
lemmas in Subsection 3.1, Theorems 3.1 and 3.2, and Remarks 3.1 and 3.2 below. In particular,
for the CVaR-based optimal reinsurance model, compared with the relevant model of Lu et al.
[34], one more new case needs to be discussed; see Theorem 3.2 and Remark 3.2(1) below. We
believe that these newly developed arguments are also interesting in their own right.

It should be mentioned that our optimality criterion of minimizing the VaR of the insurer’s
total risk exposure is closely related to the optimality criterion of maximizing the insurer’s
survival probability, which was studied by Gajek and Zagrodny [25]. Indeed, the two criteria
are equivalent, in the sense that they have the same optimal solutions. Starting from the consid-
eration that the insurer has enough money to purchase the stop-loss reinsurance contract, and
under the assumption that the reinsurance premium does not exceed some pre-specified upper
limit, Gajek and Zagrodny [25] found the deductible which is optimal in the sense that the
resulting stop-loss reinsurance contract is the least expensive reinsurance arrangement with
the insurer’s insolvency probability equal to zero. Gajek and Zagrodny [25] classified this
case as optimal full protection against ruin. Furthermore, they also studied the other case of
optimal partial protection against ruin, in which the reinsurance premium with respect to a
pre-specified stop-loss contract is assumed to have a lower bound. They found that in this case,
a kind of truncated stop-loss reinsurance contract is optimal. In the present paper, we employ
a special class of bounded ceded loss functions, namely the class of admissible ceded loss
functions, which excludes the stop-loss contract. In addition, the optimal reinsurance treaty
obtained in the present paper is a two-layer reinsurance treaty, which is different from both the
stop-loss and the truncated stop-loss contracts of Gajek and Zagrodny [25]. Taking the above
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considerations into account, the present study of the VaR-based optimal model can be viewed
as a meaningful complement to the study of Gajek and Zagrodny [25].

It should also be mentioned again that the optimal reinsurance models with premium budget
constraints were previously studied by Weng [39, Chapters 3 and 4], who also assumed the
reinsurance premium principle to be the expected value premium principle. Nevertheless, there
are significant differences between this paper and [39, Chapters 3 and 4], which we explain
briefly here. For the VaR-based optimal reinsurance model, Weng [39, Chapter 3] employed
increasing convex loss functions as the class of admissible ceded loss functions. This excludes
the case considered in the present paper, because the admissible ceded loss functions employed
in this paper are bounded from above by a pre-specified constant. There are also differences
between the mathematical techniques used in this paper and those of Weng [39, Chapter 3]. For
the CVaR-based optimal reinsurance model, Weng [39, Chapter 4] employed a general class of
admissible ceded loss functions such that the ceded loss has finite first and second moments;
this includes the class considered in the present paper as a subclass. However, it turns out
that there is still something new in the present paper. On the one hand, the results obtained
below will show how the pre-specified upper limit imposed on the ceded loss functions in
this paper influences the optimal reinsurance treaties, which has a significant interpretation in
terms of insurance economics; see Theorem 3.2 and Remark 3.2 below. On the other hand,
both the results obtained and the methods used in this paper are somewhat different from
those of Weng [39, Chapter 4], as exemplified by the process of proving Theorem 3.2; see
Subsection 3.2 below. Thus, the present study can also be viewed as a meaningful complement
to that of Weng [39, Chapters 3 and 4].

The rest of this paper is organized as follows. In Section 2 we give some preliminaries,
including a description of the optimal reinsurance models. In Section 3 we study the optimal
reinsurance problems under the VaR and CVaR optimality criteria. The explicit optimal rein-
surance treaties are provided. An example is also given to illustrate the proposed models and
the results obtained.

2. Preliminaries

Let X be a random loss initially faced by an insurer. (For example, X could be a claim or an
aggregate of claims.) We assume that X is a non-negative random variable on some probabil-
ity space (�,F , P) with positive and finite expectation E(X). Denote by FX(x) := P(X ≤ x),
x ∈ R, the distribution function of X, and by SX(x) := 1 − FX(x) the survival function of
X. Denote by X the class of non-negative random variables with finite expectation and
P(X > 0)> 0. In a classical reinsurance treaty, the insurer would cede part of the loss X, say
f (X), to a reinsurer, and retain the rest of the loss X, say Rf (X) := X − f (X). We call the func-
tion f (x) : [0,+∞) → [0,+∞) the ceded loss function, and Rf (x) : [0,+∞) → [0,+∞) the
retained loss function. When an insurer cedes part of the loss to a reinsurer, the insurer incurs
an additional cost in the form of a reinsurance premium which is payable to the reinsurer. Let
π (·) be the reinsurance premium principle, which is a mapping from X to R+ := [0,+∞). In
the presence of reinsurance, the liability of the insurer is the total risk exposure,

Tf (X) := Rf (X) + π [f (X)].

As pointed out by Huberman et al. [28], in order to reduce the moral hazard, a feasible
reinsurance treaty should be designed so that both the ceded and retained loss functions are

https://doi.org/10.1017/apr.2024.2 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.2


6 W. LIU AND Y. HU

increasing. We denote by F the class of such ceded loss functions; that is,

F := {
f : R+ → R+, 0 ≤ f (x) ≤ x, f (x) and Rf (x) are increasing in x

}
.

Not that the property that Rf (x) is increasing is equivalent to the Lipschitz continuity of f (x);
that is, for any 0 ≤ x1 ≤ x2,

f (x2) − f (x1) ≤ x2 − x1. (2.1)

In this paper, the class F will serve as a starting point for determining the admissible ceded
loss functions.

We now introduce the reinsurer’s risk limit constraint which we will consider. The constraint
is that the ceded loss function is bounded from above by a pre-specified upper limit L> 0, as
suggested by Cummins and Mahul [20] from the practical point of view. We denote by F1 the
subclass of F defined by

F1 := {f ∈ F : f (x) ≤ L for x ∈ R+}.
Throughout this paper, we assume that the reinsurance premium principle is calculated by

the common expected value premium principle; that is,

π (Y) := (1 + ρ)E[Y], Y ∈ X,

where ρ > 0 is the safety loading factor. Write ρ∗ := 1

1 + ρ
.

From the viewpoint of behavioral finance and in practice, considering the perspective of
the insurer, when the ceded loss function is assumed to be bounded from above by a pre-
specified upper limit, we argue that it is also reasonable to assume that the insurer will require
a pre-specified upper limit on the reinsurance premium payable to the reinsurer. This is why
we believe that optimal reinsurance models with premium budget and reinsurer’s risk limit
constraints are worth studying. Such optimal reinsurance models are generalizations of the
relevant models studied by Lu et al. [34].

We now introduce the premium budget constraint on the reinsurance premium principle
which we will consider. Define

H := {f ∈ F1 : π [f (X)] ≤ M} = {f ∈ F1 : (1 + ρ)E[f (X)] ≤ M} ,
where M > 0 is a pre-specified upper limit on the reinsurance premium.

In light of the popularity of the VaR and CVaR risk measures among banks and companies
for risk management and setting regulatory capital, we will use VaR and CVaR to evaluate the
insurer’s liability.

Next, we introduce the definitions of VaR and CVaR.

