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On Valuations, Places and Graded Rings
Associated to ∗-Orderings

Igor Klep

Abstract. We study natural ∗-valuations, ∗-places and graded ∗-rings associated with ∗-ordered rings.

We prove that the natural ∗-valuation is always quasi-Ore and is even quasi-commutative (i.e., the

corresponding graded ∗-ring is commutative), provided the ring contains an imaginary unit. Further-

more, it is proved that the graded ∗-ring is isomorphic to a twisted semigroup algebra. Our results are

applied to answer a question of Cimprič regarding ∗-orderability of quantum groups.

1 Introduction

The notion of a ∗-ordering on a division ∗-ring was introduced by Holland [Ho2] as
an analogue to the notion of a total ordering. This theory was developed further by

several authors, e.g., by Craven, Chacron [Ch] and Marshall. Marshall [Ma1, Ma2]
and Craven–Smith [CS] also extended the theory to ∗-rings and in particular to
∗-domains. Major tools in this theory are valuations and graded rings. To each
∗-ordering of a domain we can associate a natural ∗-valuation and a graded ∗-ring

[Ma1, Ma2]. In order to study these objects, we introduce ∗-places motivated by
the notion of real places associated with total orderings as introduced and studied
by Marshall–Zhang [MZ1]. We show that the natural ∗-valuation v associated with
a ∗-ordered domain A is quasi-Ore (for the definition see §2). Furthermore, if A

contains a central skew element i satisfying i2
= −1 (we call such an element an

imaginary unit), then v is quasi-commutative, i.e., the corresponding graded ∗-ring
gr(A, v) is commutative. If A is a C-algebra, this result can be further improved. In

this case it is shown that gr(A, v) is isomorphic to a twisted semigroup ring C[Γ, c]
for an ordered cancellative abelian semigroup Γ and a positive symmetric factor set
c : Γ × Γ → R.

These results are used in the last section to answer a question posed by Cimprič
[Ci, §6]. We show that noncommutative quantum affine spaces and quantum Weyl
fields do not admit ∗-orderings (independent of the involution chosen).

2 Basic Definitions and Preliminary Results

Throughout this paper A will denote a domain with involution and Sym A will be
the set of its symmetric elements. A subset P ⊆ A is called a ∗-ordering provided the
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106 I. Klep

following hold:

(O1) 1 ∈ P, P + P ⊆ P,
(O2) rPr∗ ⊆ P for all r ∈ A,

(O3) P ∪ −P = Sym A,
(O4) P ∩ −P = {0},
(O5) a, b ∈ P ⇒ {a, b} := ab + ba ∈ P.

If Γ is an ordered cancellative abelian semigroup, then an onto mapping v : A →
Γ ∪ {∞} is a ∗-valuation if:

(V1) v(x) = ∞ iff x = 0,
(V2) v(xy) = v(x) + v(y) for all x, y ∈ A×,
(V3) v(x + y) > min{v(x), v(y)} for all x, y ∈ A,
(V4) v(x∗) = v(x) for all x ∈ A.

Here A× := A \ {0}. The corresponding graded ∗-ring gr(A, v) is constructed as

follows. We form Aα := {x ∈ A | v(x) > α}, A+

α := {x ∈ A | v(x) > α} and
Aα := Aα/A+

α. Then gr(A, v) :=
⊕

α∈Γ
Aα is given the componentwise addition, the

multiplication induced by (a, b) 7→ ab for a ∈ Aα and b ∈ Aβ and the involution
defined by a ∗ := a∗. Then v induces a ∗-valuation gr(v) : gr(A, v) → Γ∪{∞} given

by gr(v)(
∑

α∈Γ
aα) = γ, where γ is the least γ ∈ Γ such that aγ 6= 0 if

∑

α∈Γ
aα 6= 0.

We define a relation ∼v on A× by x ∼v y ⇔ v(x) < v(x − y). This is a semigroup
congruence and is ∗-invariant (i.e., x ∼v y implies x∗ ∼v y∗). For details we refer the
reader to [Ho1].

