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Abstract
Commodity spot prices tend to revert to some long-term mean level and most commodity derivatives are based on
futures prices, not on spot prices. So, we consider spread options on futures instead of spot or spot index, where
the log spot price follows a mean-reverting process. The volatility of the mean-reverting process is driven by two
different (fast and slow) scale factors. We use asymptotic analysis to obtain a closed-form approximation of the
futures prices and a closed-form formula for the approximate prices of spread options on the futures. The overall
improvement of our analytic formula over the classical Kirk–Bjerksund–Sternsland (KBS) formula is discussed via
numerical experiments.

1. Introduction

A spread option is a financial derivative whose value depends on the difference of two underlying asset
prices. When market participants are interested in a relative performance between two assets, rather than
the price of one asset, the spread derivatives are suitable products for hedging or speculation. In practice,
there are several types of spread options traded in the market. Certain types of spreads consist of the
raw materials and the end products. A crack spread option, an option on the spread between the crude
oil and the refined one, is a typical example of the production spread options. In fact, the crack spread is
directly related to the profit of oil companies since it implies the cost of refining the crude oil. Among
other types of production spread is the soybean crush spread. The crush means the process of converting
soybean into oil and meal and so the crush spread is the difference in the values of the soybeans and the
end products. The soybean crush options are listed and traded in CBOT with Globex code SOM:SI. The
spark spread is the difference between the natural gas and the electricity, which reflects the efficiency
of power-plant operation. Spreads can be made by futures with two different maturities on the same
underlyings, which is a type of the so-called calendar spread. Many commodity products such as cotton,
corn and soybeans are traded as the underlyings of such calendar spread derivatives. Also, there are
spread options between similar underlyings, such as WTI-Brent oil spread futures and options. These
options are listed at Inter-Continental Exchange (ICE), together with other derivatives on each of WTI
oil and Brent oil.

In view of pricing spread options, the bivariate log-normal model, the two-dimensional extension of
the classical Black–Scholes framework, is the basic model for practitioners. So far, there is no closed-
form exact solution formula found even under this constant volatility model. The earliest research on
spread options was done by Margrabe [18], which is focused on the special case with zero strike,
that is, exchange options. Kirk [15] suggested a closed-form approximation formula, called the Kirk

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Com-
mons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided
the original article is properly cited.

Probability in the Engineering and Informational Sciences (2024), 38:1 168–188

https://doi.org/10.1017/S0269964823000049 Published online by Cambridge University Press

https://orcid.org/0000-0003-4424-7905
mailto:jhkim96@yonsei.ac.kr
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/S0269964823000049


formula, which is valid when the strike is non-zero but small, extending the Margrabe formula for
the prices of spread options. This is the most popular formula among market participants. The Kirk
formula was derived by Lo [17] using the idea of the WKB method. Carmona and Durrleman [5]
studied an accurate lower-bound estimation of the spread option prices. In Bjerksund and Stensland [2],
the implicit strategy in Kirk’s formula was used to obtain another approximation formula for spread
options. This approximation formula is written in a closed-form expression and it is more accurate
than Kirk’s formula. It allows a more wide range of strike prices extending the Kirk formula. We call
it the Kirk–Bjerksund–Sternsland (KBS in brief) formula in this paper. There are some recent studies
on spread options. For example, Li and Wang [16] studied spread options with counterparty risk in a
jump-diffusion model. Dong et al. [7] investigated the pricing of vulnerable basket spread options with
stochastic liquidity risk. Wang [21] obtained a pricing formula for spread options with stochastically
correlated underlying assets.

As is well known, the behavior of real market volatility can not agree with the assumption of
constant volatility and thus the above-mentioned formulas have already their own limitation. Refer to,
for example, Gatheral [11] and Fouque et al. [9] for empirical evidence of the presence of stochastic
factors in the volatility. Furthermore, the prices of many commodity products display seasonality and
mean-reversion. So, it is desirable to model the underlying spot prices with stochastic volatility by
using another stochastic processes than the geometric Brownian motion even if the bivariate log-normal
mixture model of Alexander and Scourse [1] is more elaborate than the earlier standard log-normal
scheme. Hikspoors and Jaimungal [13] and Hikspoors and Jaimungal [12] used a stochastic volatility
model to derive some analytic formula for the commodity spread option prices. Carmona and Sun [6]
suggested a multiscale stochastic volatility model for the pricing of spread options. In their model, the
underlying asset prices are spot prices with linearly growing drift. In most practical cases, however,
the underlying asset prices of commodity derivatives are futures prices, not spot prices. Also, it is only
futures prices that one can observe in commodity markets.

In this paper, we consider spread options on futures and assume that the underlying asset prices
of the futures are mean-reverting and possess a seasonality factor. In addition, the volatilities of the
underlying assets are assumed to have both fast and slow variation factors. Approximation approach
associated with multiscale stochastic volatility used in this paper is well established in the literature.
However, most of the relevant works have been concerned with (vanilla and exotic) options on the
spot (index), not on futures. In practice, the mean-reversion (in general, mixing) property, which is the
heart of the multiscale stochastic volatility framework, is more important in the price movement of
commodity products than securities. So, we are particularly concerned with associating the multiscale
stochastic volatility with spread derivatives on futures and come up with this study. We use asymptotic
analysis to obtain a closed-form solution for the approximate prices of spread options. As a result, the
option price calculation is expected to be much faster than the result of Monte–Carlo simulation and
the work of Fouque et al. [10] for single asset options is generalized to multi-asset options and the
formula obtained by Kim and Park [14] for exchange options is extended to spread options. These are
the main contributions of this paper to the relevant literature. Caldana and Fusai [4] also proposed an
exact formula for the approximate spread option prices. Their formula is available only in the case that
the joint characteristic function of two underlying log prices is available in closed form like the prices
described by the Cox–Ingersoll–Ross (CIR) process. Our formula in this paper is given under a more
general condition in the sense that the joint characteristic function is not required and the volatility of
the log prices is driven by two different (fast and slow) scales of variations.

The rest of this paper is organized as follows. In Section 2, we formulate the dynamics of underlying
asset prices and their stochastic volatilities. In Section 3, the futures prices of these underlying assets
are obtained by using an asymptotic expansion method. In addition, the differential forms of the futures
prices are obtained as functions of the futures prices (not the spot prices). In Section 4, we extend
the formula in Bjerksund and Stensland [2] and obtain a closed-form approximation formula under
multiscale stochastic volatility. In Section 5, we discuss the Greeks and how to hedge risks under our
pricing model and give a brief comment about possible practical applications of our model. In Section

169Probability in the Engineering and Informational Sciences

https://doi.org/10.1017/S0269964823000049 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964823000049


6, the validity of our analytic formula is verified by numerical experiments and our formula is compared
with the formula in Bjerksund and Stensland [2]. Also, the effects of the scale parameters on the spread
option prices are discussed. Finally, Section 6 concludes.

2. Model formulation

The futures contract on an asset is a standardized contract in which both parties agree to trade the asset
at future time 𝑇 , for a predetermined price, called strike. The future price 𝐹𝑡 ,𝑇 at time 𝑡 with maturity 𝑇
of the asset is defined as the strike of the futures contract such that no premium is paid at time 𝑡. If 𝑆𝑡
denotes the asset price at time 𝑡, then the futures price 𝐹𝑡 ,𝑇 is given by

𝐹𝑡 ,𝑇 = E𝑄 [𝑆𝑇 | F𝑡 ], (1)

where 𝑄 is a risk-neutral probability measure and F𝑡 denotes a given filtration. Note that the futures
price 𝐹𝑡 ,𝑇 becomes the spot price 𝑆𝑇 when 𝑡 = 𝑇 , i.e., 𝐹𝑇 ,𝑇 = 𝑆𝑇 .

Since we are interested in the pricing of spread options on futures, we use functions 𝐹 (1) and 𝐹 (2)

for the prices of two futures. Then the spread (call) option price with option strike 𝐾 and maturity 𝑇 is
defined as

E𝑄 [𝑒−𝑟 (𝑇−𝑡) max{𝐹 (1) − 𝐹 (2) − 𝐾, 0} | F𝑡 ] . (2)

Note that if 𝐹 (2) = 0, the spread option collapses into a standard vanilla (call) option on futures whose
value has the well-known Black [3] formula and if 𝐾 = 0, the option becomes into an exchange option
whose value is given by the Margrabe [18] formula.

We assume that two asset values, 𝑆 (1)𝑡 and 𝑆 (2)𝑡 , follow the risk-neutral dynamics given by

𝑆 (1)𝑡 = exp{𝑠 (1)𝑡 +𝑈 (1)
𝑡 },

𝑆 (2)𝑡 = exp{𝑠 (2)𝑡 +𝑈 (2)
𝑡 },

(3)

respectively, where 𝑠 (1)𝑡 and 𝑠 (2)𝑡 are deterministic functions representing seasonality factors and 𝑈 (1)
𝑡

and 𝑈 (2)
𝑡 are mean-reverting processes whose volatility is driven by two different (fast and slow) scale

factors𝑌𝑡 and 𝑍𝑡 . The following stochastic differential equations (SDEs) represent the precise dynamics
of𝑈 (1)

𝑡 and𝑈 (2)
𝑡 , respectively.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑈 (1)
𝑡 = 𝜅1(𝑚1 −𝑈 (1)

𝑡 ) 𝑑𝑡 + 𝜂(𝑌𝑡 , 𝑍𝑡 ) 𝑑𝑊 (1)
𝑡 ,

𝑑𝑈 (2)
𝑡 = 𝜅2(𝑚2 −𝑈 (2)

𝑡 ) 𝑑𝑡 + 𝜉 (𝑌𝑡 , 𝑍𝑡 ) 𝑑𝑊 (2)
𝑡 ,

𝑑𝑌𝑡 =
1
𝜖
𝛼(𝑌𝑡 ) 𝑑𝑡 + 1√

𝜖
𝛽(𝑌𝑡 ) 𝑑𝑊 𝑦

𝑡 ,

𝑑𝑍𝑡 = 𝛿𝑐(𝑍𝑡 ) 𝑑𝑡 +
√
𝛿𝑔(𝑍𝑡 ) 𝑑𝑊 𝑧

𝑡 ,

(4)

where 𝜅1, 𝜅2,𝑚1 and𝑚2 are constants and 𝜖 and 𝛿 are small positive parameters and𝑊 (1)
𝑡 ,𝑊 (2)