Definition 2.1. Let α ∈ (0, 1) and X ∈ X.

(i) The VaR of X at confidence level (1 − α) is defined as

VaRα(X) := inf{x ≥ 0:P(X > x) ≤ α}.
(ii) The CVaR of X at confidence level (1 − α) is defined as

CVaRα(X) := 1

α

∫ α

0
VaRθ (X)dθ .

In the next lemma, we collect some properties of VaR and CVaR.
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Lemma 2.1. Let X ∈ X. Then VaR and CVaR have the following properties:

(a) For any α ∈ (0, 1), VaRα(X) ∈ [0,+∞).

(b) There exists α0 ∈ (0, 1) such that VaRα0 (X)> 0.

(c) VaRα(X) is decreasing in α on (0,1); that is, VaRα(X) ≤ VaRβ (X) if 0<β ≤ α < 1.

(d) Translation-invariance: for 0<α < 1 and any c ∈ R,

VaRα(X + c) = VaRα(X) + c

and
CVaRα(X + c) = CVaRα(X) + c.

(e) For 0<α < 1 and x ≥ 0,

VaRα(X) ≤ x if and only if SX(x) ≤ α.

(f) For any increasing continuous function φ, we have

VaRα(φ(X)) = φ(VaRα(X)), 0<α < 1.

Note that Part (e) is from (11) of Dhaene et al. [22]. Part (f) is a consequence of Dhaene
et al. [22, (15)], where the function φ is only required to be non-decreasing and left-continuous.
The other properties are obvious. In particular, VaR0(X) := esssupX and VaR1(X) := 0.

Next, we introduce the optimal reinsurance models we will consider in the present paper,
which are described as follows:

• VaR-based optimal reinsurance model with limits on coverage:

VaRα[Tf ∗(X)] = min
f ∈H

VaRα[Tf (X)] (2.2)

• CVaR-based optimal reinsurance model with limits on coverage:

CVaRα[Tf ∗(X)] = min
f ∈H

CVaRα[Tf (X)] (2.3)

In both cases, f ∗ denotes the resulting optimal ceded loss function.

Remark 2.1. If M ≥ (1 + ρ)E[X], then the constraint (1 + ρ)E[f (X)] ≤ M in the models (2.2)
and (2.3) is redundant. In this case, the optimal reinsurance models (2.2) and (2.3) are reduced
to the optimal reinsurance models

min
f ∈F1

VaRα[Tf (X)] and min
f ∈F1

CVaRα[Tf (X)],

respectively, which were studied by Lu et al. [34]. For the links between the main results of
the present paper and those of Lu et al. [34], see Remark 3.1(2) and Remark 3.2(1) below.

3. Optimal reinsurance with limits on coverage

In this section we discuss the optimal reinsurance treaties for the optimization models (2.2)
and (2.3). From now on, let X ∈ X be fixed. Throughout this paper, we assume that the survival
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function SX(x) of X is absolutely continuous and strictly decreasing on (0,+∞) but with a
possible jump at 0 with p0 := P(X = 0). We further assume that X is of a density function fX(x)
in the sense that for any x ≥ 0,

FX(x) = p0 +
∫ x

0
fX(y)dy.

Note that these assumptions imposed on the random loss X could enable one to work with
somewhat more general loss distribution functions, which are the same as those employed by
Lu et al. [34].

3.1. Preparations

In this subsection we present some preparatory results, which will play an important role in
our discussion later.

Given 0 ≤ a ≤ b<+∞, we define a non-negative function g(x; a, b) on [0,+∞) by

g(x; a, b) := (x − a)+ − (x − b)+. (3.4)

Given α ∈ (0, 1) and 0 ≤ a ≤ VaRα(X), we define a non-negative function g(x; a) on
[0,+∞) by

g(x; a) := g(x; a, VaRα(X)) = (x − a)+ − (x − VaRα(X))+. (3.5)

Furthermore, we denote by H1 the class of the functions g(x; a) satisfying a ∈ D1, where D1
is defined by

D1 :=
{

a : [VaRα(X) − L]+ ≤ a ≤ VaRα(X), (1 + ρ)
∫ VaRα(X)

a
SX(x)dx ≤ M

}
.

Obviously, D1 �= ∅ and ∅ �= H1 ⊆ H. Write

a∗ := inf
a∈D1

a; (3.6)

then a∗ is either [VaRα(X) − L]+ or the unique solution to the equation

(1 + ρ)
∫ VaRα(X)

a
SX(x)dx = M

with respect to a ∈ ([VaRα(X) − L]+, VaRα(X)).
By the above analysis, we know that the set D1 can be rewritten as

D1 = {a : a∗ ≤ a ≤ VaRα(X)}. (3.7)

Given α ∈ (0, 1), we denote by H2 the class of the functions g(x; a, b) defined by (3.4) with
(a, b) ∈ D2, where D2 is defined by

D2 :=
{

(a, b) : 0 ≤ a ≤ VaRα(X) ≤ b ≤ a + L, (1 + ρ)
∫ b

a
SX(x)dx ≤ M

}
. (3.8)

Clearly, D2 �= ∅ and ∅ �= H2 ⊆ H.
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For any a ∈ [0, VaRα(X)], we define

B(a) :=
{

b ∈ [a, a + L] : (1 + ρ)
∫ b

a
SX(x)dx ≤ M

}
.

Obviously, B(a) �= ∅. Let

β(a) := sup
b∈B(a)

b. (3.9)

Clearly, a<β(a) ≤ a + L and

(1 + ρ)
∫ β(a)

a
SX(x)dx ≤ M. (3.10)

Moreover, given a ∈ [0, VaRα(X)], if

(1 + ρ)
∫ a+L

a
SX(x)dx ≤ M,

then β(a) = a + L. If

(1 + ρ)
∫ a+L

a
SX(x)dx>M,

then β(a) is the unique solution to the equation

(1 + ρ)
∫ b

a
SX(x)dx = M

with respect to b ∈ (a, a + L). In this latter case, the first-order derivative of β(a) with respect
to a is given by

β ′(a) = SX(a)

SX(β(a))
> 0, (3.11)

since SX(β(a))> 0.
For any (a, b) ∈ D2, from (3.9) we have that 0 ≤ a ≤ VaRα(X) ≤ b ≤ β(a), and hence

(1 + ρ)
∫ b

a
SX(x)dx ≤ (1 + ρ)

∫ β(a)

a
SX(x)dx ≤ M,

where the last inequality holds because of (3.10).
By the above analysis, we know that the set D2 defined by (3.8) can be rewritten as

D2 = {(a, b) : 0 ≤ a ≤ VaRα(X) ≤ b ≤ β(a)}. (3.12)

We denote by A2 the projection of D2 to the first coordinate; that is,

A2 := {a ∈ [0, VaRα(X)] : there exists b ∈ [VaRα(X), β(a)] such that (a, b) ∈ D2}. (3.13)

Clearly, VaRα(X) ∈ A2 ⊆ [0, VaRα(X)], since (VaRα(X), VaRα(X)) ∈ D2.
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Note that for any a ∈ A2, if β(a) is the unique solution to the equation

(1 + ρ)
∫ b

a
SX(x)dx = M

with respect to b ∈ (a, a + L), then by (3.12) we know that VaRα(X) ≤ β(a)< a + L.
Furthermore, we denote by S the set of a ∈ A2 such that β(a) is the unique solution to the
equation

(1 + ρ)
∫ b

a
SX(x)dx = M

with respect to b ∈ [VaRα(X), a + L). If S �= ∅, we define

â := sup
a∈S

a. (3.14)

Clearly, â ∈ [0, VaRα(X)].
The following four lemmas concern the properties of β(·), A2, and S, which will play

important roles in our discussion later. Their proofs are postponed to the appendix.