Definition Let v : A → Γ ∪ {∞} be a ∗-valuation.

(i) v is compatible with a ∗-ordering P of A iff x ∼v y ∈ P implies x ∈ P for all
x, y ∈ Sym A×.

(ii) v is called quasi-commutative iff for all a, b ∈ A× we have ab ∼v ba. Obviously,

v is quasi-commutative iff v(ab − ba) > v(ab) for all a, b ∈ A× and this is the
case iff gr(A, v) is commutative.

(iii) v is quasi-Ore iff for all a, b ∈ A× there exist r, s ∈ A× such that ra ∼v sb. Note
that this condition is left-right symmetric by the properties of ∼v.

(iv) If Γ is a subsemigroup of Z, then v is called discrete.

Remark Clearly, if gr(A, v) is an Ore domain, then v is quasi-Ore. The converse is
false in general, but it holds in special cases, e.g., if v is discrete [Co, Theorem 4.2].

If v : A → Γ ∪ {∞} is a ∗-valuation, we write Ov := A0 and mv := A+

0
. If A

is a division ∗-ring, then Ov is an invariant valuation ∗-ring and mv is its maximal

∗-ideal. In general, mv is only a completely prime ∗-ideal of Ov. Hence the residue

∗-ring kv := Ov/mv is only a domain and not necessarily a division ring.
To each ∗-ordering P ⊆ A a natural (order-compatible) ∗-valuation vP can be as-

sociated as follows. The ∗-ordering P gives an order relation 6 on Sym A, which in-

duces the archimedean equivalence ≈ on Sym A. We extend the latter to the whole A

by declaring, for all a, b ∈ A×, that a ≺ b if aa∗ 6 nbb∗ for some positive integer n,
and a ≈ b if a ≺ b and b ≺ a. Denote by vP(a) the equivalence class of a ∈ A× and
vP(0) := ∞. Then the relation ≺ induces a total ordering of the set ΓP = vP(A×).
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By [Ma1, Theorem 3.3], the binary operation vP(a) + vP(b) := vP(ab) is well defined
on ΓP, so ΓP becomes an ordered cancellative abelian semigroup. Marshall [Ma1]

observed that vP is a ∗-valuation and s1s2 ∼v s2s1 for all s1, s2 ∈ Sym A×. We say that
v is quasi-commutative for symmetric elements.

3 ∗-Places and Graded ∗-Rings

Proposition 1 Assume v : A → Γ ∪ {∞} is a ∗-valuation quasi-commutative for

symmetric elements with v(2) = 0. Then v is quasi-Ore and symmetric elements of

gr(A, v) commute. If, furthermore, v is discrete, then gr(A, v) is an Ore domain.

Proof Since v is quasi-commutative for symmetric elements, we have v(s1s2−s2s1) >
v(s1s2) for all s1, s2 ∈ Sym A×. Now let a, b ∈ A× be arbitrary. Define r1 := a∗bb∗

and r2 := b∗aa∗. Then

v(ar1 − br2) = v(aa∗bb∗ − bb∗aa∗) = v
(

(aa∗)(bb∗) − (bb∗)(aa∗)
)

> v(aa∗bb∗) = v(ar1) = v(br2).

Hence v is quasi-Ore. Note that an element a =
∑

aα ∈ gr(A, v) is symmetric
iff aα ∈ Aα is symmetric for every α. By a simple induction argument, to prove

that symmetric elements of gr(A, v) commute, it suffices to show that two symmetric
elements of the form aα, bβ commute. Moreover, as 2a = 0 implies a = 0 for
all a ∈ gr(A, v) by the assumption v(2) = 0, it is enough to prove that 2aα, 2bβ

commute. Since aα is symmetric, aα ∼v a∗α and thus v(aα + a∗α) = v(aα). Hence

2aα = aα + a∗α and aα + a∗α is symmetric. Similarly, 2bβ = bβ + b∗β . Since v is quasi-
commutative for symmetric elements, (aα + a∗α)(bβ + b∗β) ∼v (bβ + b∗β)(aα + a∗α) and

so (2aα)(2bβ) = (2bβ)(2aα), as desired. Finally, the last statement of the proposition
follows from [Co, Theorem 4.2].

