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On Valuations, Places and Graded Rings
Associated to *-Orderings

Igor Klep

Abstract. 'We study natural x-valuations, *-places and graded *-rings associated with *-ordered rings.
We prove that the natural *-valuation is always quasi-Ore and is even quasi-commutative (i.e., the
corresponding graded *-ring is commutative), provided the ring contains an imaginary unit. Further-
more, it is proved that the graded *-ring is isomorphic to a twisted semigroup algebra. Our results are
applied to answer a question of Cimpri¢ regarding *-orderability of quantum groups.

1 Introduction

The notion of a *-ordering on a division *-ring was introduced by Holland [Ho2] as
an analogue to the notion of a total ordering. This theory was developed further by
several authors, e.g., by Craven, Chacron [Ch] and Marshall. Marshall [Mal, Ma2]
and Craven—-Smith [CS] also extended the theory to *-rings and in particular to
*-domains. Major tools in this theory are valuations and graded rings. To each
x-ordering of a domain we can associate a natural *-valuation and a graded *-ring
[Mal, Ma2]. In order to study these objects, we introduce *-places motivated by
the notion of real places associated with total orderings as introduced and studied
by Marshall-Zhang [MZ1]. We show that the natural *-valuation v associated with
a x-ordered domain A is quasi-Ore (for the definition see §2). Furthermore, if A
contains a central skew element i satisfying i* = —1 (we call such an element an
imaginary unit), then v is quasi-commutative, i.e., the corresponding graded *-ring
gr(A, v) is commutative. If A is a C-algebra, this result can be further improved. In
this case it is shown that gr(A, v) is isomorphic to a twisted semigroup ring C[I", c]
for an ordered cancellative abelian semigroup I' and a positive symmetric factor set
c:I'xI' =R

These results are used in the last section to answer a question posed by Cimpri¢
[Ci, §6]. We show that noncommutative quantum affine spaces and quantum Weyl
fields do not admit *-orderings (independent of the involution chosen).

2 Basic Definitions and Preliminary Results

Throughout this paper A will denote a domain with involution and Sym A will be
the set of its symmetric elements. A subset P C A is called a %-ordering provided the
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following hold:

(O1) 1eP, P+PCP

(Op) rPr* C Pforallr € A,

(O3) PU—P=SymA,

(0y) Pn—-P={0},

(Os) a,beP = {a,b}:=ab+bacP.

If I is an ordered cancellative abelian semigroup, then an onto mapping v: A —

' U {oc} is a x-valuation if:

(V1) v(x) = xiffx =0,

(Va) vixy) =v(x)+v(y) forallx,y € A*,

(Vi) v(x+y) > min{v(x),v(y)} forallx, y € A,

(Vy) v(x*) =v(x) forall x € A.

Here A* := A\ {0}. The corresponding graded x-ring gr(A,v) is constructed as

follows. We form A, := {x € A | v(x) > a}, AL := {x € A | v(x) > a}and

Ay i= Ay /AL Then gr(A,v) := @, p Aq is given the componentwise addition, the

multiplication induced by (@,b) + ab fora € A, and b € A and the involution

defined by a* := a*. Then v induces a x-valuation gr(v): gr(A,v) — I'U{oo} given

by gr(v)(3_ e @a) = 7, where 7y is the least v € " such thata, # 0if ) . d, # 0.
We define a relation ~, on A* by x ~, y < v(x) < v(x — y). This is a semigroup

congruence and is x-invariant (i.e., x ~, y implies x* ~, y*). For details we refer the

reader to [Hol].

Definition Letv: A — I' U {oo} be a *-valuation.

(i) v is compatible with a x-ordering P of A iff x ~, y € P implies x € P for all
x,y € SymA*.

(ii) v is called quasi-commutative iff for all a, b € A* we have ab ~, ba. Obviously,
v is quasi-commutative iff v(ab — ba) > v(ab) for all a,b € A* and this is the
case iff gr(A, v) is commutative.

(iii) v is quasi-Oreiff for all a, b € A* there exist r,s € A* such that ra ~, sb. Note
that this condition is left-right symmetric by the properties of ~,,.

(iv) IfI is a subsemigroup of Z, then v is called discrete.