Lemma 3.1. The function β(·) defined by (3.9) is strictly increasing on [0, VaRα(X)].

Lemma 3.2. We have â,VaRα(X) ∈ A2. Moreover, A2 = [a, VaRα(X)], where a is defined by

a := inf
a∈A2

a. (3.15)

Lemma 3.3. The set S = ∅ if and only if β(a) = a + L for all a ∈ A2.

Lemma 3.4. Assume that S �= ∅; then the following hold:

(i) S = [a, â] if β(â)< a + L;

(ii) S = [a, â) if β(â) = a + L.

Provided that S �= ∅, from Lemmas 3.2 and 3.4, we know that VaRα(X) ≤ β(a)< a + L if
a ∈ S, and that VaRα(X) ≤ β(a) = a + L if a ∈ A2\S.

3.2. VaR-based optimal reinsurance with limits on coverage

In this subsection we discuss the optimal reinsurance treaty for the optimal reinsurance
model (2.2).

The next lemma is crucial in deriving the optimal reinsurance treaty for the optimal
reinsurance model (2.2). Its proof is postponed to the appendix.

Lemma 3.5. Let the confidence level α ∈ (0, 1 − p0). For any f ∈ H, there exists a function
hf ∈ H1 such that

VaRα[Thf (X)] ≤ VaRα[Tf (X)]. (3.16)

By Lemma 3.5, the optimization model (2.2) can be equivalently translated into

VaRα[Tf ∗ (X)] = min
f ∈H1

VaRα[Tf (X)] (3.17)

The following theorem is the main result of this subsection; it provides the optimal
reinsurance treaties for the model (2.2). Its proof is postponed to the appendix.
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Theorem 3.1. Let the confidence level α ∈ (0, 1 − p0), and let a∗ be as in (3.6).

(i) If α ≥ 1
1+ρ , then

min
f ∈H

VaRα[Tf (X)] = VaRα(X),

and the minimum of VaRα[Tf (X)] is attained at f ∗(x) = 0.

(ii) If α < 1
1+ρ and a∗ <VaR 1

1+ρ
(X), then

min
f ∈H

VaRα[Tf (X)] = VaR 1
1+ρ

(X) + (1 + ρ)
∫ VaRα(X)

VaR 1
1+ρ

(X)
SX(x)dx,

and the minimum of VaRα[Tf (X)] is attained at f ∗(x) = (x − VaR 1
1+ρ

(X))+ − (x −
VaRα(X))+.

(iii) If α < 1
1+ρ and a∗ ≥ VaR 1

1+ρ
(X), then

min
f ∈H

VaRα[Tf (X)] = a∗ + (1 + ρ)
∫ VaRα(X)

a∗
SX(x)dx,

and the minimum of VaRα[Tf (X)] is attained at f ∗(x) = (x − a∗)+ − (x − VaRα(X))+.

Remark 3.1.

(1) The insurance economics of Theorem 3.1(iii) can be interpreted as follows. The limit M
may influence the deductible. Indeed, a∗ represents the deductible. The larger M is, the
less a∗ is. In other words, the more reinsurance premium the insurer would like to pay,
the more reinsurance the insurer would like to purchase.

(2) When M goes to infinity, a∗ decreases to [VaRα(X) − L]+. Hence Theorem 3.1 recovers
Theorem 3.2 of Lu et al. [34].

3.3. CVaR-based optimal reinsurance with limits on coverage

In this subsection, we discuss the optimal reinsurance treaty for the optimal reinsurance
model (2.3).

Note that for any Z ∈ X and any α ∈ (0, 1),

CVaRα(Z) = VaRα(Z) + 1

α
·E [

(Z − VaRα(Z))+
]

= VaRα(Z) + 1

α

∫ +∞

VaRα(Z)
SZ(x)dx. (3.18)

For any f ∈ H, by Lemma 2.1(f), the increasing property, and the Lipschitz continuity of
f (x), it is not hard to verify that

[Rf (X) − VaRα(Rf (X)]+ = [X − VaRα(X) − (f (X) − f (VaRα(X)))]+
= [X − VaRα(X)]+ − [f (X) − f (VaRα(X))]+. (3.19)
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By Parts (d) and (f) of Lemma 2.1 and (3.18), we know that for any f ∈ H,

CVaRα[Tf (X)] = VaRα(X) − f (VaRα(X)) + (1 + ρ)E[f (X)]

+ 1

α
·E[[Rf (X) − VaRα(Rf (X)]+]. (3.20)

By (3.19) we have that

E[[Rf (X) − VaRα(Rf (X)]+] =E[(X − VaRα(X))+] −E[[f (X) − f (VaRα(X))]+]

=E[(X − VaRα(X))+] −
∫ +∞

VaRα(X)
f (x)dFX(x)

+ αf (VaRα(X)). (3.21)

Hence, from (3.20) and (3.21) it follows that

CVaRα[Tf (X)] = VaRα(X) + 1

α
·E[(X − VaRα(X))+] + (1 + ρ)E[f (X)]

− 1

α

∫ +∞

VaRα(X)
f (x)dFX(x), (3.22)

or equivalently,

CVaRα[Tf (X)] = VaRα(X) + 1

α
·E[(X − VaRα(X))+] + (1 + ρ)

∫ VaRα(X)

0
f (x)dFX(x)

+ δ ·
∫ +∞

VaRα(X)
f (x)dFX(x), (3.23)

where δ := 1 + ρ − 1

α
.

The next lemma is crucial in deriving the optimal reinsurance treaty for the optimal
reinsurance model (2.3). Its proof is postponed to the appendix.

Lemma 3.6. Let the confidence level α ∈ (0, 1 − p0). For any f ∈ H, there exists a function
hf ∈ H2 such that

CVaRα[Thf (X)] ≤ CVaRα[Tf (X)]. (3.24)

By Lemma 3.6, the optimization model (2.3) can be equivalently translated into

CVaRα[Tf ∗(X)] = min
f ∈H2

CVaRα[Tf (X)]. (3.25)

For any g(x) := g(x; a, b) ∈ H2 with (a, b) ∈ D2, from (3.23) and an elementary
calculation it follows that

CVaRα[Tg(X)] = VaRα(X) + 1

α
·E[(X − VaRα(X))+] + (1 + ρ)

∫ VaRα(X)

0
g(x; a, b)dFX(x)

+ δ ·
∫ +∞

VaRα(X)
g(x; a, b)dFX(x) (3.26)
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= 1

α
·E[(X − VaRα(X))+] + a + (1 + ρ)

∫ VaRα(X)

a
SX(x)dx

+ δ ·
∫ b

VaRα(X)
SX(x)dx (3.27)

:= φ(a, b). (3.28)

For any a ∈ A2, taking the partial derivative of φ(a, b) with respect to b ∈ [VaRα (X), β(a)]
yields

∂φ(a, b)

∂b
= δ · SX(b)< 0. (3.29)

The following theorem is the main result of this subsection; it provides the optimal rein-
surance treaties for the model (2.3). Its proof is postponed to the appendix. Recall that
ρ∗ := 1

1+ρ .