Theorem 2 If A is a ∗-ordered domain and v the natural ∗-valuation, then v is quasi-

Ore. If also, A contains an imaginary unit, then v is quasi-commutative.

Proof By [Ma1, 3.3 Theorem] and Proposition 1, v is quasi-Ore. So let us assume
that i ∈ A is an imaginary unit. Observe that every ∗-ordering of A extends uniquely
to a ∗-ordering of the central localization AN(∼= A⊗Z Q). Hence we may assume that
Q ⊆ A. For every x ∈ A we have x =

x+x∗

2
+ i x−x∗

2i
. In other words, x = x1 + i x2 for

(uniquely determined) x1, x2 ∈ Sym A. Let a, b ∈ A× be arbitrary. Write a = a1 + ia2

and b = b1 + ib2 for symmetric a1, a2, b1, b2. Then

ab − ba = (a1 + ia2)(b1 + ib2) − (b1 + ib2)(a1 + ia2)

= (a1b1 − b1a1) + (b2a2 − a2b2) + i(a1b2 − b2a1) + i(a2b1 − b1a2).

Hence by the triangle inequality,

v(ab − ba) > min
{

v(a1b1 − b1a1), v(b2a2 − a2b2), v(a1b2 − b2a1), v(a2b1 − b1a2)
}

.
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Now use [Ma1, 3.3(5) Theorem] to get

v(ab − ba) > min
{

v(a1b1), v(a2b2), v(a1b2), v(a2b1)
}

= min{v(a1), v(a2)} + min{v(b1), v(b2)}.

By [Ma2, 2.4 Proposition], the right-hand side of the last equation equals v(a) +

v(b) = v(ab). Hence v(ab − ba) > v(ab), as required.

An application of this result will be given in the next section, where we answer a
question posed by Cimprič [Ci]. For another application we refer the reader to [KM].

If D is a ∗-ordered division ring and v is the natural ∗-valuation, then kv = Ov/mv

is a ∗-ordered division subring of H, cf. [Ho2]. Hence we have a ∗-homomorphism
Ov → H. We extend this to a map D → H ∪ {∞} by mapping D \ Ov → {∞}.
This mapping is called a ∗-place. For more on ∗-places on division rings we refer the

reader to [Cr].

Proposition 3 If A is a ∗-ordered domain and v the natural ∗-valuation, then kv is

a ∗-ordered subring of H. If A also contains an imaginary unit, then kv is a ∗-ordered

subring of C.

Proof Write P for the ∗-ordering of A. Let a, b ∈ k×v . As v(aa∗bb∗ − bb∗aa∗) >
v(aa∗bb∗) = 0, we have a · a∗bb∗ = b · b∗aa∗. In other words, kv is an Ore do-

main. Moreover, P induces an archimedean ∗-ordering P of kv. By [CS, Corollary
2.5], P extends to a ∗-ordering Q of Quot(kv). Let w denote the natural ∗-valuation of
Quot(kv). By a result of Holland [Ho2, 4.1], w(as−sa) > w(as) for all a, s ∈ Quot(kv)
with s = s∗. Obviously, w|kv

is the natural ∗-valuation associated with the ∗-ordering

P of kv. Since P is archimedean, w|kv
is trivial. This implies that symmetric el-

ements of kv are central. Furthermore, P induces an archimedean total ordering
of Sym kv, hence Sym kv is an ordered subring of R. Form the central localization
B := kv(Sym k×v )−1. Clearly, B ⊆ Quot(kv), hence Q induces a ∗-ordering of B.

From the definition of B it is easy to see that this ∗-ordering is archimedean. More-
over, by results of Herstein [He], B is finite dimensional over its center. As it is also a
domain, B must be a division ring. Hence by a theorem due to Holland [Ho1], B is a
∗-ordered division subring of H. In particular, kv is a ∗-ordered subring of H.

If A contains an imaginary unit, then kv is commutative by Theorem 2 and thus a
∗-ordered subring of C.