𝑡 ,𝑊 𝑦
𝑡 and

𝑊 𝑧
𝑡 are standard Brownian motions under the risk-neutral measureQwith correlation structure given by

𝑑𝑊 (1)
𝑡 𝑑𝑊 (2)

𝑡 = 𝜌12 𝑑𝑡, 𝑑𝑊 (1)
𝑡 𝑑𝑊 𝑦

𝑡 = 𝜌1𝑦 𝑑𝑡, 𝑑𝑊 (1)
𝑡 𝑑𝑊 𝑧

𝑡 = 𝜌1𝑧 𝑑𝑡,

𝑑𝑊 (2)
𝑡 𝑑𝑊

𝑦
𝑡 = 𝜌2𝑦 𝑑𝑡, 𝑑𝑊 (2)

𝑡 𝑑𝑊 𝑧
𝑡 = 𝜌2𝑧 𝑑𝑡, 𝑑𝑊

𝑦
𝑡 𝑑𝑊

𝑧
𝑡 = 𝜌𝑦𝑧 𝑑𝑡,

(5)

which is assumed to be positive definite. Apart from the existence and uniqueness of the above SDEs, we
need the following model assumptions. The functions 𝛼(𝑦) and 𝛽(𝑦) are assumed to give a guarantee
of the existence of a unique invariant distribution Φ of the process 𝑌𝑡 . The functions 𝑐(𝑧) and 𝑔(𝑧)
are smooth and at most linearly growing. The functions 𝜂(𝑦, 𝑧) and 𝜉 (𝑦, 𝑧) are positive, bounded and
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bounded away from zero and they are square-integrable in 𝑦 with respect to the invariant distribution.
For simplicity, the market prices of volatility risk are not considered here.

There is a recent study by Schneider and Tavin [20] that also deals with modeling the stochastic
volatility of futures prices incorporating a seasonal component. They use a CIR process for the multi-
factor variance of the futures prices where the mean-reversion levels of the variance processes represent
time-dependent seasonal components. Then the risk-neutral dynamics of the spot price process implied
by the futures-based model follow. On the contrary, we use a deterministic function representing a
seasonality factor plus a mean-reverting Ornstein–Uhlenbeck(OU) process with multiscale volatility
to create a spot pricing model for each of multiple assets and then the futures price is given by the
risk-neutral conditional expectation of the terminal spot price.

3. Valuation of futures and risk-neutral dynamics

3.1. Valuation of futures

In this section, we obtain a first-order pricing approximation of the futures of the underlying assets
whose values are given by (3).

Let the futures price 𝐹 (𝑖) (𝑖 = 1, 2) of the 𝑖th asset with maturity 𝑇 be denoted by

𝐹 (𝑖) = 𝐹 (𝑖) (𝑡,𝑈 (1)
𝑡 ,𝑈 (2)

𝑡 , 𝑌𝑡 , 𝑍𝑡 ). (6)

Then from the Markov property we have an expression

𝐹 (𝑖) (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧) = E𝑄 [𝑆 (𝑖)𝑇 |𝑈 (1)
𝑡 = 𝑢1,𝑈

(2)
𝑡 = 𝑢2, 𝑌𝑡 = 𝑦, 𝑍𝑡 = 𝑧] . (7)

Using the Feyman–Kac theorem, see, for instance, Oksendal [19], the futures price 𝐹 (𝑖) satisfies the
following partial differential equation (PDE) problem:

L𝐹𝐹 (𝑖) (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧) = 0,

𝐹 (𝑖) (𝑇𝑖 , 𝑢1, 𝑢2, 𝑦, 𝑧) = exp{𝑠 (𝑖)𝑇 + 𝑢𝑖}
(8)

for 𝑖 = 1, 2. Here, the operator L𝐹 is given by

L𝐹 =
1
𝜖
L𝐹

0 + 1√
𝜖
L𝐹

1 + L𝐹
2 +

√
𝛿A𝐹

3 + 𝛿A𝐹
0 +

√
𝛿

𝜖
M𝐹

1 , (9)

where

L𝐹
0 =

1
2
𝛽2(𝑦) 𝜕

2

𝜕𝑦2 + 𝛼(𝑦) 𝜕
𝜕𝑦
,

L𝐹
1 = 𝜌1𝑦𝛽(𝑦)𝜂(𝑦, 𝑧) 𝜕2

𝜕𝑢1𝜕𝑦
+ 𝜌2𝑦𝛽(𝑦)𝜉 (𝑦, 𝑧) 𝜕2

𝜕𝑢2𝜕𝑦
,

L𝐹
2 =

𝜕

𝜕𝑡
+ 𝜅1(𝑚1 − 𝑢1) 𝜕

𝜕𝑢1
+ 𝜅2(𝑚2 − 𝑢2) 𝜕

𝜕𝑢2
,

+ 1
2
𝜂2(𝑦, 𝑧) 𝜕

2

𝜕𝑢2
1
+ 1

2
𝜉2(𝑦, 𝑧) 𝜕

2

𝜕𝑢2
2
+ 𝜌12𝜂(𝑦, 𝑧)𝜉 (𝑦, 𝑧) 𝜕2

𝜕𝑢1𝜕𝑢2
, (10)

A𝐹
3 = 𝜌12𝑔(𝑧)𝜂(𝑦, 𝑧) 𝜕2

𝜕𝑢1𝜕𝑧
+ 𝜌12𝑔(𝑧)𝜉 (𝑦, 𝑧) 𝜕2

𝜕𝑢2𝜕𝑧
,
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A𝐹
0 =

1
2
𝑔2(𝑧) 𝜕

2

𝜕𝑧2 + 𝑐(𝑧) 𝜕
𝜕𝑧
,

M𝐹
1 = 𝜌𝑦𝑧𝛽(𝑦)𝑔(𝑧) 𝜕2

𝜕𝑦𝜕𝑧
.

We are interested in an asymptotic expansion of 𝐹 (𝑖) in powers of 𝜖 and 𝛿 in the following form:

𝐹 (𝑖) =
∑
𝑖, 𝑗≥0

(√𝜖)𝑖 (
√
𝛿) 𝑗𝐹 (𝑖)

𝑖 𝑗 . (11)

Then one can expand L𝐹𝐹 (𝑖) as

L𝐹𝐹 (𝑖) =
1
𝜖
(L𝐹

0 𝐹0) + 1√
𝜖
(L𝐹

0 𝐹10 + L𝐹
1 𝐹0) + (L𝐹

0 𝐹20 + L𝐹
1 𝐹10 + L𝐹

2 𝐹0)

+
√
𝛿(L𝐹

0 𝐹21 + L𝐹
1 𝐹11 + L𝐹

2 𝐹01 + A𝐹
3 𝐹0 +M𝐹

1 𝐹10)
+ 𝛿(L𝐹

0 𝐹22 + L𝐹
1 𝐹12 + L𝐹

2 𝐹02 + A𝐹
0 𝐹0 + A𝐹

3 𝐹01 +M𝐹
1 𝐹11)

+
√
𝛿

𝜖
(L𝐹

0 𝐹11 + L𝐹
1 𝐹01 +M𝐹

1 𝐹0) +
√
𝜖 (L𝐹

0 𝐹30 + L𝐹
1 𝐹20 + L𝐹

2 𝐹10)

+ 𝜖 (L𝐹
0 𝐹40 + L𝐹

1 𝐹30 + L𝐹
2 𝐹20) +

√
𝛿

𝜖
(L𝐹

0 𝐹01) + 𝛿

𝜖
(L𝐹

0 𝐹02)

+ 𝛿√
𝜖
(L𝐹

0 𝐹12 + L𝐹
1 𝐹02 +M𝐹

1 𝐹01)

+
√
𝜖𝛿(L𝐹

0 𝐹31 + L𝐹
1 𝐹21 + L𝐹

2 𝐹11 + A𝐹
3 𝐹10 +M𝐹

1 𝐹21) + · · · , (12)

where 𝐹0 is used for 𝐹00 and the superscript (𝑖) of 𝐹𝑖 𝑗 is omitted for simplicity.
If we use the asymptotic analysis of Fouque et al. [9] with notation 〈 · 〉 meaning integration with

respect to the invariant distribution Φ of the fast scale process 𝑌𝑡 , then the leading term 𝐹 (𝑖)
0 and the

first-order correction terms 𝐹 (𝑖)
10 and 𝐹 (𝑖)

01 satisfy the PDE problems

〈L𝐹
2 〉𝐹 (𝑖)

0 (𝑡, 𝑢1, 𝑢2, 𝑧) = 0, 0 ≤ 𝑡 < 𝑇,

𝐹 (𝑖)
0 (𝑇, 𝑢1, 𝑢2, 𝑧) = exp{𝑠𝑖𝑇 + 𝑢𝑖},

(13)

and

〈L𝐹
2 〉�̃� (𝑖)

10 (𝑡, 𝑢1, 𝑢2, 𝑧) = −〈L𝐹
1 𝐹

(𝑖)
20 〉, 0 ≤ 𝑡 < 𝑇,

�̃� (𝑖)
10 (𝑇, 𝑢1, 𝑢2, 𝑧) = 0,

〈L𝐹
2 〉�̃� (𝑖)

01 (𝑡, 𝑢1, 𝑢2, 𝑧) = −〈A𝐹
3 𝐹

(𝑖)
0 〉, 0 ≤ 𝑡 < 𝑇,

�̃� (𝑖)
01 (𝑇, 𝑢1, 𝑢2, 𝑧) = 0,

(14)

respectively, where �̃� (𝑖)
10 =

√
𝜖𝐹 (𝑖)

10 and �̃� (𝑖)
01 =

√
𝛿𝐹 (𝑖)

01 . Solutions of these three PDE problems are given
by

𝐹 (1)
0 = exp

{
𝑠(𝑇) + 𝑚1 + (𝑢1 − 𝑚1)𝑒−𝜅1 (𝑇 −𝑡) + 𝜂2(𝑧)

4𝜅1
(1 − 𝑒−2𝜅1 (𝑇 −𝑡) )

}
,

𝐹 (2)
0 = exp

{
𝑠(𝑇) + 𝑚2 + (𝑢2 − 𝑚2)𝑒−𝜅2 (𝑇 −𝑡) + 𝜉2(𝑧)

