THE INTEGRAL EXTENSION OF ISOMETRIES OF
QUADRATIC FORMS OVER LOCAL FIELDS

ALLAN TROJAN

Let F be a local field with ring of integers 0 and prime ideal wo. If Vis a
vector space over F, a lattice L in V is defined as an p-module in the vector
space V with the property that the elements of L have bounded denominators
in the basis for V. If V'is, in addition, a quadratic space, the lattice L then has
a quadratic structure superimposed on it. Two lattices on V are then said to
be isometric if there is an isometry of V that maps one onto the other.

In this paper, we consider the following problem: given two elements, v
and w, of the lattice L over the regular quadratic space V, find necessary and
sufficient conditions for the existence of an isometry on L that maps v onto w.
Rosenzweig (3) has settled this problem for the case where F is a local field
in which 2 is a unit. We extend the results to local fields in which 2 is a prime
element.

We remark that if 2 = w? and char F 5 2, the existence of an isometry of
V that maps v onto wis given by Witt’s theorem. Therefore the results obtained
constitute a partial generalization of Witt’s theorem to lattices over local fields.

1. Notation and basic concepts. O. T. O’'Meara’s book (1) contains an
extensive discussion of the local theory of quadratic forms. We shall assume
that the reader is familiar with the notation and results contained there. We
do, however, wish to emphasize a few important facts.

V will always stand for a regular n-dimensional quadratic space over a
local field F, and L an n-dimensional lattice over V. If L is non-empty, there
is a basis {x1, ..., x,} for V which is also a basis for L. We write

L=x104+%x0+4+...4+x,0.

If « € F, then we write d(a), to indicate the quadratic defect of & (1, p. 160).
o will always signify a unit of o such that d(1 + 4p) = 4o.

Now let M and N be lattices over V, v an element of V, and ¥ an ideal in
F. We then make the following definitions: s(M) is the ideal generated by
(M.M); n(M) the ideal generated by M?; M# = {x: (x.M) C o};

M* = {x:(x. M) CA}; M+={x:x€ Land x. M = {0}};

FM is the vector space spanned by M. A modular lattice is then said to be
proper if (M) = s(M) and is otherwise said to be improper. Zero lattices will
be considered improper.
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We shall use the notation L @ M to stand for the orthogonal sum of the
lattices L and M. (v) will be used to denote the lattice generated by a given
vector v. We shall sometimes represent lattices by their matrix representation,

so that would indicate that lattice generated by two vectors, v and

€
8
w, such that 9?2 = ¢, v-w = §, w? = 0.

The lattice L admits of a decomposition (called the Jordan Decomposition),

L=L,®...®L,
into modular sublattices such that
s(L1) Ds(L) D...Ds(Ly).

If 2 is a prime element of F, then dim L, s; = s(L;), n; = n(L;), t are called
the Jordan invariants of the decomposition and are, in fact, independent of
the decomposition chosen (1, Chapter 9).

There is a somewhat similar decomposition of vectors in L into critical
components. This was developed by Rosenzweig (3)in the following manner.

If K is a lattice with Jordan form K = K; @ K, and v is a vector in K
with the decomposition v = v; + 7", with v; € K;(z = 1, 2) both maximal
vectors (that is #—'v; ¢ K) and » > 0, then there is a Jordan decomposition
K = M; ® M, such that v € M;. Similarly, if 2 = ord s(K:) — ord s(K;)
and v = 7*t79; + v, with v; maximal in K; (¢ = 1,2) and r > 0, then there
is a second Jordan decomposition K = Ny @ N, with v € N,.