Again, by this proposition we have a mapping A → H ∪ {∞}. We call it the weak

∗-place associated with P. A ∗-place associated with P will be a mapping (Sym A ×
Sym A) \ {(0, 0)} → R ∪ {∞} with certain properties. In order to define it, we need
the following classical result.

Lemma 4 ([Fu, Ch. IV]) Let (A, +, 6) be a totally ordered abelian group and v the

natural order-compatible valuation. For a, b > 0 and v(a) = v(b) there exists a unique

real number µ(a, b) ∈ (0,∞) such that µ(a, b) ∈
[

m
n
, m+1

n

]

for any m, n ∈ N satisfying

mb 6 na 6 (m + 1)b.
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Assume P ⊆ A is a ∗-ordering. Then (Sym A, +) is an abelian group and P is a
total ordering of Sym A. Hence, using Lemma 4 we can define a map ℘ : (Sym A ×
Sym A) \ {(0, 0)} → R ∪ {∞} as follows

℘ (a, b) =



















∞ if v(a) < v(b),

µ(|a|, |b|) if v(a) = v(b), {a, b} ∈ P,

−µ(|a|, |b|) if v(a) = v(b),−{a, b} ∈ P,

0 if v(a) > v(b).

This mapping is the ∗-place associated with P. Let us note some properties of ℘ . For

all a, b ∈ Sym A, not both zero, we have

(P1) ℘ (a, b) = ∞ iff ℘ (b, a) = 0,
(P2) if ℘ (a, b), ℘ (b, c) 6= ∞, then ℘ (a, b)℘ (b, c) = ℘ (a, c),

(P3) if ℘ (a, c), ℘ (b, c) 6= ∞, then ℘ (a, c) + ℘ (b, c) = ℘ (a + b, c),
(P4) ℘ (a, b) = ℘

(

{a, c}, {b, c}
)

for all c ∈ Sym A×,
(P5) ℘ (a, b) = ℘ (r∗ar, r∗br) for all r ∈ A×.

In case i ∈ A is an imaginary unit, we can extend ℘ to a mapping (A × A) \
{(0, 0)} → C as follows. As before, we assume Q ⊆ A. We first extend ℘ to (A ×
Sym A)\{(0, 0)} → C by ℘ (a1 +i a2, b) := ℘ (a1, b)+i ℘ (a2, b) for a1, a2, b ∈ Sym A.
This is well defined since every a ∈ A can be written uniquely as a = a1 + i a2 for

symmetric a1, a2. For the second step, we define ℘ (a, b) := 1

2
℘ (ab∗ + b∗a, bb∗) for

a, b ∈ A, not both zero. We claim that this is well defined. Let a ∈ A and s ∈ Sym A.
We have to show that ℘ (a, s) =

1

2
℘ (as+sa, s2). Let a = a1 +i a2 for a j ∈ Sym A. Then

℘ (a, s) = ℘ (a1, s) + i ℘ (a2, s) and ℘ (as + sa, s2) = ℘ (a1s + sa1, s2) + i ℘ (a2s + sa2, s2).

Thus we may assume without loss of generality that a is symmetric as well. But then
our claim follows from (P4).

Proposition 5 ([MZ2, §1.3 Notes]) Assume A is a ∗-ordered domain and a C-algebra

and let v denote the natural ∗-valuation. If for a, b ∈ A, v(a) > v(b), then ℘ (a, b) = µ
iff v(a − µb) > v(b).

Proof It is easy to see that ℘ (a, b) = µ iff ℘ (a − µb, b) = 0. So it suffices to
prove the statement for µ = 0. By definition, ℘ (a, b) =

1

2
℘ (ab∗ + b∗a, bb∗). Write

ab∗ + b∗a = c1 + i c2 for symmetric c1, c2. Then ℘ (a, b) =
1

2
℘ (c1, bb∗) + i

2
℘ (c2, bb∗).