4𝜅2
(1 − 𝑒−2𝜅2 (𝑇 −𝑡) )

}
,

(15)
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�̃� (1)
10 = −𝑉 𝜂

1 (𝑧) 1
3𝜅1

(1 − 𝑒−3𝜅1 (𝑇 −𝑡) )𝐹 (1)
0 ,

�̃� (2)
10 = −𝑉 𝜉

2 (𝑧) 1
3𝜅2

(1 − 𝑒−3𝜅2 (𝑇 −𝑡) )𝐹 (2)
0 ,

(16)

�̃� (1)
01 = −

(
1 − 𝑒−𝜅1 (𝑇 −𝑡)

2𝜅2
1

− 1 − 𝑒3𝜅1 (𝑇 −𝑡)

6𝜅2
1

)
𝜂(𝑧)𝜂′(𝑧)𝑊 𝜂 (𝑧)𝐹 (1)

0 ,

�̃� (2)
01 = −

(
1 − 𝑒−𝜅2 (𝑇 −𝑡)

2𝜅2
2

− 1 − 𝑒3𝜅2 (𝑇 −𝑡)

6𝜅2
2

)
𝜉 (𝑧)𝜉 ′(𝑧)𝑊 𝜉 (𝑧)𝐹 (2)

0 ,

(17)

respectively, where 𝜂(𝑧) = 〈𝜂(·, 𝑧)〉, 𝜉 (𝑧) = 〈𝜉 (·, 𝑧)〉 and

𝑉 𝜂
1 (𝑧) = 1

2
√
𝜖 𝜌1𝑦 〈𝛽𝜂𝜓 ′

1〉, 𝑉 𝜉
2 (𝑧) = 1

2
√
𝜖 𝜌2𝑦 〈𝛽𝜉𝜓 ′

2〉,
𝑊 𝜂 (𝑧) = −

√
𝛿𝜌1𝑧𝑔(𝑧)〈𝜂〉, 𝑊 𝜉 (𝑧) −

√
𝛿𝜌2𝑧𝑔(𝑧)〈𝜉〉.

(18)

Here, 𝜓𝑖 are the solutions of the Poisson equations

L0𝜓1 = 𝜂2 − 〈𝜂2〉,
L0𝜓2 = 𝜉2 − 〈𝜉2〉,
L0𝜓3 = 𝜂𝜉 − 〈𝜂𝜉〉,

(19)

respectively.
To sum up the above results, we have the following approximation result for the futures prices:

𝐹 (1) ≈ 𝐹 (1)
0 + �̃� (1)

10 + �̃� (1)
01 = 𝐹 (1)

0 + √
𝜖𝐹 (1)

10 +
√
𝛿𝐹 (1)

01 ,

𝐹 (2) ≈ 𝐹 (2)
0 + �̃� (2)

10 + �̃� (2)
01 = 𝐹 (2)

0 + √
𝜖𝐹 (2)

10 +
√
𝛿𝐹 (2)

01 .
(20)

3.2. The risk-neutral dynamics of futures prices

Since the futures prices are used for the settlement of spread options, we need to find the risk-neutral
dynamics of the futures price 𝐹𝑡 ,𝑇 to price a given contingent claim. In this section, we present the
dynamics of 𝐹 (𝑖) in an SDE form for 𝑖 = 1, 2.

Since 𝐹 (𝑖) is a martingale under the risk-neutral probability measure 𝑄, its differential should not
have a drift term. So, by applying Ito’s formula to 𝐹 (𝑖) , we have

𝑑𝐹 (1) = 𝜂(𝑌𝑡 , 𝑍𝑡 ) 𝜕𝐹
(1)

𝜕𝑢1
𝑑𝑊 (1)

𝑡 + 1√
𝜖
𝛽(𝑌𝑡 ) 𝜕𝐹

(1)

𝜕𝑦
𝑑𝑊 𝑦

𝑡 +
√
𝛿𝑔(𝑍𝑡 ) 𝜕𝐹

(1)

𝜕𝑧
𝑑𝑊 𝑧

𝑡 ,

𝑑𝐹 (2) = 𝜉 (𝑌𝑡 , 𝑍𝑡 ) 𝜕𝐹
(2)

𝜕𝑢2
𝑑𝑊 (2)

𝑡 + 1√
𝜖
𝛽(𝑌𝑡 ) 𝜕𝐹

(2)

𝜕𝑦
𝑑𝑊

𝑦
𝑡 +

√
𝛿𝑔(𝑍𝑡 ) 𝜕𝐹

(2)

𝜕𝑧
𝑑𝑊 𝑧

𝑡 .

(21)

In this expression, the partial derivatives are functions of (𝑡,𝑈1
𝑡 ,𝑈

2
𝑡 , 𝑌𝑡 , 𝑍𝑡 ). The goal of this section is

to change the spot prices 𝑈 (𝑖) into the futures prices 𝐹 (𝑖) .
Let 𝐺 (1) (𝑡, ·, 𝑢2, 𝑦, 𝑧) and 𝐺 (2) (𝑡, 𝑢1, ·, 𝑦, 𝑧) be the inverse functions of 𝐹 (1) (𝑡, ·, 𝑢2, 𝑦, 𝑧) and

𝐹 (2) (𝑡, 𝑢1, ·, 𝑦, 𝑧), respectively. Namely,

𝐹 (1) (𝑡, 𝐺 (1) (𝑡, ·, 𝑢2, 𝑦, 𝑧), 𝑢2, 𝑦, 𝑧) = 𝐼 (·), 𝐹 (2) (𝑡, 𝑢1, 𝐺
(2) (𝑡, 𝑢1, ·, 𝑦, 𝑧), 𝑦, 𝑧) = 𝐼 (·), (22)
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where 𝐼 is identity function. As done for 𝐹 (𝑖) , we expand 𝐺 (𝑖) also as

𝐺 (𝑖) =
∑
𝑗 ,𝑘≥0

(√𝜖) 𝑗 (
√
𝛿)𝑘𝐺 (𝑖)

𝑗𝑘 , (23)

where 𝐺 (𝑖)
00 = 𝐺 (𝑖)

0 is chosen to be the inverse function of 𝐹 (𝑖)
0 as follows.

𝐺 (1)
0 (𝑡, ·, 𝑢2, 𝑦, 𝑧) = (𝐹 (1)

0 (𝑡, ·, 𝑢2, 𝑦, 𝑧))−1, 𝐺 (2)
0 (𝑡, 𝑢1, ·, 𝑦, 𝑧) = (𝐹 (2)

0 (𝑡, 𝑢1, ·, 𝑦, 𝑧))−1 (24)

Then the following identities can be easily derived.

𝐺 (1)
10 (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧) = − 𝐹 (1)

10 (𝑡, 𝐺 (1)
0 (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧), 𝑢2, 𝑦, 𝑧)

𝜕𝐹 (1)
0

𝜕𝑢1
(𝑡, 𝐺 (1)

0 (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧), 𝑢2, 𝑦, 𝑧)
,

𝐺 (1)
01 (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧) = − 𝐹 (1)

01 (𝑡, 𝐺 (1)
0 (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧), 𝑢2, 𝑦, 𝑧)

𝜕𝐹 (1)
0

𝜕𝑢1
(𝑡, 𝐺 (1)

0 (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧), 𝑢2, 𝑦, 𝑧)
.

(25)

𝐺 (2)
10 (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧) = − 𝐹 (2)

10 (𝑡, 𝑢1, 𝐺
(2)
0 (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧), 𝑦, 𝑧)

𝜕𝐹 (2)
0

𝜕𝑢2
(𝑡, 𝑢1, 𝐺

(2)
0 (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧), 𝑦, 𝑧)

,

𝐺 (2)
01 (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧) = − 𝐹 (2)

01 (𝑡, 𝑢1, 𝐺
(2)
0 (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧), 𝑦, 𝑧)

𝜕𝐹 (2)
0

𝜕𝑢2
(𝑡, 𝑢1, 𝐺

(2)
0 (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧), 𝑦, 𝑧)

.

(26)

Based on the relations

𝐺 (1) (𝑡, 𝐹 (1) (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧), 𝑢2, 𝑦, 𝑧) = 𝑈 (1) (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧),
𝐺 (2) (𝑡, 𝑢1, 𝐹

(2) (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧), 𝑦, 𝑧) = 𝑈 (2) (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧),
(27)

we now define 𝜙 (𝑖)
1 , 𝜙 (𝑖)

2 and 𝜙 (𝑖)
3 as

𝜙 (1)
1 (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧) = 𝜕𝐹 (1)

𝜕𝑢1
(𝑡, 𝐺 (1) (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧), 𝐺 (2) (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧), 𝑦, 𝑧),

𝜙 (2)
1 (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧) = 𝜕𝐹 (2)

𝜕𝑢2
(𝑡, 𝐺 (1) (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧), 𝐺 (2) (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧), 𝑦, 𝑧),

𝜙 (1)
2 (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧) = 𝜕𝐹 (1)

𝜕𝑦
(𝑡, 𝐺 (1) (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧), 𝐺 (2) (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧), 𝑦, 𝑧),

𝜙 (2)
2 (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧) = 𝜕𝐹 (2)

𝜕𝑦
(𝑡, 𝐺 (1) (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧), 𝐺 (2) (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧), 𝑦, 𝑧),

𝜙 (1)
3 (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧) = 𝜕𝐹 (1)

𝜕𝑧
(𝑡, 𝐺 (1) (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧), 𝐺 (2) (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧), 𝑦, 𝑧),

𝜙 (2)
3 (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧) = 𝜕𝐹 (2)

𝜕𝑧
(𝑡, 𝐺 (1) (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧), 𝐺 (2) (𝑡, 𝑢1, 𝑢2, 𝑦, 𝑧), 𝑦, 𝑧),

(28)
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respectively. Then, we obtain the following desired SDEs for 𝐹 (𝑖) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝐹 (1) = 𝜙 (1)
1 (𝑡, 𝐹 (1) , 𝐹 (2) , 𝑌𝑡 , 𝑍𝑡 )𝜂(𝑌𝑡 , 𝑍𝑡 ) 𝑑𝑊1

𝑡

+ 1√
𝜖
𝜙 (1)

2 (𝑡, 𝐹 (1) , 𝐹 (2) , 𝑌𝑡 , 𝑍𝑡 )𝛽(𝑌𝑡 ) 𝑑𝑊 𝑦
𝑡 +

√
𝛿𝜙 (1)