Now let v be an element of the lattice L. From the previous two facts it
easily follows that there is some decomposition of L of the form

L=2eL
l

with L; empty or w*-modular in which the unique representation

Y4
v = Z® "'y, (vy; maximal in Ly, v\, # 0)
1

has the following two properties:

Lfi>fe>...>fo

2. it M <fotA<...<fo+ N\

The A; are called the critical indices of v and the f;, the critical exponents.
Their uniqueness follows from the following observation:

Let L(» = LY where %, = w'0. We note that

L =L+ ...+ L+ 7L+ ...+ 7" L,
Then, upon letting

e; = min ord (. y),
yeL(i)

it is easily shown that A isa critical index of vif and only if ex_1 = ex = ex;1 — 1.
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This, of course, implies the uniqueness of the critical indices (and hence the

critical exponents) of v. It is also clear that if v and w are isometrically equiv-

alent vectors in L, then they have the same critical indices and exponents.
We make the further definition: s, = Nyy1 + fir1 — Ay — fi. Now let

(with M; m*modular or zero) be any other Jordan decomposition for L. Let

m

v= 2 g 2"w,
1
(where w; € M;, w; maximal or zero). Then we have the following facts
concerning the critical indices and exponents of v:

1. If & = \;, then &;, = f;.

2. Ifk < )\1, then hk >f1 + )\1 —_ k

3.I1fN; < B < Njyy, then Ay > f; when \; <k < \;+ 55

and iy + £ > fi1 4+ Njprwhen N + 55 < B < A
Nitsq

4. > 2Mw, has as its critical indices {1, . .., Ag.

Frorr{ this point on, we shall assume that 2 is a prime element of F unless
otherwise stated. Let v, w € L. We say that » is equivalent to w (written
v ~ w) if there is an isometry, ¢, on L that ¢ (v) = w. We shall develop neces-
sary and sufficient conditions for the equivalence of vectors, first over modular
lattices, then for vectors with one critical index, and finally for the general case.

2. Equivalence of vectors over modular lattices. In this section we shall
assume that L is a modular lattice. If L is proper it has an orthogonal basis;
if improper it is an orthogonal sum of two-dimensional sublattices (1, Theorem
93.15). This leads us to the following important definition:

Definition. Let L be 2¥-modular and {x,} a basis for L which is orthogonal
if L is proper. We define a mapping 7 with domain, the elements of L, and
range, a subset of the residue class field of F. Write x = 2™ 3" «; x; where
a; € oand at least one of the «; is a unit. Then 7'(x) is defined in the following
manner:

(a) If L is improper, T'(x) = 0.

(b) If L is proper and there exist integers 7, j < # such that

27 %22 — a2, 0 (mod 2),

then T(x) = 0.
(c) If L is proper and

2—k(0li2xi2 - aﬁxﬁ) =0 (mOd 2)
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for all pairs of integers 7, j < %, then
T(x) = 2 %22 (mod 2).

Our definition of 7" appears to be dependent on the orthogonal basis {x;}.
However, the following proposition shows that the original choice of basis is,
in fact, immaterial to the definition of 7.

ProrosiTIiON 2.1. The following statements are true for any two maximal
elements, v and w, of a unimodular lattice L:
1. T'(v) & 0 (mod 2) if and only if n({v)+) C n(L).
2. If y € L,ord ¥ = 0, and T (v) £ 0, then
(v-y)?/y* = T(v) (mod 2).
3. If v ~w, then T'(v) = T (w).

Before proceeding to the question of equivalence of vectors over modular
lattices, we state some important facts concerning the structure of these
lattices.

PROPOSITION 2.2. Every two-dimensional unimodular lattice over an unramified
dyadic local field is isometric to one of the following lattices:

01 11 2p 1
HO) = |, ol BO =], 0|, H<p)=’1" 2|,
4p 1 1

where €, & are units of o.

PRrOPOSITION 2.3. We have the following facts concerning unimodular lattices:
1. B(p) @ H(p) 1s not isometric to B(0) ®@ H(0).
2. B(p) ® H(0) s not isometric to B(0) @ H(p).
3. H(p) @ {e) is not isometric to H0) @ {e(1 + 4p)).
4. H(p) @ (e) is antsotropic.
5. H(p) @ B(p) s anisotropic.
Here € 1s some unait of o.

For a proof of the previous two propositions, see (2).

PRrROPOSITION 2.4. Let v, w be maximal vectors in the two-dimensional modular
lattice L. Then v ~ w if and only if v* = w? and T (v) = T (w).

Proof. In view of Proposition 2.1, we need only prove the sufficiency of the
conditions. There are three cases here to consider.