Remark Clearly, if gr(A, v) is an Ore domain, then v is quasi-Ore. The converse is
false in general, but it holds in special cases, e.g., if v is discrete [Co, Theorem 4.2].

Ifv: A — T U {oo} is a #-valuation, we write O, := Ay and m, := Af. If A
is a division *-ring, then O, is an invariant valuation x-ring and m, is its maximal
*-ideal. In general, m, is only a completely prime *-ideal of O,. Hence the residue
x-ring k, := 0, /m, is only a domain and not necessarily a division ring.

To each *-ordering P C A a natural (order-compatible) x-valuation vp can be as-
sociated as follows. The *-ordering P gives an order relation < on Sym A, which in-
duces the archimedean equivalence ~ on Sym A. We extend the latter to the whole A
by declaring, foralla,b € A%, thata < b if aa® < nbb* for some positive integer n,
and a =~ bifa < band b < a. Denote by vp(a) the equivalence class of a € A* and
vp(0) := oo. Then the relation < induces a total ordering of the set I'p = vp(A*).
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By [Mal, Theorem 3.3], the binary operation vp(a) + vp(b) := vp(ab) is well defined
on I'p, so I'p becomes an ordered cancellative abelian semigroup. Marshall [Mal]
observed that vp is a *-valuation and s;5, ~, sp5; for all 51,5, € Sym A*. We say that
v is quasi-commutative for symmetric elements.

3 x-Places and Graded +-Rings

Proposition1  Assume v: A — T' U {oo} is a x-valuation quasi-commutative for
symmetric elements with v(2) = 0. Then v is quasi-Ore and symmetric elements of
gr(A, v) commute. If, furthermore, v is discrete, then gr(A, v) is an Ore domain.

Proof Since v is quasi-commutative for symmetric elements, we have v(s;s,—s,51) >
v(s15y) for all 5,5, € SymA*. Now let a,b € A* be arbitrary. Define r; := a*bb*
and r, := b*aa*. Then

v(ar; — bry) = v(aa™bb* — bb*aa*™) = v( (aa®)(bb*) — (bb*)(aa*))

> v(aa*bb*) = v(ar,) = v(bry).

Hence y is quasi-Ore. Note that an element a = > 4a, € gr(A4,v) is symmetric
ift a, € A, is symmetric for every . By a simple induction argument, to prove
that symmetrlc elements of gr(A, v) commute, it suffices to show that two symmetric
elements of the form a,, Eg commute. Moreover, as 2a = 0 implies a = 0 for
alla € gr(A,v) by the assumption v(2) = 0, it is enough to prove that 2a,, 2bs
commute. Since a, is symmetric, a, ~, a and thus v(a, + a;) = v(a,). Hence
24, = a, + a’ and a, + 4 is symmetric. Slmllarly, 2bs = by + b;}. Since v is quasi-
commutative for symmetric elements, (a, + a’)(bs + b;;) ~, (bg + b;;)(aa, +a’) and

SO (2%)(2%) = (255)(2%), as desired. Finally, the last statement of the proposition
follows from [Co, Theorem 4.2]. [ |

Theorem 2  If A is a x-ordered domain and v the natural x-valuation, then v is quasi-
Ore. If also, A contains an imaginary unit, then v is quasi-commutative.

Proof By [Mal, 3.3 Theorem] and Proposition 1, v is quasi-Ore. So let us assume
thati € A is an imaginary unit. Observe that every *-ordering of A extends uniquely
to a x-ordering of the central localization AN( ~A ®z Q). Hence we may assume that
Q C A. For every x € A we have x = ’”" +1i Xz" In other words, x = x; + i x, for
(uniquely determined) x;, x, € Sym A. Let a,b € A* be arbitrary. Write a = a; +ia

and b = b; + ib, for symmetric a,, ay, by, b,. Then

ab — ba = (a, +iay)(by +iby) — (by + iby)(a; +iay)

= (a1by — biay) + (byay — axby) + i(arby — byay) +i(azby — biay).
Hence by the triangle inequality,

v(ab — ba) > min { v(aiby — biay), v(bray — ayby), v(aiby — byay), v(ayby — blaz)} .
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Now use [Mal, 3.3(5) Theorem] to get

v(ab — ba) > min { v(aiby), v(ayby), v(a1by), v(azbl)}
= min{v(a;), v(a,)} + min{v(b;), v(b;)}.