3 (𝑡, 𝐹 (1) , 𝐹 (2) , 𝑌𝑡 , 𝑍𝑡 )𝑔(𝑍𝑡 ) 𝑑𝑊 𝑧
𝑡 ,

𝑑𝐹 (2) = 𝜙 (2)
1 (𝑡, 𝐹 (1) , 𝐹 (2) , 𝑌𝑡 , 𝑍𝑡 )𝜉 (𝑌𝑡 , 𝑍𝑡 ) 𝑑𝑊2

𝑡

+ 1√
𝜖
𝜙 (2)

2 (𝑡, 𝐹 (1) , 𝐹 (2) , 𝑌𝑡 , 𝑍𝑡 )𝛽(𝑌𝑡 ) 𝑑𝑊 𝑦
𝑡 +

√
𝛿𝜙 (2)

3 (𝑡, 𝐹 (1) , 𝐹 (2) , 𝑌𝑡 , 𝑍𝑡 )𝑔(𝑍𝑡 ) 𝑑𝑊 𝑧
𝑡 ,

𝑑𝑌𝑡 =
1
𝜖
𝛼(𝑌𝑡 ) 𝑑𝑡 + 1√

𝜖
𝛽(𝑌𝑡 ) 𝑑𝑊 𝑦

𝑡 ,

𝑑𝑍𝑡 = 𝛿𝑐(𝑍𝑡 ) 𝑑𝑡 +
√
𝛿𝑔(𝑍𝑡 ) 𝑑𝑊 𝑧

𝑡 .

(29)

4. Pricing spread options on futures

In this section, we consider a spread option with maturity 𝑇0 on two futures contracts whose prices are
denoted by 𝐹 (1)

𝑡 ,𝑇 and 𝐹 (2)
𝑡 ,𝑇 , where 𝑇0 < 𝑇 and calculate the no-arbitrage price of this option given by

𝑃(𝑡, 𝑥1, 𝑥2, 𝑦, 𝑧, 𝑇) = 𝑒−𝑟 (𝑇0−𝑡)E𝑄 [(𝐹 (1)
𝑇0 ,𝑇

− 𝐹 (2)
𝑇0 ,𝑇

− 𝐾)+ | 𝐹 (1)
𝑡 ,𝑇 = 𝑥1, 𝐹

(2)
𝑡 ,𝑇 = 𝑥2, 𝑌𝑡 = 𝑦, 𝑍𝑡 = 𝑧] . (30)

4.1. PDE for option price

First, the Feynman–Kac representation of this conditional expectation is given by a PDE for 𝑃 satisfying

1
𝜖

[
1
2
(𝜙 (1)

2 )2𝛽2 𝜕
2

𝜕𝑥2
1
+ 1

2
(𝜙 (2)

2 )2𝛽2 𝜕
2

𝜕𝑥2
2
+ 1

2
𝛽2 𝜕

2

𝜕𝑦2 + 𝛼 𝜕

𝜕𝑦

+𝜙 (1)
2 𝜙 (2)

2 𝛽2 𝜕2

𝜕𝑥1𝜕𝑥2
+ 𝜙 (1)

2 𝛽2 𝜕2

𝜕𝑥1𝜕𝑦
+ 𝜙 (2)

2 𝛽2 𝜕2

𝜕𝑥2𝜕𝑦

]
𝑃

+ 1√
𝜖

[
𝜌1𝑦𝜙

(1)
1 𝜙 (1)

2 𝜂𝛽
𝜕2

𝜕𝑥2
1
+ 𝜌2𝑦𝜙

(2)
1 𝜙 (2)

2 𝜉𝛽
𝜕2

𝜕𝑥2
2
+ 𝜌1𝑦𝜙

(1)
1 𝜙 (2)

2 𝜂𝛽
𝜕2

𝜕𝑥1𝜕𝑥2

+𝜌2𝑦𝜙
(1)
2 𝜙 (2)

1 𝜉𝛽
𝜕2

𝜕𝑥1𝜕𝑥2
+ 𝜌1𝑦𝜙

(1)
1 𝜂𝛽

𝜕2

𝜕𝑥1𝜕𝑦
+ 𝜌2𝑦𝜙

(2)
1 𝜉𝛽

𝜕2

𝜕𝑥2𝜕𝑦

]
𝑃

+
[
1
2
(𝜙 (1)

1 )2𝜂2 𝜕
2

𝜕𝑥2
1
+ 1

2
(𝜙 (2)

1 )2𝜉2 𝜕
2

𝜕𝑥2
2
+ 𝜌12𝜙

(1)
1 𝜙 (2)

1 𝜂𝜉
𝜕2

𝜕𝑥1𝜕𝑥2
+ 𝜕

𝜕𝑡
− 𝑟 ·

]
𝑃

+
√
𝛿

[
2𝜌1𝑧𝜙

(1)
1 𝜙 (1)

3 𝜂𝑔
𝜕2

𝜕𝑥2
1
+ 2𝜌2𝑧𝜙

(2)
1 𝜙 (2)

3 𝜉𝑔
𝜕2

𝜕𝑥2
2
+ 𝜌1𝑧𝜙

(1)
1 𝜙 (2)

3 𝜂𝑔
𝜕2

𝜕𝑥1𝜕𝑥2

+𝜌2𝑧𝜙
(1)
3 𝜙 (2)

1 𝜉𝑔
𝜕2

𝜕𝑥1𝜕𝑥2
+ 𝜌1𝑧𝜙

(1)
1 𝜂𝑔

𝜕2

𝜕𝑥1𝜕𝑧
+ 𝜌2𝑧𝜙

(2)
1 𝜉𝑔

𝜕2

𝜕𝑥2𝜕𝑧

]
𝑃

+ 𝛿
[
1
2
(𝜙 (1)

3 )2𝑔2 𝜕
2

𝜕𝑥2
1
+ 1

2
(𝜙 (2)

3 )2𝑔2 𝜕
2

𝜕𝑥2
2
+ 1

2
𝑔2 𝜕

2

𝜕𝑧2 + 𝑐 𝜕
𝜕𝑧

+𝜙 (1)
3 𝜙 (2)

3 𝑔2 𝜕2

𝜕𝑥1𝜕𝑥2
+ 𝜙 (1)

3 𝑔2 𝜕2

𝜕𝑥1𝜕𝑧
+ 𝜙 (2)

3 𝑔2 𝜕2

𝜕𝑥2𝜕𝑧

]
𝑃
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+
√
𝛿

𝜖

[
𝜌𝑦𝑧𝜙

(1)
2 𝜙 (1)

3 𝛽𝑔
𝜕2

𝜕𝑥2
1
+ 𝜌𝑦𝑧𝜙 (2)

2 𝜙 (2)
3 𝛽𝑔

𝜕2

𝜕𝑥2
2
+ 𝜌𝑦𝑧𝜙 (1)

2 𝜙 (2)
3 𝛽𝑔

𝜕2

𝜕𝑥1𝜕𝑥2

+ 𝜌𝑦𝑧𝜙 (1)
3 𝜙 (2)

2 𝛽𝑔
𝜕2

𝜕𝑥1𝜕𝑥2
+ 𝜌𝑦𝑧𝜙 (1)

3 𝛽𝑔
𝜕2

𝜕𝑥1𝜕𝑦
+ 𝜌𝑦𝑧𝜙 (1)

2 𝛽𝑔
𝜕2

𝜕𝑥1𝜕𝑧

+𝜌𝑦𝑧𝜙 (2)
3 𝛽𝑔

𝜕2

𝜕𝑥2𝜕𝑦
+ 𝜌𝑦𝑧𝜙 (2)

2 𝛽𝑔
𝜕2

𝜕𝑥2𝜕𝑧
+ 𝜌𝑦𝑧𝛽𝑔 𝜕2

𝜕𝑦𝜕𝑧

]
𝑃 = 0. (31)

Using the expansion of 𝜙 (𝑖)
𝑗 (𝑖 = 1, 2 and 𝑗 = 1, 2, 3) in order of

√
𝜖 and

√
𝛿 and discarding O(𝜖 + 𝛿)

terms, we obtain

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
1
𝜖
L0 + 1√

𝜖
L1 + L2 +

√
𝜖L3 +

√
𝛿A3 +

√
𝛿

𝜖
M1 + 𝛿√

𝜖
M2

)
𝑃 = 0, 𝑡 < 𝑇0,

𝑃(𝑇0, 𝑥1, 𝑥2, 𝑦, 𝑧, 𝑇) = (𝑥1 − 𝑥2 − 𝐾)+,
(32)

where

L0 = L𝐹
0 =

1
2
𝛽2 𝜕

2

𝜕𝑦2 + 𝛼 𝜕

𝜕𝑦
,

L1 = 𝜌1𝑦𝜙
(1)
100𝜂𝛽

𝜕2

𝜕𝑥𝜕𝑦
+ 𝜌2𝑦𝜙

(2)
100𝜉𝛽

𝜕2

𝜕𝑥𝜕𝑦
,

L2 =
1
2
(𝜙 (1)

100)2𝜂2 𝜕
2

𝜕𝑥2
1
+ 1

2
(𝜙 (2)

100)2𝜉2 𝜕
2

𝜕𝑥2
2
+ 𝜌12𝜙

(1)
100𝜙

(2)
100𝜂𝜉

𝜕2

𝜕𝑥1𝜕𝑥2

+ 𝜙 (1)
220𝛽

2 𝜕2

𝜕𝑥1𝜕𝑦
+ 𝜙 (2)

220𝛽
2 𝜕2

𝜕𝑥2𝜕𝑦
+ 𝜕

𝜕𝑡
− 𝑟 ·,

L3 = 𝜌1𝑦𝜙
(1)
100𝜙

(1)
220𝜂𝛽

𝜕2

𝜕𝑥2
1
+ 𝜌2𝑦𝜙

(2)
100𝜙

(2)
220𝜉𝛽

𝜕2

𝜕𝑥2
2
+ (𝜌1𝑦𝜙

(1)
100𝜙

(2)
220𝜂𝛽 + 𝜌2𝑦𝜙

(1)
220𝜙

(2)
100𝜉𝛽)

𝜕2

𝜕𝑥1𝜕𝑥2

+ (𝜙 (1)
230𝛽

2 + 𝜌1𝑦𝜙
(1)
120𝜂𝛽)