Case 1. ord 9?2 = 0. In this case, there are vectors v;, w; such that
L= (@ @ (1) = (w) ® (w1)

and 2,2 = w2 The required isometry ¢ is defined by the conditions ¢ (v) = w
and ¢ (1) = w1
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Case 2. ord 22 > 1, 92 % 0. Here, there is a vector v; € L such that
v-9; = 1. Let 9.2 = e and »? = 4. Clearly L = vo + v; 0.

We first show that there exists a vector w; € L such that w-w; = 1 and
w? = 912 (mod 2). This fact is obvious if L is improper; so we may assume
that L is proper, in which case 7'() # 0. Now 271(v — w) € L (because
T(v) = T(w)) and thus w-v; = v-9: =1 (mod 2). Let w-v; = 1 + 2u where
g € o. Then the required w;is w1 = (1 + 2u) 0y,

So, now we have two representations for L,

L=v0+9,0=wo+ w0

where 2 = w? = 4§, 0oy =w-wr =1, 1 =, w2 =4, and o = 8 (mod 2).
Furthermore (1 — da) and (1 — 68) both represent det L, and therefore the
equation

(1 —ad)/(1 —B8) = «°

has solutions in F. But
1 —ad)/A —-pB8) =1+ 68(ca—B) =1 (mod 25).

But if x2 =1 (mod 26), then x = 41 (mod §). Consequently there is a
unit vy such that ¥y = 1 (mod §) and v = (1 — a8)/(1 — B5).
We note that

FL~ () ® (v — dv1) >~ (w) @ (w — dwy)
and that (v — 6v1)2 = v%(w — dw1)?, so that there is an isometry ¢ on FL
such that ¢(v) = w and

o(v — ov1) = v(w — dwy).
We show that ¢ is the required isometry on L, that is, ¢(L) C L. It is suf-
ficient to prove that ¢(v:) € L. But
o(01) = 6790w — (v — 6v1)) = 6 (w — v(w — dwi))

= yw; + (1 — v)é .

Since v, (1 — v)/8 € o, ¢(v1) € L.

Case 3. v* = 0. Here we have L ~ B(0) or L ~ H(0). If L ~ B(0), there
is a basis {x, ¥} for L such that x? = 1, x-y = 1, > = 0. Also, there are units
€1, egsuch thaty = eyyorv = e1(2x — y) and w = €2 y or e2(2x — ). Further-
more, €1/€2 = 1 (mod 2) by Proposition 2.1 (2).

Now let p be a unit such that u =1 (mod 2). We define an isometry, ¢,,
on FL by the maps

() = ny,  6u(2x — ) = (2x — y)u "

It is easily checked that ¢, is an isometry on L (since ¢,(x) € L). We let ¢ be
a second isometry on L defined by the maps ¢(y) = 2x — y and

Y(2x —y) = .
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If we let @ = e1/e2 and B = e/ ey, it is clear that one of the following isom-
etries will map v onto w: ¢o, ds, e ¥, ds ¥.
The case where L ~ H(0) is settled in a similar manner.

PROPOSITION 2.5. Let v be a maximal element of the unimodular lattice L.
Then if ord v* > 1, there is a decomposition L = R ® Swithv € R,dim R = 2
and the additional conditions:

1. S is improper if T'(v) #= 0.

2. R is improper if T'(v) = 0.

Proof. There are three cases to consider.
Case 1. L is improper. Here we may write L = 3 4 L; where
L;=x;04+y:0

and x;-y; = 1. If weletv = > ax; + > B,y then since v is maximal, there
is an integer k£ such that ord o = 0 or ord 8y = 0. By symmetry, we may
assume that ord o = 0. We then let R = vp 4+ y; 0. Since R is a unimodular
lattice, it splits L and we may therefore write L = R @ S. Clearly #(S) C o.

Case 2. L is proper, T'(v) = 0. Let {x,} be an orthogonal basis for L. If we
write v = > a; X, it is clear that there are integers 7, k such that a;, a; are units
and a2 ;% # a*x¢,? (mod 2). Now every unit of F is a square (mod 2). Let 8
be a unit such that 82 = x;?/x,* (mod 2). If y = Bx; + x4, then ¥ = 0 (mod 2)
and vy # 0 (mod 2). If R = vo 4 yo, then R is an improper and unimodular
lattice which splits L.