By [Ma2, 2.4 Proposition], v(ab∗ + b∗a) = min{v(c1), v(c2)}. On the other hand,
v(ab∗ + b∗a) = v(ab∗) by Theorem 2. If v(a) > v(b), then v(c j) > v(bb∗) for

j = 1, 2. Thus ℘ (a, b) = 0 by the definition of ℘ . Conversely, if ℘ (a, b) = 0, then
℘ (c j , bb∗) = 0 for j = 1, 2. Hence v(c j) > v(bb∗) and so v(ab∗) = v(ab∗ + b∗a) >
v(bb∗). This implies v(a) > v(b), as desired.

In the rest of this section we sharpen Theorem 2 for ∗-ordered C-algebras by show-
ing that the corresponding graded ring is isomorphic to a twisted semigroup ring. As
our semigroups are abelian and written additively, we use the exponential notation
for twisted semigroup rings.
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Proposition 6 ([MZ2, 2.3 Example(1)]) Let Γ be an ordered cancellative abelian

semigroup. Consider the twisted semigroup ring C[Γ, c] with the twisting given by

tαtβ
= c(α, β)tα+β , where c : Γ × Γ → R is a positive symmetric factor set, i.e.,

(FS1) c(α, β) > 0 for all α, β ∈ Γ,

(FS2) c(α, 0) = c(0, α) = 1 for all α ∈ Γ,

(FS3) c(α, β)c(α + β, γ) = c(α, β + γ)c(β, γ) for all α, β, γ ∈ Γ,

(FS4) c(α, β) = c(β, α) for all α, β ∈ Γ.

The involution on C[Γ, c] fixes Γ pointwise and z∗ = z for z ∈ C, and C[Γ, c] is

a graded commutative ∗-domain. A ∗-valuation v : C[Γ, c] → Γ ∪ {∞} is defined

as follows: if a =
∑

aαtα 6= 0, then v(a) is the smallest α ∈ Γ such that aα 6= 0.

∗-orderings of C[Γ, c] compatible with v are in a natural one-to-one correspondence

σ 7→ Pσ with semigroup homomorphisms Γ → {−1, 1}. A nonzero a =
∑

aαtα is

symmetric iff aα ∈ R for all α ∈ Γ such that aα 6= 0. Such an element a is positive

with respect to Pσ iff σ(α)aα > 0, where α = v(a). Also, v is the natural ∗-valuation

associated with Pσ .

Proof This is straightforward. For example, to prove that σ 7→ Pσ is a bijection, we
proceed as follows. ∗-orderings of C[Γ, c] compatible with v are total orderings of
Sym C[Γ, c] = R[Γ, c] compatible with v that are closed under ∗-conjugation. But
total orderings of R[Γ, c] compatible with v are all of the form Pσ and these are closed

under ∗-conjugation.

Theorem 7 ([MZ2, 2.3 Example(2)]) Suppose P is a ∗-ordering of a C-algebra A and

v : A → Γ ∪ {∞} the natural ∗-valuation.

(i) For each α ∈ Γ there exists sα ∈ P with v(sα) = α.

(ii) The mapping Aα → C defined by a 7→ ℘ (a, sα), where ℘ : (A×A)\{(0, 0)} → C

is the ∗-place associated with P, is an isomorphism.

(iii) The mapping c : Γ × Γ → R defined by c(α, β) := ℘
(

{sα, sβ}, sα+β

)

is a

positive symmetric factor set. Furthermore,
∑

aα 7→
∑

℘ (aα, sα)tα defines a

∗-isomorphism between gr(A, v) and C[Γ, c].

Proof For α ∈ Γ choose x ∈ A satisfying v(x) = α. If x = x1 + ix2 for symmetric
x1, x2, then v(x) = min{v(x1), v(x2)} by [Ma2, 2.4 Proposition]. Say v(x1) = α. If
x1 ∈ P, then sα := x1. Otherwise −x1 ∈ P, and we take sα := −x1. This proves (i).