Theorem 3.2. Let the confidence level α ∈ (0, 1 − p0), and let β(a) and â be defined as in (3.9)
and (3.14), respectively.

(i) If α > ρ∗, then

min
f ∈H

CVaRα[Tf (X)] = VaRα(X) + 1

α
E[(X − VaRα(X))+] = CVaRα(X),

and the minimum of CVaRα[Tf (X)] is attained at f ∗(x) = 0.

(ii) If α= ρ∗, then

min
f ∈H

CVaRα[Tf (X)] = VaRα(X) + 1

α
E[(X − VaRα(X))+] = CVaRα(X),

and the minimum of CVaRα[Tf (X)] is attained at f ∗(x) = (x − VaRα(X))+ − (x − b)+,
where b is any real number satisfying VaRα(X) ≤ b ≤ β(VaRα(X)).

(iii) If α < ρ∗ and S = ∅, then

min
f ∈H

CVaRα[Tf (X)] = 1

α
E[(X − VaRα(X))+] + a0

+ (1 + ρ)
∫ VaRα(X)

a0

SX(x)dx + δ

∫ a0+L

VaRα(X)
SX(x)dx,

and the minimum of CVaRα[Tf (X)] is attained at f ∗(x) = (x − a0)+ − (x − a0 − L)+,
where a0 is the unique solution to the equation

1 − (1 + ρ)SX(a) + δSX(a + L) = 0

with respect to a ∈ [0, VaRα(X)], satisfying max{VaRρ∗(X), VaRα(X) − L}< a0 <

VaRα(X).
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(iv) If α < ρ∗,S �= ∅ and â = VaRα(X), then

min
f ∈H

CVaRα[Tf (X)] = 1

α
E[(X − VaRα(X))+] + VaRα(X) + δ

∫ β(VaRα(X))

VaRα(X)
SX(x)dx

= CVaRα(X) + δ

∫ β(VaRα(X))

VaRα(X)
SX(x)dx,

and the minimum of CVaRα[Tf (X)] is attained at f ∗(x) = (x − VaRα(X))+ − (x − β

(VaRα (X) ))+.

Remark 3.2.

(1) Since X is of finite expectation, if the limit M is large enough so that (1 + ρ)E(X) ≤
M, then β(a) = a + L for all a ∈ [0, VaRα(X)]. Hence by Lemma 3.3, S = ∅; thus
Theorem 3.2 recovers Theorem 4.2 of Lu et al. [34]. In general, Theorem 3.2(iv) sug-
gests that in the presence of premium budget constraints, one more case needs to be
discussed than in Theorem 4.2 of Lu et al. [34]. Example 3.1 below will show that this
case, corresponding to Theorem 3.2(iv), does exist.

(2) Parts (ii) and (iv) of Theorem 3.2 provide an interesting interpretation of the limit M
in terms of insurance economics. For any x ≥ 0 and any b satisfying VaRα(X) ≤ b ≤
β(VaRα(X)), we have that

(x − VaRα(X))+ − (x − b)+ ≤ (x − VaRα(X))+ − (x − β(VaRα(X)))+. (3.30)

Recall that the formula on the left-hand side of (3.30) is the optimal reinsurance treaty
for the case (ii) of Theorem 3.2, while the one on the right-hand side of (3.30) is the
optimal reinsurance treaty for the case (iv) of Theorem 3.2. Therefore, the limit M influ-
ences the maximum of the optimal ceded loss function. Note that the less the limit M
is, the less β(VaRα(X)) is. In other words, when the insurer would like to pay less rein-
surance premium, the insurer would also be willing to accept a lower maximum for the
ceded loss, which is fair for the reinsurer.

(3) Theorem 3.2(iii) provides an interesting interpretation of the limit L in terms of insur-
ance economics. From Theorem 3.2(iii), we know that when L ≤ VaRα(X) − VaRρ∗ (X),
we have VaRρ∗ (X) ≤ VaRα(X) − L, and thus

VaRα(X) − L< a0 <VaRα(X),

where a0 is the deductible of the optimal reinsurance treaty with lower bound
VaRα(X) − L. Note that VaRα(X) − L is decreasing with respect to L. Therefore, for
given fixed α, ρ with α < ρ∗ := 1

1+ρ and M large enough so that S = ∅, the less the
tolerance level L is, the less reinsurance the insurer will purchase. This implication coin-
cides with the intuition in practice. Furthermore, when the tolerance level L decreases
to zero, the deductible a0 converges to VaRα(X), which implies that the optimal reinsur-
ance treaty f ∗(x) converges to zero. This observation also coincides with the intuition in
practice.
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TABLE 1. Goodness of fit for automobile insurance loss distribution function

Distribution AIC BIC

Weibull 2699.53 −1397.91
Log-normal 2614.33 −1426.25
Pareto 2903.28 −1372.70

We end this subsection with an example which shows that the case (iv) of Theorem 3.2 does
occur.

Example 3.1. Let the random loss X be exponentially distributed with density function fX(x);
that is,

fX(x) =
{

0, x ≤ 0,

λe−λx, x> 0,

where λ> 0 is a constant. Clearly, for any given α ∈ (0, 1), VaRα(X) = − log α
λ

.

For any given L> 0 and ρ > 0 satisfying α < 1
1+ρ ,

(1 + ρ)
∫ VaRα(X)+L

VaRα(X)
SX(x)dx = (1 + ρ)

∫ VaRα(X)+L

VaRα(X)
e−λxdx = α(1 + ρ)

λ

[
1 − e−λL]

.

Hence, if the limit M > 0 is chosen so that

α(1 + ρ)

λ

[
1 − e−λL]

>M,

then β(VaRα(X))<VaRα(X) + L.
Note that for any a ∈ [0, VaRα(X)],

(1 + ρ)
∫ a+L

a
SX(x)dx = (1 + ρ)

∫ VaRα(X)+L

VaRα(X)
SX(x − VaRα(X) + a)dx

≥ (1 + ρ)
∫ VaRα(X)+L

VaRα(X)
SX(x)dx

>M;

thus, for any a ∈ [0, VaRα(X)], β(a)< a + L. Consequently, S �= ∅ and â = VaRα(X).

4. Numerical study

We devote this section to a numerical analysis based on real data. The data are taken from the
public China Insurance Yearbook [23], which records amounts of automobile insurance claims
from 87 Chinese insurance companies. The sample mean is about 6668.68 million Chinese
yuan. Table 1 shows the goodness of fit of the loss distribution, for three of the most likely
possible distributions.