Case 3. T'(v) # 0. Let x be an element of L such that ord x? = 0. Then the
lattice R = x0 + vo is unimodular, so we can write L = R @ S. By Propo-
sition 2.1(1), S is improper.

This brings us to the main result of this section.

THEOREM 2.1. Let v, w be maximal elements of the unimodular lattice L. Then
v ~ w if and only if v* = w?and T'(v) = T'(w).

Proof. The necessity has already been proved. We shall prove the sufficiency.
There are three cases.

Case 1. ord v2 = 0. We may write L = (o) @ {v)+ = (w) @ (w)+. We wish
to prove (v)+ ~ (w)+. Now F(v)+ ~ F(w)+ by Witt’s theorem. Now
n(()+) = n((w)+)

by Proposition 2.1(1), so the unimodular lattices {v)+ and (w)+ have the same
Jordan invariants. By (1, Theorem 93.29), (v)+ ~ (w)+.

Case 2. ordv?* > 1, T(v) = 0. We first show the existence of improper,
unimodular lattices R, Ssuch thaty € R,w € S,R,S C L,dim R = dim S = 2,
and R~ S. By Proposition 2.5 there exist improper, unimodular lattices
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P,, Pysuch thatv € Py, w € Py, P; C L, dim P; = 2. If P; ~ P,, the result
follows if we let R = Py, S = P,. Now if dim L = 3, then P; ~ P, by Propo-
sition 2.3(3). If ord#? > 2, then P;~ P,~ H(0) since the lattice H(p)
cannot represent an element of order >2 by a maximal vector. So we may
assume dim L >4, Py~ H(0), Py~ H(p), ordv? = 1. (The case where
Py~ H(0) is, of course, the same by symmetry.) We may choose vectors
y1, ¥ such that Py = vo 4 y10 with v-y; = 0, y:2 = 0, and Py = wo + y50
with w-y, = 1, ¥2* = 29 where 7 is a unit. Now P+ is not isometric to B(0),
for otherwise Pyt~ B(p) and this violates Proposition 2.3(1). Similarly
P,+ is not isometric to B(p). Thus P+ represents 27 (mod 4). (This may be
verified by inspection if dim P;+ = 2. If dim Pi1+ > 3, we use the fact that
P;+ is split by a lattice isomorphic to either H(0) or H(p).) Choose x € P+
such that x? = 27 (mod 4). Let R = v0 + (y1 + x)0, S = Ps. Then

det R = det S (mod 8),

i.e. R >~ S. The lattices R, S satisfy the required conditions.

So finally we have L = R ® R+ =S ® S+ with R ~S. Now FR+~ [S+
by Witt's theorem and n(R+) = n(S+) by Proposition 2.1(1). Thus R+ ~ S=+.
The proposition now follows by applying Proposition 2.4 to the two-dimen-
sional lattices R and .S.

Case 3. ordv? > 1, T'(v) # 0. By Proposition 2.5, there exist proper uni-
modular lattices Py, Ps C L such that L=P, ® P;+ (1 =1,2), v € Py,
w € Py, dim P; = dim P, = 2 and P+ improper unimodular. If P; >~ P, we
define R, S by R = Py, S = P,. Now suppose that P; is not isometric to Ps.
Then P+ is not isometric to Ps+ and we may assume without loss of generality
that P1+ >~ H(0) ® P, P2+~ H(p) ® P where P is a direct sum of hyper-
planes. By Proposition 2.3 (1, 2), P, is not isometric to B(0) or B(p) z = 1, 2).
Thus ord 22 = 1 (otherwise det P;= —1 (mod 4)), so that there are units
€;, 6 and vectors x; € P; (¢ = 1,2) such that »2 =26, x,2=¢; (2 =1,2),
x1-v =1, xorw = 1. Clearly P, = v0 + x;10 and P, = wo 4+ x2 0. Now since
det P,/det P,=1 (mod 4) and det P; = —1 + 2¢;8;, we have €; §; = ¢, 0,
(mod 2). Now since P;+ is improper and the residue class field is perfect, there
is a vector ¥ € P+ such that

63}2 = (52 0y — € 61) (mod 4)
Let R =90+ (y + x1)0, S = P,. Now det R = detS. Furthermore since
2 € R and T'(v) # 0, R+ is improper unimodular. Similarly S+ is improper
unimodular. Since det R+ = det S+, we have R+ ~ S+t and therefore R ~ S.

