
J. Functional Programming 12 (6): 617–622, November 2002. c© 2002 Cambridge University Press

DOI: 10.1017/S0956796801004221 Printed in the United Kingdom

617

T H E O R E T I C A L P E A R L

CPS in little pieces:
composing partial continuations

DANIEL P. FRIEDMANã and AMR SABRY†
Computer Science Department, Indiana University, Bloomington, IN 47405, USA

Abstract

This paper presents a new two-stage CPS algorithm. The first stage plants trivial partial

continuations via a recursive-descent traversal and the second stage is a rewrite system that

transforms all nontail calls into tail calls. The algorithm combines the metaphors of the

Plotkin-style CPS transformation along with reduction in the λ-calculus.

1 Introduction

The CPS transformation is usually presented as a recursive-descent algorithm that

constructs continuations on the fly (Plotkin, 1976; Fischer, 1993). Instead, we tease

the transformation into two parts: a simple recursive-descent traversal that plants

trivial partial continuations, and a rewriting system for composing and simplify-

ing these partial continuations. Our development focuses on the call-by-value CPS

transformation but should also hold for the call-by-name case. Partial continua-

tions (also known as functional continuations or subcontinuations) were precisely

introduced as a more general notion of continuations that can be composed and

simplified (Felleisen et al., 1988; Johnson & Duggan, 1988; Danvy & Filinski, 1990;

Danvy & Filinski, 1992).

The remainder of this section illustrates these ideas with two examples written

in the untyped call-by-value λ-calculus. The examples characterize the operational

aspects of the two parts of the transformation, but the untyped framework fails to

capture some essential invariants. Hence sections 2 and 3 formalize our algorithms

in the context of a typed CPS language with partial continuations. Section 4 is some

discussion of the two algorithms and the conclusion, section 5, puts our intuition

into context.

If we work in the untyped call-by-value λ-calculus, the recursive-descent part of

ã Supported by the National Science Foundation under Grant No. CCR-9987458.
† Supported by the National Science Foundation under Grant No. CCR-0196063.

https://doi.org/10.1017/S0956796801004221 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004221

618 D. P. Friedman and A. Sabry

the transformation translates a term e to λk.ke∗ where:

x∗ = x

(λx.e)∗ = λk.λx.ke∗
(e1e2)∗ = e∗1 I e∗2

Every application takes I as a trivial partial continuation. Every λ takes an additional

continuation argument that is immediately applied to the body. For example, the

term x(λy.y)z translates to λk.k((x I1 (λk.λy.ky)) I2 z), where we have subscripted

the two occurrences of I for clarity.

The second part of the transformation processes each nontail call by compos-

ing its surrounding context with its partial continuation. For example, the call

(x I1 (λk.λy.ky)) has k as a context and I2 as a partial continuation. Merging these

produces λk.(x I1 (λk.λy.ky)) k z.

The remaining nontail call is in an application position expecting k and z as

arguments. This context is merged with the partial continuation I1 to produce

λk.x(λv.vkz)(λk.λy.ky), which is the result of the traditional CPS transformation.

In general, several possible reductions on partial continuations may apply at a

given point. The reductions will be restricted to ensure a left-to-right evaluation

order of applications but can otherwise be applied in any order.

As another example, consider the term x(y(zw)). Applying the first algorithm

produces λk.k(xI1(yI2(zI3w))). One reduction sequence for the second algorithm is:

λk.k(xI1(yI2(zI3w)))

→ λk.k(xI1(z(λv2.yI2v2)w))

→ λk.xk(z(λv2.yI2v2)w)

→ λk.z(λv1.xk(yI2v1))w

→ λk.z(λv1.y(λv2.xkv2)v1)w

In the first line, the return value of z is passed to y, whose return value is then

passed to x. Thus for example, it would be possible to evaluate the term in a context

that binds z to a function that ignores its continuation and returns an int, binds y

to a function taking an int as its second argument and returning a bool, and binds

x to a function taking a bool as its second argument. After two reduction steps, in

the third line, the return value of z is passed directly to x since the call to y has

been absorbed as part of the continuation of z. Since z ignores its continuation and

returns an int, the term is ill-typed. Given sensible restrictions on the free variables,

the term becomes well-typed and reduction can be shown to preserve typing. To

make this explicit, we move to a typed calculus.

2 Source and target typed languages

The types and terms of the source calculus are:

t ::= b | t→ t

e ::= x | λx.e | ee
where b ranges over an unspecified collection of base types.