According to the Akaike information criterion (AIC) and the Bayesian information criterion
(BIC), from Table 1 we can see that the distribution of claims approximately obeys the log-
normal distribution with parameters μ and σ 2; that is, the probability density function pX of
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TABLE 2. M = 17000

L a∗ VaR 1
1+ρ
(X) f ∗(x) min

f ∈H
VaRα

[
Tf (X)

]
13890 52.15 42.27 (x − 52.15)+ − (x − 13942.15)+ 3312.07
13910 32.15 42.27 (x − 32.15)+ − (x − 13942.15)+ 3311.93

TABLE 3. L = 13000

M a∗ VaR 1
1+ρ
(X) f ∗(x) min

f ∈H
VaRα

[
Tf (X)

]
15000 942.15 42.27 (x − 942.15)+ − (x − 13942.15)+ 3638.75
16000 942.15 42.27 (x − 942.15)+ − (x − 13942.15)+ 3638.75

TABLE 4. M = 17000

L a0 b f ∗(x) min
f ∈H

CVaRα
[
Tf (X)

]
12000 4800 16800 (x − 4800)+ − (x − 16800)+ 122505.73
15000 3300 18300 (x − 3300)+ − (x − 18300)+ 120257.88

the claim X is given by

pX (x)= 1

xσ
√

2π
e
− 1

2

(
ln x−μ
σ

)2

, x> 0,

where the estimators μ̂ and σ̂ for the parameters μ and σ are μ̂= 8.5578 and σ̂ = 2.6053,
respectively.

Next, we discuss the impact of the premium budget constraint M and the reinsurer’s risk
limit L on the optimal reinsurance treaties. For this purpose, we set α= 0.1, ρ = 0.2. We then
know that VaRα (X)= 13942.15.

By Theorem 3.1, we can obtain the optimal reinsurance treaties for the model (2.2), which
are displayed in Tables 2 and 3. From Table 2 we can see that given the premium budget con-
straint M, the reinsurer’s risk limit L influences the deductible of the optimal reinsurance treaty.
More precisely, the larger L is, the smaller the deductible is. In contrast to this phenomenon,
Table 3 suggests that given the reinsurer’s risk limit L, the premium budget constraint M has
almost no influence on the optimal reinsurance treaty.

Using Theorem 3.2, we can obtain the optimal reinsurance treaties for the model (2.3),
which are displayed in Tables 4 and 5. From Table 4 we can see that given the premium
budget constraint M, the reinsurer’s risk limit L strongly influences the optimal reinsurance
treaty. More precisely, the larger the L is, the smaller the deductible is, and the larger the right
endpoint of the layer is as well. In contrast to this phenomenon, Table 5 suggests that given
the reinsurer’s risk limit L, the premium budget constraint M has almost no influence on the
optimal reinsurance treaty.
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TABLE 5. L = 13000

M a0 b f ∗(x) min
f ∈H

CVaRα
[
Tf (X)

]
15000 4300 17300 (x − 4300)+ − (x − 17300)+ 121740.86
16000 4300 17300 (x − 4300)+ − (x − 17300)+ 121740.86

5. Concluding remarks

We propose two new optimal reinsurance models with premium budget constraints and
Cummins–Mahul-type reinsurer’s risk limits. Under the optimality criteria of minimizing the
VaR and CVaR of the insurer’s total risk exposure, we derive explicit optimal reinsurance
treaties, which are layer reinsurance treaties. A new approach is developed to construct the
optimal reinsurance treaties.

We would like to mention that Assa [2] and Zhuang et al. [44] developed a powerful
tool called the marginal indemnification function formulation to study optimal reinsurance
treaties. This paper does not use this powerful tool. Nevertheless, we are not certain whether
the marginal indemnification function formulation, together with Lagrangian and convex pro-
gramming methods, could be applied to the present optimal reinsurance models; it would be
interesting to see this worked out in the future.

We would also like to mention that there is an interesting strand of literature on reciprocal
reinsurance that takes care of both the insurer and the reinsurer; for instance, see Cai et al. [6,
7], Lo and Tang [33], Asimit et al. [1], and the references therein, to name just a few. Unlike the
above reciprocal reinsurance models, the model in the present paper takes care of both parties
by considering the optimal problem from the insurer’s point of view and imposing a reinsurer’s
risk limit from the reinsurer’s point of view. It would be interesting to explore whether there is
a possibility of merging the two kinds of optimal reinsurance models described above.

Appendix

In this appendix we provide the proofs of all the main results, as well as the lemmas, in this
paper.

Proof of Lemma 3.1. Given any 0 ≤ a1 < a2 ≤ VaRα(X), we will show that β(a1)<β(a2)
by considering two cases.

Case I: Assume that β(a1) = a1 + L. Then by the definition of β(·), we know that

(1 + ρ)
∫ a1+L

a1

SX(x)dx ≤ M.

Hence

(1 + ρ)
∫ a2+L

a2

SX(x)dx = (1 + ρ)
∫ a1+L

a1

SX(x + a2 − a1)dx

≤ (1 + ρ)
∫ a1+L

a1

SX(x)dx

≤ M,

which results in β(a2) = a2 + L> a1 + L = β(a1).

https://doi.org/10.1017/apr.2024.2 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.2


18 W. LIU AND Y. HU

Case II: Assume that β(a1)< a1 + L. Then by the definition of β(·), β(a1) is the unique
solution to the equation

(1 + ρ)
∫ b

a1

SX(x)dx = M

with respect to b ∈ (a1, a1 + L); that is,

(1 + ρ)
∫ β(a1)

a1

SX(x)dx = M.

We proceed by considering two subcases.
Subcase 1: β(a1) ≤ a2. Obviously, by the definition of β(·), β(a1) ≤ a2 <β(a2).
Subcase 2: β(a1)> a2. It is not hard to see that a2 <β(a1)< a1 + L< a2 + L, and

(1 + ρ)
∫ β(a1)

a2

SX(x)dx< (1 + ρ)
∫ β(a1)

a1

SX(x)dx = M.

Hence, β(a1) ∈ B(a2), and thus β(a1)<β(a2). Lemma 3.1 is proved. �
Proof of Lemma 3.2. Clearly, VaRα(X) ∈ A2 since (VaRα(X), VaRα(X)) ∈ D2.
For all 0< ε <VaRα(X) satisfying (1 + ρ)ε≤ M,

(1 + ρ)
∫ VaRα(X)

VaRα(X)−ε
SX(x)dx ≤ (1 + ρ)ε≤ M,

which yields that VaRα(X) ∈ B(VaRα(X) − ε). Hence VaRα(X) ≤ β(VaRα(X) − ε). Thus
(VaRα(X) − ε, β(VaRα(X) − ε) ∈ D2, and therefore VaRα(X) − ε ∈ A2. We further conclude
that A2 must be an interval with right endpoint VaRα(X). For this purpose, it suffices to show
that given a1 ∈ A2 with a1 <VaRα(X), we have a ∈ A2 for all a ∈ (a1, VaRα(X)). Indeed, by
Lemma 3.1, VaRα(X) ≤ β(a1)<β(a). From (3.12) it follows that

(1 + ρ)
∫ β(a)

a
SX(x)dx ≤ M.