So we now have R, S such that v € R, w€ S, L=R® R+ =S ® S+,
R~S R+~8+,dimR =dim S = 2, T (v) = T(w). The theorem now follows
by applying Proposition 2.4 to the lattices R and S.

3. Vectors with one critical index. Suppose the lattice L has the decom-
position L = 3 ¢ L; where L; is 2“modular or zero. Then, correspondingly,
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each vector v € L has the unique decomposition v = Y @ 2", where v; is a
maximal element of the lattice L;. When we use the notation 7' (v,), it will be
understood that this refers to our previously defined mapping acting on
elements of the modular lattice L,.

THEOREM 3.1. Let L = 39 L, = X g M; be two decompositions of L such
that L;, M ; are 2*-modular or zero lattices. Let v, w € L where

v =Yg 2hu; = g 2k, w = 3 g 2w,

and u;, w; are maximal in L;, v; are maximal in M, If, in addition, v ~ w,
then

T(un) = Tn,) = T(wn;)
where the \; are the critical indices of v and w.

Proof. If Ly, is improper, the result is trivial. We assume now that L,, is
proper. Let 9(; be the fractional ideal 2%. Let

L(i) = Lgli = L)\i @ {2L)\,‘—1 -I" LM’+1 + .. }
and
M= {x:x € LYandv-x = 0}.

Then the equalities follow immediately from two facts:

1. T'(v\) # 0 if and only if for all x € M, ord x* > A..

2. If y € Ly and ord 9% = y;, then T'(vy;) = 272i(v-y)2/y2
These two statements are easily proved using the relations between critical
indices and exponents established in §1.

We devote the rest of this section to the consideration of vectors with one
critical index. We assume that

where L, is 2%modular or empty, v and w are maximal elements of L,

7)=_Z®7)i, ‘ZU:Z@wi

where v;, w; € L;. For simplicity, we assume that 0 is the only critical index
of v and w. (Since v, w are maximal, their critical exponent is 0.) We let

0 0
v = E@ Vs, W=D g w.
bl o} ~0

All but a finite number of the L,, v;, w; are, of course, zero.
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ProposiTiON 3.1. Suppose T (vo) # 0. Let Ty be any unit that represents T (v).
Then if
(1 4+ (v — v)¥Ty) = d(1 + (v —2')¥/Ty) =0,
there is a vector y € L, such that v ~ y.

Remark. 5(1 + (v — v0)%/Ty) and d(1 4+ (v — v')%/T,) are independent of
the choice of T%. If, for example, d(1 + (v — v9)%/Ty) = 0, then since
(@ — vy) = 0 (mod 2), we have (2 — 99)2 = 0 (mod 4 (1, Proposition 63.5).
Soif T"y = Ty (mod 2), then

14+ @ —9)¥To=1+ ¥ — )% T’y (mod 8).
Therefore d(1 4+ (@' — 29)%/T”s) = 0 by (1, Proposition 63.2).
Proof. We may write

L, = i@ (x4)

where

m
Vo = Z@ X
1
Let

Mo= (it (=) ® )’";@ o).

Since d(1 + (v — v")2/Ty) = 0, we have det Ly = det M, i.e. Lo >~ M,. Let
K be the lattice such that

ZO:@L,-=MO®K.

A simple application of (1, Theorem 93.29) shows that

K ~ i@ Li.
1

A second application of this procedure, this time to the ‘left-hand side” of
v, gives us lattices Ny, J such that

-1
v € N, Ny~ M,, J ~ Z@Li.