By [Ma2, 2.4 Proposition], the right-hand side of the last equation equals v(a) +
v(b) = v(ab). Hence v(ab — ba) > v(ab), as required. [ |

An application of this result will be given in the next section, where we answer a
question posed by Cimpri¢ [Ci]. For another application we refer the reader to [KM].

If D is a *-ordered division ring and v is the natural *-valuation, then k, = O, /m,
is a x-ordered division subring of H, ¢f. [Ho2]. Hence we have a x-homomorphism
0, — H. We extend this to a map D — H U {oo} by mapping D \ O, — {oc}.
This mapping is called a *-place. For more on *-places on division rings we refer the
reader to [Cr].

Proposition 3 If A is a x-ordered domain and v the natural x-valuation, then k, is
a x-ordered subring of H. If A also contains an imaginary unit, then k, is a x-ordered
subring of C.

Proof Write P for the *-ordering of A. Let g, be kx. As v(aa*bb* — bb*aa*) >
v(aa*bb*) = 0, we have @ - a*bb* = b - b*aa*. In other words, k, is an Ore do-
main. Moreover, P induces an archimedean *-ordering P of k,. By [CS, Corollary
2.5], P extends to a *x-ordering Q of Quot(k,). Let w denote the natural *-valuation of
Quot(k,). By aresult of Holland [Ho2, 4.1], w(as—sa) > w(as) forall a, s € Quot(k,)
with s = s*. Obviously, w|, is the natural *-valuation associated with the x-ordering
P of k,. Since P is archimedean, wly, is trivial. This implies that symmetric el-
ements of k, are central. Furthermore, P induces an archimedean total ordering
of Symk,, hence Symk, is an ordered subring of R. Form the central localization
B := k,(Symk})~!. Clearly, B C Quot(k,), hence Q induces a *-ordering of B.
From the definition of B it is easy to see that this *-ordering is archimedean. More-
over, by results of Herstein [He], B is finite dimensional over its center. As it is also a
domain, B must be a division ring. Hence by a theorem due to Holland [Hol], Bis a
*-ordered division subring of H. In particular, k, is a *-ordered subring of H.

If A contains an imaginary unit, then k, is commutative by Theorem 2 and thus a
x-ordered subring of C. ]

Again, by this proposition we have a mapping A — H U {co}. We call it the weak
x-place associated with P. A x-place associated with P will be a mapping (Sym A x
SymA) \ {(0,0)} — RU {co} with certain properties. In order to define it, we need
the following classical result.

Lemma 4 ([Fu, Ch. IV])  Let (A, +, <) be a totally ordered abelian group and v the
natural order-compatible valuation. For a,b > 0 and v(a) = v(b) there exists a unique
real number p(a, b) € (0, 00) such that p(a, b) € [%, '”T“] for any m,n € N satisfying
mb < na < (m+ 1)b.
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Assume P C A is a *-ordering. Then (Sym A, +) is an abelian group and P is a
total ordering of Sym A. Hence, using Lemma 4 we can define a map g : (SymA x
Sym A) \ {(0,0)} — R U {co} as follows

0 if v(a) < v(b),

w(|al, |b]) ifv(a) = v(b),{a,b} € P,
—pu(Jal,|b])  if v(a) = v(b), —{a, b} € P,
0 if v(a) > v(b).

p(a,b) =

This mapping is the x-place associated with P. Let us note some properties of . For
all a, b € Sym A, not both zero, we have

(P1) p(a,b) = c0iff p(b,a) =0,

(P,) if p(a,b),p(b,c) # oo, then p(a,b)p (b, c) = p(a,c),

(P3) if p(a,c),p(b,c) # oo, then p(a,c)+ p(b,c) =p(a+b,c),

(Py) p(a,b) = p({a,c},{b,c}) forallc € SymA*,

(Ps) p(a,b) = p(r*ar,r*br) forallr € A*.