Therefore, (a, β(a)) ∈ D2. Consequently, a ∈ A2.
Next we show that a ∈ A2. Choose a sequence of an ∈ A2 with an ≤ VaRα(X) such that an

decreases to a; that is, for all n ≥ 1,

VaRα(X) ≤ β(an) ≤ an + L ≤ VaRα(X) + L

and

(1 + ρ)
∫ β(an)

an

SX(x)dx ≤ M.

Then, by Lemma 3.1, we know that � := lim
n→+∞ β(an) exists,

max{VaRα(X), β(a)} ≤�≤ a + L,
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and

(1 + ρ)
∫ �

a
SX(x)dx ≤ M.

Together with the definition of β(·), this implies that �= β(a) ≥ VaRα(X). Hence (a, β(a)) ∈
D2, and therefore a ∈ A2. Consequently, A2 = [a, VaRα(X)]. Since a ≤ â ≤ VaRα(X), â ∈ A2.
Lemma 3.2 is proved. �

Proof of Lemma 3.3. The sufficiency is obvious. We now show the necessity. Assume that
S = ∅. We will prove the lemma by contradiction. If there exists an a ∈ A2 such that β(a)<
a + L, then by the definition of β(a), we know that VaRα(X) ≤ β(a),

(1 + ρ)
∫ β(a)

a
SX(x)dx ≤ M,

and for all b ∈ (β(a), a + L],

(1 + ρ)
∫ b

a
SX(x)dx>M,

which also yields that

(1 + ρ)
∫ β(a)

a
SX(x)dx ≥ M,

since b ∈ (β(a), a + L] was arbitrary.
Therefore,

(1 + ρ)
∫ β(a)

a
SX(x)dx = M.

Consequently, a ∈ S, which is a contradiction. Lemma 3.3 is proved. �
Proof of Lemma 3.4. We will prove the lemma in three steps.

Step 1: We claim that given a ∈ S, for all a1 ∈ A2 satisfying a1 ≤ a, we have a1 ∈ S.
Note that

VaRα(X) ≤ β(a)< a + L, VaRα(X) ≤ β(a1) ≤ a1 + L,

and

(1 + ρ)
∫ β(a)

a
SX(x)dx = M.

We have that

(1 + ρ)
∫ a1+L

a1

SX(x)dx = (1 + ρ)
∫ a+L

a
SX(x + a1 − a)dx

≥ (1 + ρ)
∫ a+L

a
SX(x)dx

> (1 + ρ)
∫ β(a)

a
SX(x)dx

= M,
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which implies that β(a1) is the unique solution of the equation

(1 + ρ)
∫ b

a1

SX(x)dx = M

with respect to b ∈ [VaRα(X), a1 + L). Therefore, a1 ∈ S.

Step 2: We further claim that S must be an interval with left endpoint a.
Indeed, from Step 1 we know that a ∈ S; that is,

VaRα(X) ≤ β(a)< a + L

and

(1 + ρ)
∫ β(a)

a
SX(x)dx = M.

Note that for any ε ∈ (0, β(a) − a) and any τ satisfying β(a)< a + L − τ < a + L,

(1 + ρ)
∫ a+L−τ

a+ε
SX(x)dx

= (1 + ρ)
∫ β(a

a+ε
SX(x)dx + (1 + ρ)

∫ a+L−τ

β(a)
SX(x)dx

= (1 + ρ)
∫ β(a)

a
SX(x)dx − (1 + ρ)

∫ a+ε

a
SX(x)dx + (1 + ρ)

∫ a+L−τ

β(a)
SX(x)dx

≥ M + (1 + ρ)
∫ a+L−τ

β(a)
SX(x)dx − (1 + ρ)ε.

We can choose τ and ε such that

(1 + ρ)
∫ a+L−τ

β(a)
SX(x)dx> (1 + ρ)ε.

Therefore,

(1 + ρ)
∫ a+ε+L

a+ε
SX(x)dx> (1 + ρ)

∫ a+L−τ

a+ε
SX(x)dx>M,

which yields that β(a + ε) is the unique solution to the equation

(1 + ρ)
∫ b

a+ε
SX(x)dx = M

with respect to b ∈ (a + ε, a + ε+ L). By Lemmas 3.1 and 3.3, we also know that

VaRα(X) ≤ β(a)<β(a + ε)< a + ε+ L.

Therefore, a + ε ∈ S. Consequently, taking into account the claim shown in Step 1, we know
that S must be an interval with left endpoint a.

Step 3: From the previous two steps, we know that [a, â) ⊆ S ⊆ [a, â]. Moreover, by the
definition of S, we have that S = [a, â) if β(â) = â + L, and S = [a, â] if β(â)< â + L.
Lemma 3.4 is proved. �
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Proof of Lemma 3.5. Note that by Parts (d) and (f) of Lemma 2.1, for any h ∈ H,

VaRα[Th(X)] = VaRα(X) − h(VaRα(X)) + (1 + ρ)E[h(X)]. (A.1)

Given f ∈ H, we define a function g(x) by

g(x) := g(x; κ) := (x − κ)+ − (x − VaRα(X))+, x ≥ 0,

where κ := VaRα(X) − f (VaRα(X)). Obviously, g(VaRα(X)) = f (VaRα(X)).
We further claim that

g(x) ≤ f (x), x ≥ 0.

To prove this, we consider three possibilities for x ≥ 0. First, when x ∈ [0, κ), g(x) = 0 ≤ f (x).
Second, when x ∈ [κ,VaRα(X)), (2.1) implies that f (VaRα(X)) − f (x) ≤ VaRα(X) − x. Hence,

g(x) = x − VaRα(X) + f (VaRα(X)) ≤ f (x).

Third, when x ∈ [VaRα(X),+∞), g(x) = f (VaRα(X)). The fact that f (x) is increasing implies
that

g(x) = f (VaRα(X)) ≤ f (x).

In summary, for any x ∈ [0,+∞), g(x) ≤ f (x). Therefore,

(1 + ρ)
∫ VaRα(X)

κ

SX(x)dx = (1 + ρ)E[g(X)] ≤ (1 + ρ)E[f (X)] ≤ M, (A.2)

since f ∈ H. Consequently, κ ∈ D1 and g ∈ H1. Let hf := g; then (3.16) follows from (A.1)
and (A.2). Lemma 3.5 is proved. �

Proof of Theorem 3.1. For any given g(x; a) ∈ H1, by (A.1), we know that

VaRα[Tg(X)] = VaRα(X) − g(VaRα(X); a) + (1 + ρ)E[g(X; a)]

= a + (1 + ρ)
∫ VaRα(X)

a
SX(x)dx

:= ϕ(a). (A.3)

For any a ∈ D1, taking the first-order derivative of ϕ(a) yields that

ϕ′(a) = 1 − (1 + ρ)SX(a). (A.4)

Hence

ϕ′(a) � 0 ⇔ a � VaR 1
1+ρ

(X). (A.5)

(i) Assume that α ≥ 1
1+ρ ; then VaRα(X) ≤ VaR 1

1+ρ
(X). Hence, by (A.3) and (A.5), the

minimum of VaRα[Tg(X)] is attained at a = VaRα(X), which implies that f ∗(x) :=
g(x; VaRα(X)) = 0.

https://doi.org/10.1017/apr.2024.2 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.2


22 W. LIU AND Y. HU

(ii) Assume that α < 1
1+ρ and a∗ <VaR 1

1+ρ
(X); then VaRα(X)>VaR 1

1+ρ
(X). Hence, by

(A.3) and (A.5), the minimum of VaRα[Tg(X)] is attained at a = VaR 1
1+ρ

(X), which

implies that

f ∗(x) := g
(

x; VaR 1
1+ρ

(X)
)

=
(

x − VaR 1
1+ρ

(X)
)

+
− (x − VaRα(X))+.