Let ¢ be an isometry such that

¢ (Vo) = Lo, ¢<:Z;@ L¢> = J, and¢<i@Li> =K.

1

Then v = ¢(v) is the required vector.

PRrRoOPOSITION 3.2. Let w; = 0 for all 1 < —1 and T (vo) = T (wo) # 0. Then
v~ wif and only if (1 + (V' — v0)%/Ty) = O where Ty is any unit representing
T(Y)o).
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Proof. Necessity: We may, by Proposition 3.1, assume that v, = 0 if
o(1 + v,2/Ty) = 0, provided 7 5 0. In particular, we assume that v_;_; = 0
if k> 0.

Let (v)+ = J @ rad (v)*+and (w)+ = K @ rad (w)+. Now if v were equivalent
to w, we would have J ~ K. We shall prove that if 5(1 + (' — v)2/T,) # 0,
then J is not isometric to K.

There are three cases to be considered.

Case 1. v_; = 0, ord v_,* = 2. Here both L_; and L, are proper. We may
write

Ly= D g {x) wherevy= D g%
1 1
Furthermore, there is a lattice L’_, such that L_, = (2=%_,) @ L'_,.

We now construct a new decomposition L = Y g M, If ¢ —2.0, let
Li = Mi' Let

My= (x14+v_2) @ iz@ (xa).

Now there is a vector y such that (y) @ (x; + v_2) = (27 %_,) @ (x1). We let
M_, = (y) @® L'_,. Now

d(M_g)/d(L_z) = d(Mo)/d(Lo) = 1 + (7}’ - ‘1)0)2/T0 =1 + 4p.

Also v-M; = 0 if ¢ < 0. Therefore the Jordan decompositions of J and K
have the following forms:

—1 © —1 ©
J=20Li®2eN, K=3oM®Xol,

If N is the first non-zero IV, then n(N) C 2p since 7'(v,) #= 0.
We wish to show that J is not isometric to K. There are three subcases.
(@) L_; is improper and non-zero. Then #n(L_,)n(N)/s(L-:)? C 8o. But

d( ;1@ M1>/d< é@ L,) =1+ 4p.

Therefore condition (i) of (1, 93.29) is violated, i.e. J is not isometric to K.
(b) L_; = 0. Here n(L_s)n(N)/s(L_s)? C 80. Once again condition (i) of
(1, 93.29) is violated.
(c) L_, is proper. Then n(N) C 4n(L_,). If J were isomorphic to K, we
would have by condition (ii) of (1, 93.29) that

-1 —1
F( 2o Li) - F( 2 Mi) ® (%)
By Witt’s theorem, this would imply that (2=%_,) — (y) ® (3), which would
mean that (e(1 + 4p)) ® (2(1 + 4p)) =~ () @ (2) where ¢ = 4y% A calcula-
tion with Hasse symbols shows this to be false. Therefore J is not isometric
to K.
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Case 2. ord v_;> = 1. By means of a procedure similar to that used above
we may write

-1 © —1 ©
J=2gL:® 20:®Ni and K= D g M;® EO@N’,-,

where, if N is the first non-zero N;, then #(N) C 20. Furthermore, these two
decompositions have the following property:

((Sor) /o Sor) 142

where € is some unit. But here n(L_:1)n(N)/s(L_;)? C 40. Thus J is not
isometric to K.

Case 3. ord y_;2 = 2. We assume that L_, is proper, since the usual deter-
minantal arguments work when L_,; is improper. Since

D(1 4 (v—2® 4+ v_4?)/To) = 4o,
we have d(1 + v_2%/Ty) = 0 by (1, 63.4). Therefore, by Proposition 3.1, we
may assume that v_; = 0. We construct a new decomposition, L = > g M,.
When 7 # —1,0, let L, = M,. Write
Lo= > {x)) wherevy= D g%,
1 1

Also choose y; and y; such thatv_; = 2(y; 4+ 92) and L_; = (1) ® (y:) ® R,
for some lattice R. Let 2y,2 = ¢;(2 = 1, 2). We choose a vector y’; such that