In case i € A is an imaginary unit, we can extend p to a mapping (A x A) \
{(0,0)} — C as follows. As before, we assume ) C A. We first extend o to (A X
SymA)\{(0,0)} — Cbyp(a;+iay, b) := @ (a1,b)+ip(ay,b) fora;,a,,b € SymA.
This is well defined since every a € A can be written uniquely as a = a, + i a, for
symmetric a;, a,. For the second step, we define p (a, b) = %p (ab* + b*a, bb*) for
a,b € A, not both zero. We claim that this is well defined. Leta € A and s € Sym A.
We have to show that p (a,s) = %p (as+sa, s*). Leta = a, +i a, for a; € SymA. Then
p(a,s) = p(ar,s)+ip(ay,s)and p(as+sa,s*) = p(ars+say, ) +i g (ays+saz, $2).
Thus we may assume without loss of generality that a is symmetric as well. But then
our claim follows from (Py).

Proposition 5 ([MZ2, §1.3 Notes])  Assume A is a x-ordered domain and a C-algebra
and let v denote the natural x-valuation. If for a, b € A, v(a) = v(b), then p(a,b) = p
iffvia — ub) > v(b).

Proof It is easy to see that p(a,b) = piff p(a — pb,b) = 0. So it suffices to
prove the statement for ¢ = 0. By definition, p(a,b) = %p(ab* + b*a, bb*). Write
ab* +b*a = c; +1i ¢, for symmetric ¢, ¢;. Then p (a,b) = %p(cl, bb*) + %p(cz, bb*).
By [Ma2, 2.4 Proposition], v(ab* + b*a) = min{v(c;),v(c2)}. On the other hand,
v(ab® + b*a) = v(ab™) by Theorem 2. If v(a) > v(b), then v(c;) > v(bb*) for
j = 1,2. Thus p (a,b) = 0 by the definition of . Conversely, if p (a,b) = 0, then
9 (cj,bb*) = 0for j = 1,2. Hence v(c;) > v(bb*) and so v(ab*) = v(ab™ + b*a) >
v(bb*). This implies v(a) > v(b), as desired. [ |

In the rest of this section we sharpen Theorem 2 for *-ordered C-algebras by show-
ing that the corresponding graded ring is isomorphic to a twisted semigroup ring. As
our semigroups are abelian and written additively, we use the exponential notation
for twisted semigroup rings.
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Proposition 6 ([MZ2, 2.3 Example(1)])  Let I be an ordered cancellative abelian
semigroup. Consider the twisted semigroup ring C[L', c] with the twisting given by
t°t? = c(a, B)t°P, where c: T' x T' — R is a positive symmetric factor set, i.e.,

(FS1) cle,B) > Oforalla, B €T,
(FS;) c(er,0) =¢c(0,c) =1 foralla €T,
(FS3) cla, B)ec(a+ B,7) = cla, B+7)c(B,7) foralla, 3,7 € T,
(FSy) cla, B) = (B, ) forall a, B € T

The involution on C[I', c] fixes I pointwise and z* = Z for z € C, and C[L', c] is
a graded commutative x-domain. A x-valuation v: C[T',c] — T U {oo} is defined
as follows: if a = > a,t® # 0, then v(a) is the smallest « € T such that a, # 0.
x-orderings of C[I', c] compatible with v are in a natural one-to-one correspondence
o +— P, with semigroup homomorphisms T — {—1,1}. A nonzero a = 3 a,t® is
symmetric iff a, € R for all « € T such that a, # 0. Such an element a is positive
with respect to P, iff o(a)a, > 0, where o = v(a). Also, v is the natural x-valuation
associated with P,.

Proof This is straightforward. For example, to prove that o — P, is a bijection, we
proceed as follows. x-orderings of C[I', c] compatible with v are total orderings of
Sym C[I', ¢c] = R[T', ¢c] compatible with v that are closed under *-conjugation. But
total orderings of R[I, c] compatible with v are all of the form P, and these are closed
under *-conjugation. ]

Theorem 7 ([MZ2, 2.3 Example(2)])  Suppose P is a x-ordering of a C-algebra A and
v: A — DU {oo} the natural x-valuation.

(i)  Foreach « € T there exists s, € P with v(s,) = a.

(i) The mapping A, — Cdefined bya — @ (a, s,), where p : (AxA)\{(0,0)} — C
is the x-place associated with P, is an isomorphism.

(iil) The mapping c: T x T' — R defined by c(a, §) := p({sa,s}g},smg) is a
positive symmetric factor set. Furthermore, > g — Y 0 (aa, )t defines a
x-isomorphism between gr(A,v) and C[T, c].