The presence of partial continuations in the CPS language complicates the types

of the language. As Filinski argues (1999; 1996), the main challenge in typing

https://doi.org/10.1017/S0956796801004221 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004221

Theoretical pearl 619

partial continuations is in defining a rich enough answer type in which all types

can be embedded and projected. Our typed framework adapts the development

of Sabry (1996) for a language with control primitives that can express partial

continuations, and has similarities to Filinski’s presentation but is considerably

simpler since we are not concerned with the operational interpretation of the

embeddings and projections. The types of the CPS language include a type o of

answers, as well as polymorphic types:

u ::= b | o | u→ u | α | ∀α.u

Each partial continuation will return a value of type o. To compose partial

continuations with regular functions, two polymorphic constants are included to

mediate between the type o and the types expected by the context of the partial

continuation. The set of CPS terms is:

(Values) W ::= x | λk.K | #uA

(Partial Continuations) K ::= k | λx.A | WK | @u

(Partial Answers) A ::= KW

(Programs) P ::= λk.A

Ignoring the polymorphic constants prompt (#) and abort (@) for the moment,

the CPS language is traditional (Sabry & Felleisen, 1993). Values are either vari-

ables or continuation transformers. Continuations are either variables, functions

mapping values to answers, or the result of transforming another continuation. All

continuations must have type u→ o for some u. Answers are produced by applying

continuations and must be of type o. Entire programs abstract over the single free

continuation variable k and return an answer.

The constant @ has type ∀α.α → o, and must be applied to a type u before it is

used. It embeds a value into the answer type that is common to all continuations.

The constant # has type ∀α.o → α, and must also be first applied to a type u. It

projects values that were embedded into the answer type back to their original type.

Both constants mediate between answers and values as will be apparent in the next

section when we present the modified recursive-descent algorithm. If these constants

are never used, then all calls are of the form WKW , i.e. all calls are tail calls.

As usual, the semantics of the CPS language is given by β and η reductions. In

addition, the prompt and abort at identical types are stipulated to be inverses:

#u(@uW) → W

@u(#uA) → A

(λk.K1)K2 → K1[k := K2]

(λx.A)W → A[x := W]

λk.Wk → W where k 6∈ FV (W)

λx.Kx → K where x 6∈ FV (K)

All but the β and η reductions on source terms are considered to be administrative.

As expected, the rules are type-preserving.

https://doi.org/10.1017/S0956796801004221 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004221

620 D. P. Friedman and A. Sabry

3 Composing partial continuations

In this section, we modify the recursive-descent algorithm to use the type judgments

of the source language. By introducing prompts and aborts at the appropriate types

in the output of the translation, it becomes evident that both phases of the new CPS

algorithm are type-preserving.

As usual (Meyer & Wand, 1985), the CPS translation on types is the following:

b∗ = b

(t1 → t2)∗ = (t∗2 → o)→ t∗1 → o

The revised recursive-descent algorithm treats variables and procedures as in the

untyped case. For applications, the trivial partial continuation I is replaced with

an @ that embeds the return type of the application into the answer type for

continuations. The entire application is surrounded with a # that extracts the value

from the answer type:

x∗ = x

(λx.e)∗ = λk.λx.ke∗
(et2→t1 e2)∗ = #t∗ (e∗1 @t∗ e∗2)

The type t2 mentioned in the left-hand side of the last equation does not appear in

the right-hand side because we are only interested in the return type.

It is interesting that even the trivial planting of partial continuations produces

terms that appear to have been transformed to CPS (as far as the types are

concerned).

Proposition 3.1

If Γ ` e : t then Γ∗ ` e∗ : t∗.

Then the second pass can be described as “Do any of the administrative reductions

on CPS terms and any of the following two reductions for composing partial

continuations”:

K(#u(WK1W1)) → W (λv.K(#u(K1v)))W1 (lift arg)

where K is not of the form (#uA′)K ′
(#u(WK1W1))K2W2 → W (λv.(#u(K1v))K2W2)W1 (lift fun)

where u = (u1 → o)→ u2 → o

The first rule (lift arg) has #u(WK1W1) as the argument to K and the second

rule (lift fun) has #u(WK1W1) as the function applied to K2 and W2. To enforce a

left-to-right evaluation order of applications, the first rule is restricted to the case

where the continuation has already been composed with the caller’s continuation.

In the first rule, the invocation of W is a nontail call, but in the right-hand side

the invocation of W is a tail call. Thus, we reduce the left-hand expression by one

nontail call. Similarly, for the second rule, since the invocation of W is a nontail

call, which becomes a tail call.