(x1) @ (y1) = 2y1 + x1) @ (1)

and choose also y’; such that
@yt 2y + x1) @ (¥'2) = (¥2) @ (w1 + 291).
Note that
y/z' (23’1 -+ 2}'2 + xl) = y’l- (23’1 + x1 + 23’2) = y’2-y’1 = 0.
Letting M_; = (v/2) @ (/1) ® R and

Mo = (x1+ 2914 2y2) © D (x0),
2
we then have
L=YgM,

as an alternative decomposition for L.
We remark that

() = ays? ('2)* = Bys*,  d(L-y)/d(M_1) = o
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where
a = (x1* 4+ 26)/x%, B = (%12 4 261 + 2e2)/ (212 + 2€1),
and af =14 (v — v9)%/ T,

these last three equalities being taken modulo the units squared.
As before, we have

-1 © —1 e
J=2eL:® ZO@Ni and K= Y g M,® > g N,
s —o 0

as Jordan decompositions for J and K. Now n(N,;) € 4n(L_,) for 7 > 0. By
(1, 93.29 (ii)), if J were isomorphic to K we would have

—1 -1
F< 2o Li) —’F< 2o M,~> ® (3)-
Using Witt’s theorem and (1, 63.21), we would have

(aer) @ (Bex) ® () > (e1) @ (e2) ® (1).

To prove that J is not isometric to K, we need only show that this previous
isometry does not hold. A calculation with Hasse symbols (using the fact that
p(eB) = 40) reduces the problem to showing that (a, ae; €2) = —1, or equiv-
alently, that the lattice

3
N = 21@21

(where 2:% = @, 22 = ae; €3, 232 = —1) is anisotropic. To do this, we prove
that NV contains a sublattice N’ isometric to H (p). (This will prove that N is
anisotropic by Proposition 2.3(4).)

We let N/ = (€121 + 22)0 + {(21 + 23)/aei}o. This lattice is represented
symbolically by the matrix

ae (e + €) 1
1 2/a%e) |

Now 2(e; + e2) = (v — v9)?; hence e1 + ¢2 =0 (mod 2). Therefore N’ is
improper unimodular. Since & = 1 (mod 2), we have

—(detN')=1—2(e;+ €e) =1+4p (mod 8).
Therefore N’ >~ H(p). This proves Case 3.
Suffictency. We have d(1 + (@' — v9)?/T)) = 0. Now the fact that
T(vo) = T (wp) #0
implies that d(1 + (vo — w3)/To) = 0. Since v = wg and
(1 + (' — wo)?/To) =0,
we then have d(1 + (v — v")2/T,) = 0.
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Consequently, we may apply Proposition 3.1 to find a vector x € L, such that
x ~v. Furthermore, T'(x) = T'(v) = T(wy) in Lo by Theorem 3.1. By
Theorem 2.1, we now have x ~ w. This proves the sufficiency.

PRrOPOSITION 3.3. Let v = w?, T'(vg) = T (wo) # 0. Then v ~ w if and only
if 9(1 + [(@")2 — (w')?2)/To) = 0 where T is any unit representing T (vo).

Proof. We construct a second decomposition L = Y ¢ M, Let M, = L, if
1 > 0. We write

Ly= 2 (x.) where D@ x; = w,.
1 1
Let

My= (@ —wo+ x;) ® 22:@ ().

When 7 < 0, choose M, such that

0 0
Z Mi = Z Li.
Then if v = X g v, where y; € M, then

b(l + X yf/ﬂ) =01+ [()" — @)+ @)" = yil/T0)
= 0(1+ [@)" = @)")/T0).

(0(1 + [(w')? — y2]/T%) = 0 because T'(yo) = T'(w') in M,.) The result now
follows from Proposition 3.2 because w’ € M.

ProrosiTION 3.4. Let L = J, ® K, = Jo ®@ Ky where J1, Jo are modular
improper. Then J, > Jy implies that K, ~ K,.