𝜕2

𝜕𝑥1𝜕𝑦
+ (𝜙 (2)

230𝛽
2 + 𝜌2𝑦𝜙

(2)
120𝜉𝛽)

𝜕2

𝜕𝑥2𝜕𝑦
,

A3 = (𝜙 (1)
221𝛽

2 + 𝜌1𝑦𝜙
(1)
111𝜂𝛽 + 𝜌𝑦𝑧𝜙

(1)
310𝛽𝑔)

𝜕2

𝜕𝑥1𝜕𝑦
+ (𝜙 (2)

221𝛽
2 + 𝜌2𝑦𝜙

(2)
111𝜉𝛽 + 𝜌𝑦𝑧𝜙

(2)
310𝛽𝑔)

𝜕2

𝜕𝑥2𝜕𝑦

+ 𝜌1𝑧𝜙
(1)
100𝜂𝑔

𝜕2

𝜕𝑥1𝜕𝑧
+ 𝜌2𝑧𝜙

(2)
100𝜉𝑔

𝜕2

𝜕𝑥2𝜕𝑧
+ 2𝜌1𝑧𝜙

(1)
100𝜙

(1)
300𝜂𝑔

𝜕2

𝜕𝑥2
1
+ 2𝜌2𝑧𝜙

(2)
100𝜙

(2)
300𝜉𝑔

𝜕2

𝜕𝑥2
2

+ (𝜌1𝑧𝜙
(1)
100𝜙

(2)
300𝜂𝑔 + 𝜌2𝑧𝜙

(1)
300𝜙

(2)
100𝜉𝑔)

𝜕2

𝜕𝑥1𝜕𝑥2
,

M1 = 𝜌𝑦𝑧𝜙
(1)
300𝛽𝑔

𝜕2

𝜕𝑥1𝜕𝑦
+ 𝜌𝑦𝑧𝜙 (2)

300𝛽𝑔
𝜕2

𝜕𝑥2𝜕𝑦
+ 𝜌𝑦𝑧𝛽𝑔 𝜕2

𝜕𝑦𝜕𝑧
,

M2 = 𝜌𝑦𝑧𝜙
(1)
301𝛽𝑔

𝜕2

𝜕𝑥1𝜕𝑦
+ 𝜌𝑦𝑧𝜙 (2)

301𝛽𝑔
𝜕2

𝜕𝑥2𝜕𝑦
. (33)

Here, the expansions 𝜙 (𝑖)
1 = 𝜙 (𝑖)

100 +
√
𝜖𝜙 (𝑖)

110 +
√
𝛿𝜙 (𝑖)

101 + · · · , 𝜙 (𝑖)
2 = 𝜙 (𝑖)

200 +
√
𝜖𝜙 (𝑖)

210 +
√
𝛿𝜙 (𝑖)

201 + · · · and
𝜙 (𝑖)

3 = 𝜙 (𝑖)
300 +

√
𝜖𝜙 (𝑖)

310 +
√
𝛿𝜙 (𝑖)

301 + · · · have been used. We shall see that some terms in these expansions
are not necessary to calculate for a first-order approximation of our interest (because of independence
on the variable 𝑦). So, we express explicitly only terms that are going to be used in the following section.
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They are

𝜙 (1)
100 = 𝑒−𝜅1 (𝑇 −𝑡)𝑥1, 𝜙 (2)

100 = 𝑒−𝜅2 (𝑇 −𝑡)𝑥2,

𝜙 (1)
220 = −1

2
𝑒−2𝜅1 (𝑇 −𝑡) 𝜕𝜓1

𝜕𝑦
(𝑦, 𝑧)𝑥1, 𝜙 (2)

220 = −1
2
𝑒−2𝜅2 (𝑇 −𝑡) 𝜕𝜓2

𝜕𝑦
(𝑦, 𝑧)𝑥2,

𝜙 (1)
300 =

1
2𝜅1

𝜂(𝑧)𝜂′(𝑧)(1 − 𝑒−2𝜅1 (𝑇 −𝑡) )𝑥1, 𝜙 (2)
300 =

1
2𝜅2

𝜉 (𝑧)𝜉 ′(𝑧)(1 − 𝑒−2𝜅2 (𝑇 −𝑡) )𝑥2.

(34)

4.2. First-order approximation

For the spread option price 𝑃, we are interested in an asymptotic expansion given by

𝑃(𝑡, 𝑥1, 𝑥2, 𝑦, 𝑧, 𝑇) =
∑
𝑖, 𝑗≥0

(√𝜖)𝑖 (
√
𝛿) 𝑗𝑃𝑖 𝑗 (𝑡, 𝑥1, 𝑥2, 𝑦, 𝑧, 𝑇). (35)

Substituting this expansion into the PDE (32), we have

1
𝜖
(L0𝑃00) + 1√

𝜖
(L0𝑃10 + L1𝑃00) + (L0𝑃20 + L1𝑃10 + L2𝑃00)

+ √
𝜖 (L0𝑃30 + L1𝑃20 + L2𝑃10 + L3𝑃00)

+
√
𝛿(L0𝑃21 + L1𝑃11 + L2𝑃01 + A3𝑃00 +M1𝑃10)

+
√
𝛿

𝜖
(L0𝑃01) +

√
𝛿

𝜖
(L0𝑃11 + L1𝑃01 +M1𝑃00)

+ 𝛿√
𝜖
(L0𝑃12 + L1𝑃02 +M1𝑃01 +M2𝑃00) + · · · = 0. (36)

From (36), one can obtain a system of PDEs,L0𝑃00 = 0,L0𝑃10+L1𝑃00 = 0,L0𝑃20+L1𝑃10+L2𝑃00 =
0 and so on. Using the asymptotic analysis of Fouque et al. [9] for this PDE system, one can find solutions
for 𝑃00, 𝑃10 and 𝑃01 as follows.

First, if we assume that 𝑃00 does not grow exponentially in 𝑦, then one can find that 𝑃00 is independent
of 𝑦 and 𝑃00 satisfies the PDE problem{

〈L2〉𝑃00 (𝑡, 𝑥1, 𝑥2, 𝑧, 𝑇) = 0, 𝑡 < 𝑇0,

𝑃00 (𝑇0, 𝑥1, 𝑥2, 𝑧, 𝑇) = max{𝑥1 − 𝑥2 − 𝐾, 0},
(37)

where

〈L2〉 = 1
2
𝑒−2𝜅1 (𝑇 −𝑡)𝜂2𝑥2

1
𝜕2

𝜕𝑥2
1
+ 1

2
𝑒−2𝜅2 (𝑇 −𝑡)𝜉2𝑥2

2
𝜕2

𝜕𝑥2
2

+ 𝜌12𝑒
−(𝜅1+𝜅2) (𝑇 −𝑡) 〈𝜂𝜉〉𝑥1𝑥2

𝜕2

𝜕𝑥1𝜕𝑥2
+ 𝜕

𝜕𝑡
− 𝑟. (38)

Then 𝑃00 can be approximated by the spread option price 𝑃0 of Bjerksund and Stensland [2] extending
Kirk’s formula as shown in Appendix. Using more intuitive notation 𝑃KBS, it is expressed as

𝑃0 = 𝑃KBS (𝑡, 𝑥1, 𝑥2, 𝑇 ; �̄�1,𝜏 , �̄�2,𝜏)
= 𝑒−𝑟 (𝑇0−𝑡) (𝑥1𝑁 (𝑑1) − 𝑥2𝑁 (𝑑2) − 𝐾𝑁 (𝑑3)), (39)
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where 𝑁 (·) denotes the standard normal cumulative probability function and 𝑑1, 𝑑2 and 𝑑3 are given by

𝑑1 =
log(𝑥1/𝑎) + ( 1

2 �̄�
2
1,𝜏 − 𝑏𝜌12�̄�1,𝜏 �̄�2,𝜏 + 1

2𝑏
2�̄�2

2,𝜏)(𝑇0 − 𝑡)
𝜎
√
𝑇0 − 𝑡

,

𝑑2 =
log(𝑥1/𝑎) + (− 1

2 �̄�
2
1,𝜏 + 𝜌12�̄�1,𝜏 �̄�2,𝜏 + 1

2𝑏
2�̄�2

2,𝜏 − 𝑏�̄�2
2,𝜏)(𝑇0 − 𝑡)

𝜎
√
𝑇0 − 𝑡

,

𝑑3 =
log(𝑥1/𝑎) + (− 1

2 �̄�
2
1,𝜏 + 1

2𝑏
2�̄�2

2,𝜏)(𝑇0 − 𝑡)
𝜎
√
𝑇0 − 𝑡

,

(40)

respectively, where
𝜎2 = �̄�2

1,𝜏 + 2𝑏𝜌12�̄�1,𝜏 �̄�2,𝜏 + 𝑏2�̄�2
2,𝜏 ,

𝑎 = 𝑥2 + 𝐾,
𝑏 =

𝑥2

𝑥2 + 𝐾
.

(41)

Here, �̄�1,𝜏 and �̄�2,𝜏 are defined in Appendix.
Next, by assuming the same growth condition as for 𝑃00 with respect to variable 𝑦, 𝑃10 is also

independent of 𝑦. From the above result for 𝑃00 and the PDE L0𝑃30 + L1𝑃20 + L2𝑃10 + L3𝑃0 = 0 with
the terminal condition 𝑃10 (𝑇0, 𝑥1, 𝑥2, 𝑧, 𝑇) = 0, one can find �̃�10 :=

√
𝜖𝑃10 as

�̃�10 = 𝜈3,0R 𝜖
1 (𝑧)𝐷 (1)

1 𝐷 (1)
2 𝑃0 + 𝜈1,2R 𝜖

2 (𝑧)𝐷 (1)
1 𝐷 (2)

2 𝑃0

+ 𝜈2,1R 𝜖
3 (𝑧)𝐷 (1)

1 𝐷 (1)
1 𝐷 (2)

1 𝑃0 + 𝜈2,1R 𝜖
4 (𝑧)𝐷 (1)

2 𝐷 (2)
1 𝑃0

+ 𝜈0,3R 𝜖
5 (𝑧)𝐷 (2)

1 𝐷 (2)
2 𝑃0 + 𝜈1,2R 𝜖

6 (𝑧)𝐷 (1)
1 𝐷 (2)

1 𝐷 (2)
1 𝑃0

+ 𝜈3,0R 𝜖
1 (𝑧)𝐷 (1)

2 𝑃0 + 𝜈0,3R 𝜖
5 (𝑧)𝐷 (2)

2 𝑃0

+ 𝜈1,2R 𝜖
2 (𝑧)𝐷 (1)

1 𝐷 (2)
1 𝑃0 + 𝜈2,1R 𝜖

4 (𝑧)𝐷 (1)
1 𝐷 (2)

1 𝑃0, (42)

where
𝜈𝑖, 𝑗 = 𝜈(𝑖𝜅1 + 𝑗 𝜅2; 𝑡, 𝑇0, 𝑇),

𝜈(𝜅; 𝑡, 𝑇0, 𝑇) :=
𝑒−𝜅 (𝑇 −𝑇0) − 𝑒−𝜅 (𝑇 −𝑡)

𝜅
,

(43)

as shown in Appendix. Here, R 𝜖
𝑖 (𝑖 = 1, 2, 3, 4, 5) and 𝐷 ( 𝑗)

𝑛 ( 𝑗 = 1, 2, 𝑛 = 1, 2) are given in Appendix,
respectively.