We need the restriction imposed by (lift arg). Consider the term xy(zw). After

the first algorithm, we have λk.k(#(x@y))@(#(z@w)), where we ignore the types

of # and @. The first reduction yields λk.(#(x@y))(λv.k(#(@v)))(#(z@w)). Now

https://doi.org/10.1017/S0956796801004221 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004221

Theoretical pearl 621

consider (lift arg) without the condition. To determine the next redex, we would

have instances of both lifting rules on the same subterm. This would violate our

promise of left-to-right evaluation.

Proposition 3.2

For each rule if the left-hand side has type t, then so does the right-hand side.

4 Discussion

Our goal is to make all calls be tail calls. In other words, we want all calls to be

of the form (WKW1). We can see that the rules (lift arg) and (lift fun) do just

that. The only difference in these two rules in the right-hand side is what the newly

created K looks like. In both cases, however, the new K is formed by composing the

context of (WK1W1) from the left-hand side and K1. Clearly, each lift rule removes

one nontail call and the CPS target language guarantees that no additional nontail

calls are introduced. Therefore, our goal is met.

When we first formalized the algorithm, it contained three rules, but by re-

arranging the argument order, so that the continuation was the first instead of

the second argument, one of the three rules became a special case of one of the

two remaining rules. In addition, we got the let-optimization as a byproduct. (By

let-optimization, we mean an additional rule for translating source judgments that

special-cases the application rule when e1 is a λ-expression. The inclusion of the

administrative reductions obviates this special-casing.)

5 Conclusion

From an intuitive perspective, we can see that the abort partial continuation absorbs

the surrounding context up to the prompt, a bit at a time until the entire surrounding

context has been consumed. Unlike conventional (Plotkin-style) CPS algorithms,

which do not introduce partial continuations, ours has this bit of overhead. But

these partial continuations disappear from the target-language output if they are

not present in the source language.

Because each transformation not only preserves types but also preserves cor-

rectness, we know that once the first algorithm completes, we can apply the CPS

semantics to reduce to the same final value after each reduction step of the second

algorithm. As a result, we know that once no more lift rules apply, not only are we

free of nontail calls, but we know that we have correctly preserved the semantics of

the original program.

Acknowledgements

We are grateful for the comments of an anonymous referee.

References

Danvy, O. & Filinski, A. (1990) Abstracting control. Proceedings of the 1990 ACM Conference

on LISP and Functional Programming, pp. 151–160.

https://doi.org/10.1017/S0956796801004221 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004221

622 D. P. Friedman and A. Sabry

Danvy, O. & Filinski, A. (1992) Representing control: A study of the CPS transformation.

Mathematical Structures in Computer Science, 2(4), 361–391.

Felleisen, M., Friedman, D. P., Kohlbecker, E. & Duba, B. (1987) A syntactic theory of

sequential control. Theor. Comput. Sci., 52(3), 205–237. (Preliminary version: Reasoning

with continuations. Proceedings 1st IEEE Symposium on Logic in Computer Science, 1986.)

Felleisen, M., Wand, M., Friedman, D. P. & Duba, B. F. (1988) Abstract continuations:

A mathematical semantics for handling full functional jumps. Proceedings 1988 ACM

Conference on Lisp and Functional Programming, pp. 52–62.

Filinski, A. (1996) Controlling effects. PhD thesis, School of Computer Science, Carnegie

Mellon University, Pittsburgh, PN.

Filinski, A. (1999) Representing layered monads. Conference Record of POPL 99: 26th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 175–

188. ACM.

Fischer, M. J. (1993) Lambda-calculus schemata. Lisp & Symbolic Computation, 6(3/4),

259–288.

Johnson, G. F. & Duggan, D. (1988) Stores and partial continuations as first-class objects in

a language and its environment. Conference Record of the 15th Annual ACM Symposium

on Principles of Programming Languages, pp. 158–168.

Meyer, A. R. & Wand, M. (1985) Continuation semantics in typed lambda-calculi. Proceedings

Workshop Logics of Programs: Lecture Notes in Computer Science 193, pp. 219–224.

Plotkin, G. (1976) Call-by-name, call-by-value and the λ-calculus. Theor. Comput. Sci., 1(1),

125–159.

Sabry, A. (1996) Note on axiomatizing the semantics of control operators. Technical report

CIS-TR-96-03, Department of Computer and Information Science, University of Oregon.

Sabry, A. & Felleisen, M. (1993) Reasoning about programs in continuation-passing style.

Lisp & Symbolic Computation, 6(3–4), 289–360.

https://doi.org/10.1017/S0956796801004221 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004221