(iii) Assume that α < 1
1+ρ and a∗ ≥ VaR 1

1+ρ
(X); then VaRα(X)>VaR 1

1+ρ
(X). Hence, by

(A.3) and (A.5), the minimum of VaRα[Tg(X)] is attained at a = a∗, which implies that
f ∗(x) := g(x; a∗) = (x − a∗)+ − (x − VaRα(X))+. Theorem 3.1 is proved. �

Proof of Lemma 3.6. If δ ≥ 0, given any f ∈ H, let hf (x) := g(x; a, a) with a ∈
[0, VaRα(X)]. Then hf ∈ H2, hf (x) = 0 for all x ≥ 0, and thus (3.23) implies (3.24).

If δ < 0, given any f ∈ H, let κ := VaRα(X) − f (VaRα(X)). Then κ ≤ VaRα(X) ≤ κ + L. Let
β(κ) be defined by (3.9). We will prove Lemma 3.6 by considering the following two exclusive
cases separately.

Case one: Assume that β(κ) = κ + L. Clearly, (κ, κ + L) ∈ D2. Let hf (x) := g(x; κ, κ +
L) := (x − κ)+ − (x − κ − L)+; then hf ∈ H2. We further claim that

hf (x) ≤ f (x) for x ≤ VaRα(X) (A.6)

and

hf (x) ≥ f (x) for x ≥ VaRα(X). (A.7)

To prove the claim, we consider four possibilities for x ≥ 0. First, when x ∈ [0, κ), hf (x) =
0 ≤ f (x). Second, when x ∈ [κ,VaRα(X)), (2.1) implies that f (VaRα(X)) − f (x) ≤ VaRα(X) − x.
Thus,

hf (x) = x − VaRα(X) + f (VaRα(X)) ≤ f (x).

Third, when x ∈ [VaRα(X), κ + L), (2.1) implies that f (x) − f (VaRα(X)) ≤ x − VaRα(X).
Thus,

hf (x) = x − VaRα(X) + f (VaRα(X)) ≥ f (x).

Fourth, when x ∈ [κ + L,+∞), hf (x) = L ≥ f (x). Consequently, from (3.23), (A.6), and (A.7),
it follows that (3.24) holds for the function hf .

Case two: Assume that β(κ) is the unique solution to the equation (1 + ρ)
∫ b
κ

SX(x)dx = M
with respect to b ∈ (κ, κ + L). Then β(κ)< κ + L and

(1 + ρ)
∫ β(κ)

κ

SX(x)dx = M,

which yields that

(1 + ρ)
∫ κ+L

κ

SX(x)dx> (1 + ρ)
∫ β(κ)

κ

SX(x)dx = M ≥ (1 + ρ)E[f (X)], (A.8)

since f ∈ H and SX(x) is strictly decreasing on (0, +∞).
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For any a ∈ [κ, VaRα(X)], b ∈ [VaRα(X), κ + L], we define a function h(a, b) by

h(a, b) := (1 + ρ)
∫ b

a
SX(x)dx.

Keeping (A.8) in mind, it is easy to see that

lim
a↓κ

b↑κ+L

h(a, b) = (1 + ρ)
∫ κ+L

κ

SX(x)dx> (1 + ρ)E[f (X)]

and

lim
a↑VaRα(X)
b↓VaRα(X)

h(a, b) = (1 + ρ)
∫ VaRα(X)

VaRα(X)
SX(x)dx = 0 ≤ (1 + ρ)E[f (X)].

Hence, by the intermediate value theorem for the continuous function h(a, b) with respect to
a and b, there exist κ ≤ ã ≤ VaRα(X), VaRα(X) ≤ b̃ ≤ κ + L such that

(1 + ρ)
∫ b̃

ã
SX(x)dx = h(ã, b̃) = (1 + ρ)E[f (X)] ≤ M, (A.9)

which also implies that ã ≤ b̃ ≤ β(ã), and thus that (ã, b̃) ∈ D2. Let hf (x) := g(x; ã, b̃) :=
(x − ã)+ − (x − b̃)+; then hf ∈ H2. Moreover, from (A.9) it follows that

E[hf (X)] =E[g(X; ã, b̃)] =
∫ b̃

ã
SX(x)dx =E[f (X)]. (A.10)

We further conclude that for 0 ≤ x ≤ VaRα(X),

hf (x) = g(x; ã, b̃) ≤ f (x). (A.11)

In fact, when x ∈ [0, ã], hf (x) = 0 ≤ f (x). When x ∈ [ã, VaRα(X)], (2.1) results in

hf (x) = x − ã ≤ x − κ = x − VaRα(X) + f (VaRα(X)) ≤ f (x).

By (A.11),

∫ VaRα(X)

0
hf (x)dFX(x) ≤

∫ VaRα(X)

0
f (x)dFX(x). (A.12)

Taking into account the facts that

E[hf (X)] =
∫ VaRα(X)

0
hf (x)dFX(x) +

∫ +∞

VaRα(X)
hf (x)dFX(x)

and

E[f (X))] =
∫ VaRα(X)

0
f (x)dFX(x) +

∫ +∞

VaRα(X)
f (x)dFX(x),
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from (A.10) and (A.12) it follows that∫ +∞

VaRα(X)
hf (x)dFX(x) ≥

∫ +∞

VaRα(X)
f (x)dFX(x),

which, together with (3.23) and (A.12), implies that (3.24) holds for hf (x) := g(x; ã, b̃).
Lemma 3.6 is proved. �

Proof of Theorem 3.2.

(i) If α > ρ∗, then δ > 0. By (3.26) we know that CVaRα[Tf (X)] attains its minimum at
f ∗(x) := g(x; a, a), for a ∈ [0, VaRα(X)], if and only if f ∗(x) = 0, which implies the
desired result.

(ii) If α = ρ∗, then δ= 0. By (3.26) we know that CVaRα[Tf (X)] attains its minimum at
f ∗(x) := g(x; a, b), for (a, b) ∈ D2, if and only if f ∗(x) = 0 for any x ∈ [0, VaRα(X)].
Therefore, f ∗(x) = (x − VaRα(X))+ − (x − b)+, where b is any real number satisfying
VaRα(X) ≤ b ≤ β(VaRα(X)).

(iii) If α < ρ∗ and S = ∅, then δ < 0 and VaRα(X) ≤ β(a) = a + L for all a ∈ A2 by
Lemma 3.3. Hence, for any (a, b) ∈ D2, by (3.12) and (3.29) we know that (a, a + L) =
(a, β(a)) ∈ D2 and φ(a, b) ≥ φ(a, a + L). Thus, taking (3.25) and (3.28) into account,
the minimum of CVaRα[Tf (X)] over H must be attained at (a, b) ∈ D2 with b = a + L.
Therefore, it is sufficient for us to solve the following optimization problem:

min
a∈A2

ψ(a), (A.13)

where ψ(a) is defined by

ψ(a) := φ(a, a + L)

= 1

α
E[(X − VaRα(X))+] + a + (1 + ρ)

∫ VaRα(X)

a
SX(x)dx + δ

∫ a+L

VaRα(X)
SX(x)dx.