By assuming the same growth condition as for 𝑃00 and 𝑃10 with respect to variable 𝑦, 𝑃01 is also
independent of 𝑦. The above results for 𝑃0 and 𝑃10 and the PDEL0𝑃21+L1𝑃11+L2𝑃01+A3𝑃0+M1𝑃10 =
0 with the terminal condition 𝑃01 (𝑇0, 𝑥1, 𝑥2, 𝑧, 𝑇) = 0 provide us with the solution �̃�01 :=

√
𝛿𝑃01 given by

�̃�01 = 𝜇1R 𝛿
1 (𝑧)𝐷 (1)

1
𝜕𝑃0

𝜕𝑧
+ 𝜇2R 𝛿

2 (𝑧)𝐷 (2)
1
𝜕𝑃0

𝜕𝑧

+ (𝜈1,0 − 𝜈3,0)R 𝛿
3 (𝑧)𝐷 (1)

2 𝑃0 + (𝜈0,1 − 𝜈0,3)R 𝛿
4 (𝑧)𝐷 (2)

2 𝑃0

+ (𝜈1,0 − 𝜈1,2)R 𝛿
5 (𝑧)𝐷 (1)

1 𝐷 (2)
1 𝑃0 + (𝜈0,1 − 𝜈2,1)R 𝛿

6 (𝑧)𝐷 (1)
1 𝐷 (2)

1 𝑃0, (44)

where

𝜇1 =
(𝑇0 − 𝑡) 𝑓1,0 − 𝜈1,0

𝜅1 (𝑇0 − 𝑡)
,

𝜇2 =
(𝑇0 − 𝑡) 𝑓0,1 − 𝜈0,1

𝜅2 (𝑇0 − 𝑡)
.

(45)
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as shown in Appendix. Here, R 𝛿
𝑖 (𝑖 = 1, 2, 3, 4, 5, 6) and 𝐷 ( 𝑗)

𝑛 ( 𝑗 = 1, 2, 𝑛 = 1, 2) are given in Appendix,
respectively.

To sum up the above results, we obtain a closed-form approximation for the spread option price 𝑃
expressed by

𝑃 ≈ 𝑃0 + �̃�10 + �̃�01 = 𝑃0 +
√
𝜖𝑃10 +

√
𝛿𝑃01, (46)

where the leading order term 𝑃0 and the first-order correction terms �̃�10 and �̃�01 are given by the
formulas (39), (42) and (44), respectively. The approximation 𝑃0 + �̃�10 + �̃�01 can be easily calculated
by taking derivatives of 𝑃0 (the KBS formula) with respect to 𝑥1, 𝑥2 and 𝑧.

Remark. Since the pricing formula (46) is not an exact solution but it is a first-order approximation
result derived formally, an accuracy analysis for the error is desirable. However, a rigorous argument
would follow the line of Fouque et al. [8] or Appendix B of Fouque et al. [10] except that two underlying
assets require a little bit more calculation than the one asset case. Also, the accuracy will be confirmed
indirectly through Monte–Carlo simulation as shown in the next section. So, we just state the accuracy
result here without proof.

|𝑃 − (𝑃0 + �̃�10 + �̃�01) | = O(𝜖 + 𝛿 +
√
𝜖𝛿). (47)

5. Computation of the Greeks and hedging

For practical use of the pricing formula, we need to calculate the Greeks, i.e., the sensitivity of the
prices with respect to underlyings, time and volatilities. For the KBS formula, it is simple to derive
closed-form Greeks (see [2]). On the other hand, our formula (46) has the form of a multiscale extension
with the perturbation terms 𝑃10 and 𝑃01. These perturbation terms are too complicated to calculate their
derivatives in closed-form. Therefore, we need to use a finite difference scheme to compute the Greeks.
For example, the delta with respect to underlying asset 1 is calculated by the central difference

𝜕𝑃

𝜕𝐹 (1) ≈ 𝑃(𝐹 (1) + 𝑑𝐹 (1) ) − 𝑃(𝐹 (1) − 𝑑𝐹 (1) )
2𝑑𝐹 (1) , (48)

where 𝑑𝐹 (1) = 0.01 × 𝐹 (1) . We note that by convention a 1% change in 𝐹 (1) is used by practitioners
and in fact gamma cash is defined as the change in delta cash for a 1% move in the underlying. Other
Greeks can be computed similarly. In terms of time-efficiency, it is much faster than Monte-Carlo (MC)
simulation although it takes more time than the case knowing closed-form Greeks.

Briefly speaking of how to use the sensitivities in hedging procedure, one can think of a hedging
strategy of oil companies (or power-plant companies) as follows. These companies have a risk exposure
to delta spread since the crude oil and the refined oil prices move differently in the real market. So, these
companies could buy a put spread option to hedge the downside risk of their position.

6. Numerical results

In Section 4, we have obtained a first-order approximation formula for the price of a spread option. In
this section, we check the validity of the formula and investigate the sensitivity of the option price to
some parameters through some numerical experiments and also discuss a calibration procedure based
on crude oil market data to estimate the pricing parameters.

6.1. Validity of the formula and price sensitivity

We investigate the sensitivity of the spread option price with respect to the correlation between two
underlyings and the mean-reversion speed the fast scale process and verify the accuracy of our analytic
formula via MC simulation.
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Figure 1. The term-structures of WTI and Brent crude oil futures for the period from May 2022 to May
2024

Since the model (4) contains general functions, we need to specify those functions to calculate the
formula and utilize the MC simulation. The functions in the model dynamics are chosen as 𝜁 (𝑦) =
exp (𝑦), 𝜁1(𝑧) = 𝜁2(𝑧) = exp (𝑧), 𝛼(𝑦) = 𝑚𝑦 − 𝑦, 𝛽(𝑦) = 𝜈𝑦

√
2, 𝑐(𝑧) = 0, 𝑔(𝑧) = 𝑧 based on the

specification 𝜂(𝑦, 𝑧) = 𝜁 (𝑦)𝜁1 (𝑧) and 𝜉 (𝑦, 𝑧) = 𝜁 (𝑦)𝜁2 (𝑧) in the model and a fast mean-reverting OU
diffusion for the fast scale process𝑌𝑡 and a geometric Brownian motion for the slow scale process 𝑍𝑡 . The
model parameters are chosen as 𝑚𝑦 = −0.7, 𝜈𝑦 = 0.5 and 𝑠1(𝑡) = 𝑠2(𝑡) = 0. In addition, 𝜅1 = 𝜅2 = 1,
𝑚1 = 4.5, 𝑚2 = 4.4, 𝜌1𝑦 = 𝜌1𝑧 = 𝜌2𝑦 = 𝜌2𝑧 = −0.5, 𝜌𝑦𝑧 = 0, 𝑈 (1)

0 = 4.8, 𝑈 (2)
0 = 4.7, 𝑌0 = −0.8,

𝑍0 = −0.78. The risk-neutral interest rate is 𝑟 = 0.05 and 𝑇 = 𝑇0 + 30/365 is chosen since the futures
expiry is usually one month after the option expiry. The choice of zero-valued seasonality functions
𝑠1(𝑡) and 𝑠2(𝑡) is based on the historical WTI and Brent futures data. As shown in Figure 1, there is no
seasonality in the futures term-structure for the period from May 2022 to May 2024. One can also see
the zeroing of seasonality in Fouque et al. [10].

For more precise simulation, we use the control variates method, one of a well-known variance
reduction technique used in MC simulation. Let the spread option price with constant volatilities be
a control variate, since its analytic solution is already known as the KBS formula 𝑃KBS and its payoff
is highly correlated with our target payoff driven by stochastic volatility processes. Specifically, let
ℎKBS (𝑇0) and ℎ(𝑇0) be the payoffs of the spread options with constant and multiscale stochastic volatility,
respectively. Written in an equation, we have

𝑃KBS = 𝑒−𝑟 (𝑇0−𝑡)E𝑄 [ℎKBS (𝑇0)],
𝑃 = 𝑒−𝑟 (𝑇0−𝑡)E𝑄 [ℎ(𝑇0)] .

(49)
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Figure 2. The surface of the spread option price as a function of the correlation between two underlyings
and the moneyness with 𝜖 = 0.1, 𝛿 = 0.01 and 𝑇0 = 0.5.

Then it follows that

𝑃 = 𝑒−𝑟 (𝑇0−𝑡)E𝑄 [ℎ(𝑇0) − ℎKBS (𝑇0) + ℎKBS (𝑇0)]
= 𝑒−𝑟 (𝑇0−𝑡)E𝑄 [ℎKBS (𝑇0)] + 𝑒−𝑟 (𝑇0−𝑡)E𝑄 [ℎ(𝑇0) − ℎKBS (𝑇0)]
= 𝑃KBS + 𝑒−𝑟 (𝑇0−𝑡)E𝑄 [ℎ(𝑇0) − ℎKBS (𝑇0)] . (50)

So, we simulate the last expectation term.
Figure 2 shows the spread option prices given by the approximated formula with respect to the

correlation 𝜌12 between two underlyings and the strike 𝐾 of the spread option. As desired, the spread
option price decreases as two underlyings get correlated more positively regardless of the moneyness.