To prove (ii), let a = a1 + i a2. If v(a1) 6= v(a2), then a = a j with j such that
v(a j) = min{v(a1), v(a2)}. In this case ℘ (a, sα) = ℘ (a j , sα) is a real number and

furthermore, every real number can be obtained in this way since A is a C-algebra.
If v(a1) = v(a2), then ℘ (a, sα) = ℘ (a1, sα) + i℘ (a2, sα). By the same reasoning as
above, ℘ (−, sα) maps Aα onto C. Now if ℘ (a, sα) = ℘ (b, sα) for some a, b ∈ Aα,
then ℘ (a − b, sα) = 0. Hence v(a − b) > α and thus a = b in Aα. This shows that

the mapping Aα → C, given by a 7→ ℘ (a, sα), is injective. Since it is obviously a
homomorphism, it is an isomorphism, as desired.

(FS1) and (FS2) for c follow immediately from the definition of ℘ and so does
(FS4) since Γ is abelian. The long and tedious calculation needed to prove (FS3) is
left to the interested reader as an exercise. The rest of (iii) then follows from (ii).
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Note that Proposition 6 and Theorem 7 combined with [Ma2, 2.5 Proposition]
yield a Krull–Baer type result. Namely, if P ⊆ A is a ∗-ordering, where A is a C-alge-

bra and v : A → Γ ∪ {∞} is the natural ∗-valuation, then the set of all ∗-orderings
of A compatible with v is in a natural one-to-one correspondence with the set of all
semigroup homomorphisms Γ → {−1, 1}.

4 ∗-Orderability of Quantum Groups

In [Ci] Cimprič studied orderability and real spectra of certain classes of quantum
groups. At the end of that paper he asked for a similar characterization of ∗-orderings

of these quantum groups, see [Ci, §6]. We give an answer to his question by showing
that quantum Weyl fields “rarely” admit ∗-orderings.

Proposition 8 Assume A is a k-algebra containing elements x, y satisfying yx = σxy

for σ ∈ k \ {0, 1}. Then A does not admit a quasi-commutative valuation that is trivial

on k.

Proof Assume otherwise and let v be a quasi-commutative valuation of A that is

trivial on k. Then v(xy) < v(xy − yx) = v(xy − σxy) = v(1 − σ) + v(xy). Hence
v(1 − σ) > 0, a contradiction.

Let q = (qi j)
j=i+1,...,n
i=1,...,n be a sequence of nonzero complex numbers. The quantum

affine space Cq[x1, . . . , xn] is the C-algebra on n generators x1, . . . , xn subject to rela-
tions xix j = qi jx jxi for 1 6 i < j 6 n. It is well known that Cq[x1, . . . , xn] is an
Ore domain. Its division ring of fractions is denoted by Cq(x1, . . . , xn) and called the
quantum Weyl field.

Corollary 9 If qi j 6= 1 for some i, j, then the quantum affine space Cq[x1, . . . , xn]
is not ∗-orderable (independent of the involution chosen). The same holds true for the

quantum Weyl field Cq(x1, . . . , xn).

Proof This follows easily from Proposition 8 and Theorem 2.

Remark

(i) A special case of Corollary 9 was given in [CKM]. The authors proved that

the complex quantum plane C〈X,Y 〉/(XY − qY X) for q 6= 0, 1 does not admit
∗-orderings for certain kinds of involutions.

(ii) If qi j = 1 for all i, j, then Cq[x1, . . . , xn] is the ordinary polynomial algebra
over C in n commuting variables and Cq(x1, . . . , xn) is its quotient field. Existence

of ∗-orderings of C[x1, . . . , xn], resp., C(x1, . . . , xn) depends on the involution cho-
sen. In the case x∗i = xi and ∗ is conjugation on C, ∗-orderings of C[x1, . . . , xn],
resp., C(x1, . . . , xn) are precisely total orderings of R[x1, . . . , xn], resp., R(x1, . . . , xn).
These have been fully classified, see [KKMZ].
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(iii) The quantum Gelfand–Kirillov conjecture states that the division ring of
fractions of a quantum group is always a quantum Weyl field. Even though it is

known to be false in general, it does hold in a variety of cases. By Corollary 9, these
quantum groups are never ∗-orderable.
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