(A.14)

The first- and second-order derivatives of ψ(a) are given respectively by

ψ ′(a) = 1 − (1 + ρ)SX(a) + δSX(a + L)

and

ψ ′′(a) = (1 + ρ)fX(a) − δfX(a + L)> 0,

which implies that ψ(a) is strictly convex on [0, VaRα(X)]. Moreover,

ψ ′(VaRα(X)) = 1 − (1 + ρ)SX(VaRα(X)) + δSX(VaRα(X) + L)

> 1 − (1 + ρ)α + δSX(VaRα(X))

= 0, (A.15)

ψ ′(VaRρ∗(X)) = 1 − (1 + ρ)SX(VaRρ∗(X)) + δSX(VaRρ∗ (X) + L)

= 1 − (1 + ρ)ρ∗ + δSX(VaRρ∗ (X) + L)

= δSX(VaRρ∗ (X) + L)

< 0, (A.16)
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and if VaRα(X) ≥ L, then

ψ ′(VaRα(X) − L) = 1 − (1 + ρ)SX(VaRα(X) − L) + δSX(VaRα(X))

= 1 − (1 + ρ)SX(VaRα(X) − L) + δα

< 1 − (1 + ρ)SX(VaRα(X)) + δα

= 0. (A.17)

Therefore, there exists a unique solution, denoted by a0, to the equation ψ ′(a) = 0 with respect
to a ∈ [0, VaRα(X)]. We further conclude that

max{VaRρ∗ (X), VaRα(X) − L}< a0 <VaRα(X), (A.18)

which also implies that (a0, a0 + L) = (a0, β(a0)) ∈ D2. In fact, if VaRρ∗(X)> [VaRα(X) −
L]+, then VaRρ∗ (X)>VaRα(X) − L, and thus VaRρ∗ (X)< a0 <VaRα(X). If VaRρ∗(X) ≤
[VaRα(X) − L]+, then VaRρ∗(X) ≤ VaRα(X) − L, and thus VaRα(X) − L< a0 <VaRα(X).

By (A.18) and the strict convexity ofψ(a), we know that a0 is the unique optimal solution to
the optimization problem (A.13). Consequently, CVaRα[Tf (X)] attains its minimum at f ∗(x) :=
g(x; a0, a0 + L) = (x − a0)+ − (x − a0 − L)+.

(iv) If α < ρ∗,S �= ∅, and â = VaRα(X), then δ < 0. For any (a, b) ∈ D2, by (3.12), (3.28),
and (3.29) we know that (a, β(a)) ∈ D2 and φ(a, b) ≥ φ(a, β(a)). Hence, taking (3.25) and
(3.28) into account, the minimum of CVaRα[Tf (X)] over H must be attained at (a, b) ∈ D2
with b = β(a). Therefore, it suffices for us to solve the following optimization problem:

min
a∈A2

φ(a, β(a)), (A.19)

where φ(a, β(a)) is given by

φ(a, β(a)) = 1

α
E[(X − VaRα(X))+] + a + (1 + ρ)

∫ VaRα(X)

a
SX(x)dx + δ

∫ β(a)

VaRα(X)
SX(x)dx.

(A.20)

Next, using Lemma 3.4, we will prove the desired result by considering two exclusive cases.
Case I: Assume that S = [a, â]. That is, S = [a, VaRα(X)] = A2. Then VaRα(X) ≤ β(a)<

a + L for all a ∈ A2.
Keeping (3.11) in mind, the first-order derivative of φ(a, β(a)) with respect to a ∈ A2 is

given by

dφ(a, β(a))

da
= 1 − (1 + ρ)SX(a) + δ · SX(β(a)) · β ′(a)

= 1 − (1 + ρ)SX(a) + δ · SX(a)

= 1 − 1

α
SX(a).

Hence

dφ(a, β(a))

da
� 0 ⇔ a � VaRα(X). (A.21)
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Note that A2 = [a, VaRα(X)], (A.21) implies that a = VaRα(X) is the unique optimal solu-
tion to the optimization problem (A.19). Consequently, (VaRα(X), β(VaRα(X))) ∈ D2, and
CVaRα[Tf (X)] attains its minimum at

f ∗(x) := g(x; VaRα(X), β(VaRα(X))) = (x − VaRα(X))+ − (x − β(VaRα(X)))+.

Case II: Assume that S = [a, â). That is, S = [a, VaRα(X)) ⊂ A2. Then VaRα(X)<
β(VaRα(X)) = VaRα(X) + L and VaRα(X) ≤ β(a)< a + L for all a ∈ [a, VaRα(X)). Note that
A2 = [a, VaRα(X)]; therefore,

min
a∈A2

φ(a, β(a)) = min

{
min

a∈[a, VaRα(X))
φ(a, β(a)), φ(VaRα(X), VaRα(X) + L)

}

= min

{
min

a∈[a, VaRα(X))
φ(a, β(a)), ψ(VaRα(X))

}
, (A.22)

where ψ(a) is given by (A.14) and φ(a, β(a)) is given by (A.20).
By Lemma 3.1, we know that β(VaRα(X) − ) := lim

a↑VaRα(X)
β(a) exists, and that VaRα(X) ≤

β(VaRα(X) − ) ≤ VaRα(X) + L. Hence, from (A.21), it follows that

min
a∈[a, VaRα(X))

φ(a, β(a)) = φ(VaRα(X), β(VaRα(X) − )),

which, together with (A.22) and the fact that δ < 0, implies that

min
a∈A2

φ(a, β(a)) = min

{
min

a∈[a, VaRα(X))
φ(a, β(a)), ψ(VaRα(X))

}
= min {φ(VaRα(X), β(VaRα(X) − )), ψ(VaRα(X))}
=ψ(VaRα(X)).

Consequently, (VaRα(X), VaRα(X) + L) = (VaRα(X), β(VaRα(X))) ∈ D2 and CVaRα [Tf (X)]
attains its minimum at f ∗(x) := g(x; VaRα(X), VaRα(X) + L) = g(x; VaRα(X), β(VaRα(X)))
= (x − VaRα(X))+ − (x − β(VaRα(X)))+. Theorem 3.2 is proved. �

Acknowledgements

The authors are very grateful to the editors and the anonymous referees for their constructive
and valuable comments and suggestions, which led to the present greatly improved version of
the manuscript. In particular, the numerical study in Section 4 and the possible topics for future
study mentioned in the concluding remarks were suggested and motivated by the anonymous
referees.

Funding information

This work was supported by the National Natural Science Foundation of China (Nos.
11961064 and 12271415).

Competing interests

There were no competing interests to declare which arose during the preparation or
publication process of this article.

https://doi.org/10.1017/apr.2024.2 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.2


On optimal reinsurance 27

Data

The data related to the numerical study in Section 4 can be found in the public China
Insurance Yearbook [23].
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