On the other hand, Table 1 presents the spread option prices from the KBS result, our pricing formula
𝑃 and MC simulation for a number of correlation values between two underlyings. The prices from our
formula tend to match well with the MC simulation results compared to the KBS prices, except the
highly correlated (𝜌12 ≥ 0.95) or deep-OTM (moneyness ≥ 1.4) cases as shown in Table 1.

The spread option price varies with the two scale parameters 𝜖 and 𝛿 of our multiscale volatility
model. So, the pricing formula has a higher degree of freedom than the KBS formula. As shown in
Figure 3, the option price gets larger regardless of moneyness as the fast scale parameter 𝜖 (the reciprocal
of the speed of mean-reversion) decreases. This is naturally justified by the fact that the volatility is
increasing and approaching the mean level which is higher than the initial value as the volatility is more
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Table 1. The spread option prices from the Kirk–Bjerksund–Stensland (KBS) result, our pricing formula
and MC simulation with 𝜖 = 0.1, 𝛿 = 0.01 and 𝑇0 = 0.5.

Moneyness

𝜌12 Type −0.3 0 0.3 0.8 0.9 0.95 1.05 1 1.1 1.4

0 KBS 17.2309 15.1249 13.1664 10.2495 9.7197 9.4615 9.2079 8.9587 8.7141 7.3403
P 16.9827 14.8782 12.9178 9.9868 9.4525 9.1918 8.9355 8.6836 8.4361 7.0425
MC 16.9790 14.8664 12.9180 9.9553 9.4251 9.0956 8.7831 8.5962 8.3610 7.0121
Error 0.02% 0.08% 0.00% 0.32% 0.29% 1.06% 1.74% 1.02% 0.90% 0.43%

0.3 KBS 16.0004 13.7920 11.7530 8.7637 8.2296 7.9707 7.7171 7.4689 7.2262 5.8816
P 15.8037 13.5967 11.5557 8.5503 8.0109 7.7491 7.4924 7.2410 6.9949 5.6274
MC 15.8645 13.6337 11.5527 8.4567 7.8694 7.7037 7.4292 7.2414 6.9982 5.5775
Error −0.38% −0.27% 0.03% 1.11% 1.80% 0.59% 0.85% −0.01% −0.05% 0.89%

0.8 KBS 13.6587 11.0157 8.5986 5.2395 4.6827 4.4193 4.1659 3.9226 3.6892 2.4920
P 13.5965 10.9519 8.5345 5.1542 4.5885 4.3201 4.0615 3.8125 3.5732 2.3384
MC 13.7124 11.0355 8.5515 5.1395 4.4989 4.2911 4.0306 3.8013 3.5197 2.3344
Error −0.85% −0.76% −0.20% 0.29% 1.99% 0.68% 0.76% 0.29% 1.52% 0.17%

0.9 KBS 13.2668 10.4000 7.7338 4.0795 3.5028 3.2355 2.9821 2.7427 2.5171 1.4385
P 13.2516 10.3786 7.7162 4.0474 3.4590 3.1845 2.9231 2.6749 2.4399 1.2965
MC 13.2728 10.4693 7.7130 4.0181 3.3817 3.1313 2.9021 2.6447 2.4042 1.3847
Error −0.16% −0.87% 0.04% 0.73% 2.29% 1.70% 0.73% 1.14% 1.49% −6.37%

0.93 KBS 13.1969 10.2485 7.4627 3.6335 3.0439 2.7739 2.5205 2.2836 2.0629 1.0559
P 13.1964 10.2397 7.4611 3.6301 3.0261 2.7461 2.4809 2.2304 1.9945 0.8806
MC 13.2377 10.2902 7.4547 3.5698 2.9724 2.7063 2.4322 2.2036 1.9956 1.0070
Error −0.31% −0.49% 0.09% 1.69% 1.81% 1.47% 2.00% 1.22% −0.06% −12.55%

0.95 KBS 13.1716 10.1734 7.2918 3.2886 2.6849 2.4120 2.1585 1.9242 1.7087 0.7748
P 13.1777 10.1711 7.3007 3.3219 2.6982 2.4088 2.1345 1.8752 1.6312 0.5081
MC 13.1366 10.2389 7.3125 3.2477 2.6439 2.3817 2.1066 1.8734 1.6287 0.7297
Error 0.31% −0.66% −0.16% 2.28% 2.05% 1.14% 1.32% 0.10% 0.16% −30.37%

0.97 KBS 13.1630 10.1322 7.1512 2.8825 2.2539 1.9758 1.7219 1.4920 1.2855 0.4686
P 13.1679 10.1327 7.1681 3.0364 2.3611 2.0335 1.7133 1.4028 1.1058 −0.1444
MC 13.2055 10.1432 7.1606 2.8663 2.2165 1.9339 1.6761 1.4410 1.2415 0.4350
Error −0.28% −0.10% 0.10% 5.93% 6.53% 5.15% 2.22% −2.65% −10.93% −133.20%

highly mean-reverting. This phenomenon is more noticeable when the two scale factors become more
negatively correlated.

6.2. Calibration to real market data

In this section, we discuss an estimation procedure of our model on real data. The WTI-Brent spread
option is not liquid enough to calibrate the model from its historical data. One possible alternative to use
is the WTI and Brent crude oil data to estimate the parameters. The WTI and Brent crude oil implied
volatilities, shown in the Bloomberg terminal calculated from the option market prices, are chosen for
the required data. These volatilities are converted from the historical option prices by using the Black
model (not the Black–Scholes model) since the underlyings are futures (not spots). By using vanilla
option data, one can get more market information than using the spread option data only. The general
validity of applying the vanilla option parameters to exotic options is explained in Fouque et al. [9] and
the detailed procedure can be found in the work of Carmona and Sun [6] and Fouque et al. [10].
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Figure 3. The behavior of the spread option prices for various values of 𝜖 with 𝛿 = 0.01 and 𝑇0 = 0.5.

Figure 4. WTI and Brent option implied volatilities (dotted lines) and calibrated volatility skews (solid
lines) for several choices of maturity.

Instead of estimating each of all model parameters directly, a desirable calibration procedure should
aim to obtain the group market parameters such as R 𝜖

𝑖 (𝑧)’s and R 𝛿
𝑖 (𝑧)’s that appear in the correction

terms �̃�10 and �̃�01. First, we utilize WTI-option volatility data to obtain the parameters 𝜅1, 𝜂(𝑧), R 𝜖
1 (𝑧)
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Figure 5. Spread option prices against moneyness and time to maturity based on the calibrated param-
eters.

Figure 6. Market prices and spread option prices with the calibrated parameters.

and R 𝛿
3 (𝑧) of the first asset 𝐹 (1) . Then by using Brent-option volatility data, the parameters 𝜅2, 𝜉 (𝑧),

R 𝜖
5 (𝑧) and R 𝛿

4 (𝑧) of the second asset 𝐹 (2) are estimated. The remaining group market parameters can
be calculated from their definitions given in Appendix.

To estimate the desired parameters from each vanilla option data, we follow the lines of Fouque
et al. [10], in which the calibration procedure consists of two steps. The results of the first step are
drawn in Figure 4. The dotted plots represent market implied volatilities with respect to the log-
moneyness-to-maturity ratio (LMMR) on May 6, 2022. For each maturity, volatility skews are fitted
to the market data. As the second step, we use the parameters obtained at the first step to obtain the
final parameters as follows. For WTI-options, 𝜅1 = 0.830005, 𝜂(𝑧) = 0.667161, R 𝜖

1 (𝑧) = 0.015426
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and R 𝛿
3 (𝑧) = −0.166520. For Brent options, 𝜅2 = 1.381936, 𝜉 (𝑧) = 0.761285, R 𝜖

5 (𝑧) = 0.022263 and
R 𝛿

4 (𝑧) = −0.140858. By using these group parameters and our analytic formula, we can calculate the
spread option prices. The resultant option price surface is shown in Figure 5. Note that the option price
increases with the moneyness since the ATM underlying spread value is negative.

Based on the calibrated parameters, one can test the accuracy of the approximated prices. We obtain
the theoretical prices and the real market prices with their errors in Figure 6. As mentioned earlier, we
have only a few available price data of the WTI-Brent spread options. All the strike levels are converted
to the moneyness. In July 2022 corresponding to a very short time to maturity, the deep out-of-the
money options show a big error. However, one can find that the error tends to become seriously smaller
as time to maturity gets longer.

7. Conclusion

In this work, we consider the problem of pricing spread options on futures contracts. We assume
mean-reverting dynamics for the futures prices with multiscale stochastic volatility. This type of model
framework is inspired by the commodity markets, in which the futures contract is a practical choice
for the underlying assets of spread options. The analytic pricing result obtained in this article is an
improvement of not only the classical Kirk’s formula but also its improvement by Bjerksund and
Stensland [2] in two aspects. First, our approximation formula is still given in a closed-form solution
and yet better than their results in terms of accuracy. Second, our pricing formula is about the pricing
of a derivative (spread option) of a derivative (futures), which is thought of as a composite contingent
claim, instead of the valuation of a derivative of an underlying asset traded in a spot market. Our result
is mathematically more accurate than the known results and financially more well suited for application
to the commodity markets.
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Appendix

Derivation of solution 𝑃00

If 〈L2〉 has the form of the operator Lbln corresponding to a bivariate log-normal model, where

Lbln (𝜎1, 𝜎2) = 1
2
𝜎2

1 𝑥
2
1
𝜕2

𝜕𝑥2
1
+ 1

2
𝜎2

2 𝑥
2
2
𝜕2

𝜕𝑥2
2
+ 𝜌𝜎1𝜎2𝑥1𝑥2

𝜕2

𝜕𝑥1𝜕𝑥2
+ 𝜕

𝜕𝑡
− 𝑟, (A.1)

then it would be easier to obtain a solution for 𝑃00 from the result of Kirk [15] or Bjerksund and
Stensland [2]. However, it is not the case since 〈𝜂𝜉〉 ≠ 𝜂𝜉 holds. To handle this problem, we assume
that 𝜂 and 𝜉 are given by the separable form

𝜂(𝑦, 𝑧) = 𝜁 (𝑦)𝜁1 (𝑧),
𝜉 (𝑦, 𝑧) = 𝜁 (𝑦)𝜁2 (𝑧)

(A.2)

and we define

�̄�1(𝑡, 𝑧) = 𝑒−𝜅1 (𝑇 −𝑡) 𝜁 𝜁1(𝑧),
�̄�2(𝑡, 𝑧) = 𝑒−𝜅2 (𝑇 −𝑡) 𝜁 𝜁2(𝑧),

(𝜁)2 := 〈𝜁2〉.
(A.3)

Note that the volatilities �̄�1(𝑡, 𝑧) and �̄�2 (𝑡, 𝑧) still have dependence on time 𝑡. In order to apply the formula
of Bjerksund and Stensland [2], the volatilities should be constant. So, we define the time-averaged
volatilities

�̄�2
1,𝜏 =

1
𝑇0 − 𝑡

∫ 𝑇0

𝑡

�̄�2
1 (𝑠, 𝑧) 𝑑𝑠,

�̄�2
2,𝜏 =

1
𝑇0 − 𝑡

∫ 𝑇0

𝑡

�̄�2
2 (𝑠, 𝑧) 𝑑𝑠.