Proof For v € I choose x € A satistying v(x) = a. If x = x; + ix, for symmetric
x1, %, then v(x) = min{v(x), v(x,)} by [Ma2, 2.4 Proposition]. Say v(x;) = a. If
x; € P, then s, := x;. Otherwise —x; € P, and we take s, := —x;. This proves (i).

To prove (ii), let a = a; + iay. If v(a;) # v(ay), then @ = a; with j such that
v(a;) = min{v(a,),v(az)}. In this case p(a,s5,) = p(a;j,sa) is a real number and
furthermore, every real number can be obtained in this way since A is a C-algebra.
If v(a;) = v(ay), then p(a,s,) = p(ai,s.) + ip(az,s,). By the same reasoning as
above, p (—,s,) maps A, onto C. Now if p (a,s,) = p(b,s,) for some a,b € A,,
then o (a — b,s,) = 0. Hence v(a — b) > « and thus @ = b in A,. This shows that
the mapping A, — G, given by @ — p(a,s,), is injective. Since it is obviously a
homomorphism, it is an isomorphism, as desired.

(FS;) and (FS;) for ¢ follow immediately from the definition of p and so does
(FS4) since I is abelian. The long and tedious calculation needed to prove (FS;) is
left to the interested reader as an exercise. The rest of (iii) then follows from (ii). W
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Note that Proposition 6 and Theorem 7 combined with [Ma2, 2.5 Proposition]
yield a Krull-Baer type result. Namely, if P C A is a x-ordering, where A is a C-alge-
braand v: A — I' U {oo} is the natural x-valuation, then the set of all #-orderings
of A compatible with v is in a natural one-to-one correspondence with the set of all
semigroup homomorphisms T' — {—1,1}.

4 x-Orderability of Quantum Groups

In [Ci] Cimpri¢ studied orderability and real spectra of certain classes of quantum
groups. At the end of that paper he asked for a similar characterization of *-orderings
of these quantum groups, see [Ci, §6]. We give an answer to his question by showing
that quantum Weyl fields “rarely” admit *-orderings.

Proposition 8  Assume A is a k-algebra containing elements x, y satisfying yx = oxy
for o € k\ {0, 1}. Then A does not admit a quasi-commutative valuation that is trivial
on k.

Proof Assume otherwise and let v be a quasi-commutative valuation of A that is
trivial on k. Then v(xy) < v(xy — yx) = v(xy — oxy) = v(1 — o) + v(xy). Hence
v(1 — o) > 0, a contradiction. [ |

Let q = (gij))=; """ be a sequence of nonzero complex numbers. The quantum

affine space Cy[x1, . .. ,x,] is the C-algebra on n generators x1, . . ., x, subject to rela-
tions x;x; = gjjxjx; for 1 < i < j < n. It is well known that Cg[x, ..., x,] is an
Ore domain. Its division ring of fractions is denoted by Cq(x, . . ., x,,) and called the
quantum Weyl field.

Corollary 9 If qi; # 1 for some i, j, then the quantum affine space Cq[xi, . .., x,]
is not x-orderable (independent of the involution chosen). The same holds true for the
quantum Weyl field Cq(x1, . . ., x,).

Proof This follows easily from Proposition 8 and Theorem 2. ]

Remark

(i) A special case of Corollary 9 was given in [CKM]. The authors proved that
the complex quantum plane C(X,Y)/(XY — qYX) for ¢ # 0,1 does not admit
x-orderings for certain kinds of involutions.

(ii) If gi; = 1 forall i, j, then Cq[x, .. .,x,] is the ordinary polynomial algebra
over € in n commuting variables and Cq(x1, ..., x,) is its quotient field. Existence
of s-orderings of C[x, . .., x,], resp., C(xy, ..., x,) depends on the involution cho-
sen. In the case x¥ = x; and * is conjugation on C, *-orderings of C[xy,...,x,],
resp., C(xy, . .., x,) are precisely total orderings of R[x, . .., x,], resp., R(x1, . . ., x,).
These have been fully classified, see [KKMZ].
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(iii) The quantum Gelfand—Kirillov conjecture states that the division ring of
fractions of a quantum group is always a quantum Weyl field. Even though it is
known to be false in general, it does hold in a variety of cases. By Corollary 9, these
quantum groups are never %-orderable.
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