(A.4)

Then, for each fixed 𝑡, 𝑃00 is approximated by the solution 𝑃0 of the PDE problem{
Lbln (�̄�1,𝜏 , �̄�2,𝜏)𝑃0(𝑡, 𝑥1, 𝑥2, 𝑧, 𝑇) = 0,
𝑃0(𝑇0, 𝑥1, 𝑥2, 𝑧, 𝑇) = max{𝑥1 − 𝑥2 − 𝐾, 0}

(A.5)

whose solution is exactly the same as the spread option price of Bjerksund and Stensland [2] extending
Kirk’s formula and it is expressed as (39).
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Derivation of solution 𝑃10

From the result for 𝑃00 and the PDE L0𝑃30 +L1𝑃20 +L2𝑃10 +L3𝑃0 = 0, one can find that �̃�10 :=
√
𝜖𝑃10

satisfies the PDE

〈L2〉�̃�10 = − 𝑓3,0 (𝑡, 𝑇)R 𝜖
1 𝐷

(1)
1 𝐷 (1)

2 𝑃0 − 𝑓1,2 (𝑡, 𝑇)R 𝜖
2 𝐷

(1)
1 𝐷 (2)

2 𝑃0

− 𝑓2,1 (𝑡, 𝑇)R 𝜖
3 𝐷

(1)
1 𝐷 (1)

1 𝐷 (2)
1 𝑃0 − 𝑓2,1 (𝑡, 𝑇)R 𝜖

4 𝐷
(1)
2 𝐷 (2)

1 𝑃0

− 𝑓0,3 (𝑡, 𝑇)R 𝜖
5 𝐷

(2)
1 𝐷 (2)

2 𝑃0 − 𝑓1,2 (𝑡, 𝑇)R 𝜖
6 𝐷

(1)
1 𝐷 (2)

1 𝐷 (2)
1 𝑃0

− 𝑓3,0 (𝑡, 𝑇)R 𝜖
1 𝐷

(1)
2 𝑃0 − 𝑓0,3 (𝑡, 𝑇)R 𝜖

5 𝐷
(2)
2 𝑃0

− 𝑓1,2 (𝑡, 𝑇)R 𝜖
2 𝐷

(1)
1 𝐷 (2)

1 𝑃0 − 𝑓2,1 (𝑡, 𝑇)R 𝜖
4 𝐷

(1)
1 𝐷 (2)

1 𝑃0 (A.6)

with the terminal condition �̃�10 (𝑇0, 𝑥1, 𝑥2, 𝑧, 𝑇) = 0, where

R 𝜖
1 (𝑧) = −

√
𝜖

2
𝜌1𝑦𝜁

3
1 (𝑧)〈𝜁 𝛽𝜒′〉,

R 𝜖
2 (𝑧) = −

√
𝜖

2
𝜌1𝑦𝜁1(𝑧)𝜁2

2 (𝑧)〈𝜁 𝛽𝜒′〉,
R 𝜖

3 (𝑧) = −√𝜖 𝜌12𝜌1𝑦𝜁
2
1 (𝑧)𝜁2(𝑧)〈𝜁 𝛽𝜒′〉,

R 𝜖
4 (𝑧) = −

√
𝜖

2
𝜌2𝑦𝜁

2
1 (𝑧)𝜁2(𝑧)〈𝜁 𝛽𝜒′〉,

R 𝜖
5 (𝑧) = −

√
𝜖

2
𝜌2𝑦𝜁

3
2 (𝑧)〈𝜁 𝛽𝜒′〉,

R 𝜖
6 (𝑧) = −√𝜖 𝜌12𝜌2𝑦𝜁1(𝑧)𝜁2

2 (𝑧)〈𝜁 𝛽𝜒′〉,

(A.7)

𝑓𝑖, 𝑗 (𝑡, 𝑇) = 𝑒−(𝑖𝜅1+ 𝑗 𝜅2) (𝑇 −𝑡) , (A.8)

𝐷 (1)
𝑛 = 𝑥𝑛1

𝜕𝑛

𝜕𝑥𝑛1
, 𝐷 (2)

𝑛 = 𝑥𝑛2
𝜕𝑛

𝜕𝑥𝑛2
, (A.9)

and 𝜒 = 𝜒(𝑦) is the solution of the Poisson equation

L0𝜒 = 𝜁2 (𝑦) − 〈𝜁2〉. (A.10)

Then from the commutative relation between 𝐷 ( 𝑗)
𝑛 and Lbln, the solution �̃�10 is given by (42).

Derivation of solution 𝑃01

From the results for 𝑃0 and 𝑃10 and the PDE L0𝑃21 + L1𝑃11 + L2𝑃01 + A3𝑃0 +M1𝑃10 = 0, one can
find that �̃�01 =

√
𝛿𝑃01 satisfies

〈L2〉�̃�01 = −
√
𝛿〈A3〉𝑃0

= − 𝑓1,0R 𝛿
1 (𝑧)𝐷 (1)

1
𝜕𝑃0

𝜕𝑧
− 𝑓0,1R 𝛿

2 (𝑧)𝐷 (2)
1
𝜕𝑃0

𝜕𝑧

− ( 𝑓1,0 − 𝑓3,0)R 𝛿
3 (𝑧)𝐷 (1)

2 𝑃0 − ( 𝑓0,1 − 𝑓0,3)R 𝛿
4 (𝑧)𝐷 (2)

2 𝑃0

− ( 𝑓1,0 − 𝑓1,2)R 𝛿
5 (𝑧)𝐷 (1)

1 𝐷 (2)
1 𝑃0 − ( 𝑓0,1 − 𝑓2,1)R 𝛿

6 (𝑧)𝐷 (1)
1 𝐷 (2)

1 𝑃0 (A.11)
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with terminal condition �̃�01(𝑇0, 𝑥1, 𝑥2, 𝑧, 𝑇) = 0, where R 𝛿
𝑖 (𝑧)’s are given by

R 𝛿
1 (𝑧) =

√
𝛿𝜌1𝑧 〈𝜁〉𝜁1 (𝑧)𝑔(𝑧),

R 𝛿
2 (𝑧) =

√
𝛿𝜌2𝑧 〈𝜁〉𝜁2 (𝑧)𝑔(𝑧),

R 𝛿
3 (𝑧) =

√
𝛿
𝜌1𝑧

𝜅1
𝜁2〈𝜁〉𝜁2

1 (𝑧)𝜁 ′1(𝑧)𝑔(𝑧),

R 𝛿
4 (𝑧) =

√
𝛿
𝜌2𝑧

𝜅2
𝜁2〈𝜁〉𝜁2

2 (𝑧)𝜁 ′2(𝑧)𝑔(𝑧),

R 𝛿
5 (𝑧) =

√
𝛿
𝜌1𝑧

2𝜅2
𝜁2〈𝜁〉𝜁1 (𝑧)𝜁2(𝑧)𝜁 ′2(𝑧)𝑔(𝑧),

R 𝛿
6 (𝑧) =

√
𝛿
𝜌2𝑧

2𝜅1
𝜁2〈𝜁〉𝜁1 (𝑧)𝜁 ′1(𝑧)𝜁2(𝑧)𝑔(𝑧),

(A.12)

respectively. To solve the PDE problem (A.11), we utilize the relation

𝜎1
𝜕𝑃

𝜕𝜎1
= 𝜎2

1 𝑥
2
1 (𝑇0 − 𝑡) 𝜕

2𝑃

𝜕𝑥2
1
+ 𝜌𝜎1𝜎2𝑥1𝑥2 (𝑇0 − 𝑡) 𝜕2𝑃

𝜕𝑥1𝜕𝑥2
,

𝜎2
𝜕𝑃

𝜕𝜎2
= 𝜎2

2 𝑥
2
2 (𝑇0 − 𝑡) 𝜕

2𝑃

𝜕𝑥2
2
+ 𝜌𝜎1𝜎2𝑥1𝑥2 (𝑇0 − 𝑡) 𝜕2𝑃

𝜕𝑥1𝜕𝑥2

(A.13)

that hold for 𝑃 = 𝑃KBS. This is the (two-dimensional version of) Vega-Gamma relation for spread option
prices in the bivariate log-normal model. Then using the linearity of the differential operators involved,
one can easily obtain

�̃�01 = 𝜇1R 𝛿
1 (𝑧)𝐷 (1)

1
𝜕𝑃0

𝜕𝑧
+ 𝜇2R 𝛿

2 (𝑧)𝐷 (2)
1
𝜕𝑃0

𝜕𝑧

+ (𝜈1,0 − 𝜈3,0)R 𝛿
3 (𝑧)𝐷 (1)

2 𝑃0 + (𝜈0,1 − 𝜈0,3)R 𝛿
4 (𝑧)𝐷 (2)

2 𝑃0

+ (𝜈1,0 − 𝜈1,2)R 𝛿
5 (𝑧)𝐷 (1)

1 𝐷 (2)
1 𝑃0 + (𝜈0,1 − 𝜈2,1)R 𝛿

6 (𝑧)𝐷 (1)
1 𝐷 (2)

1 𝑃0, (A.14)

where

𝜇1 =
(𝑇0 − 𝑡) 𝑓1,0 − 𝜈1,0

𝜅1 (𝑇0 − 𝑡)
,

𝜇2 =
(𝑇0 − 𝑡) 𝑓0,1 − 𝜈0,1

𝜅2 (𝑇0 − 𝑡)
.

(A.15)
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