Proof. We may, by scaling, assume that J; and J, are unimodular. The
result follows from (1, 93.14) if J, >~ Jo~ H(0). If J, =~ H(p), then

Hp) ® 1 ® Ky~H(p) ® J. ® Ks.
But H(p) ® H(p) ~H(0) ® H(0). Thus
HO) ® HO) @ Ky~ H(0) ® HO) ® K.
Therefore K; >~ K.
ProrosiTION 3.5. If v = w? and T (vy) = T (wo) = 0, then v ~ w.

Proof. Since v has only one critical index, we may assume that v € Ly. There
are two cases to consider.

Case 1. ord > = 0. Then L = (v) @ (v)+ = (w) ® (w)+. Furthermore, since
T(vo) = T(wo) =0, (v)+ and (w)+ have proper, unimodular components.
Thus, by (1, 93.14(a)), (v)+ ~ (w)+.
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Case 2. ordv? > 1. Then ord w,® > 1. First assume that L, contains a
hyperplane. In this case, there are vectors x, y € L, such that x? = w2,
x-y =1, y* = 0. By Theorem 2.1 there is an isometry ¢ that leaves every
element of L, fixed if £ # 0 and maps woontox. Letw'”’ = ¢(w) = x + w — w,.
Let J = (x + w — wo)o + yo. Then J ~ H(0) and J splits L. Similarly there
is a lattice K ~ H(0) that splits L and a vector "/ ~ v such that "’ € K.
Write L = K ® K’ = J ® J'. Then by Proposition 3.4, J' ~ K’. Further-
more, by Proposition 2.1, there is an isometry ¢ such that ¢(K) = J and
Y (w”) = ¢". Thus w’ ~ ", which implies v ~ w.

Now assume that L, contains no hyperplanes. By Proposition 2.5, we may
embed wy in an improper lattice L = weo + x0 which splits L,. We may assume
that wo-x = 1. Let we? = p; and x? = A\;. We may similarly embed v in an
improper lattice H' = vo + yo which splits L,. We let 22 =y, vy = 1,
y2 = No. We have H >~ H' ~ H(p). Let H" = wo + xo. If H"' ~ H(p), then
there exist lattices R, .S such that L~H" @ R = H' ® §, with R~ S by
Proposition 3.4. The result then follows by Theorem 2.1. Otherwise H" ~ H(0).
Here either ord w_,2 = 1 or ord w;2 = 1. Assume that ord w_,®2 = 1. (The
other possibility is handled in a similar manner.) Let ¢ be a unit such that
e + e2w_;2 =0 (mod 4). Let H" = v0o + (y + ew_1)0. Then

H/II ~ H(O) ~ HII.

Alsov € H', w € H”, and H'" splits L. The result then follows from Propo-
sition 3.4 and Theorem 2.1.

We now have the result for vectors with one critical index. We use the same
notation as before.

THEOREM 3.2. Suppose that v and w are maximal vectors, both with only one
critical index Ny = 0. Then v ~ w if and only if:

1. T'(vo) = T'(w,) over L.

2. 9% = wh

3.0+ [()2 — (w)2)/To) =04 T'(wo) #0
where Ty 1is any unit representing 1 (vo).

4. Vectors with several critical indices. We now wish to find necessary
and sufficient conditions that characterize the equivalence of two vectors, each
having several critical indices. We have already shown that if v ~ w, then v
and w have the same critical indices \; and exponents f; and furthermore
T (vn;) = T (wy;).

We first make a remark about notation. All Jordan decompositions of L will
be written in the form L = >,g L;, L = > ¢ L', etc. where L;, L', ... are
2%-modular. Correspondingly, if v € L, then v = > gv; = 2 g ¢4, etc. where
v, € Ly,v; € L', ....Recalling that s; = XNjpqy + fig1 — Ny — f4, we let

Ait-si

Ag
Uy = Z@ v; and vy = Z@ vj.
0 hanie o}
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v'(5 and 9'[y are similarly defined. For simplicity, we assume that s(L) = o.
This will make no difference to the final result.

PROPOSITION 4.1. Let v ~ w. Then

ord (%) — w¥p) > Np1 + forr + fo+ Ay
where

=0 if Ly;ys; 1S proper,
A, =1 if Lysts; 1S tmproper.

Proof. Welet L = M ® N where

M=) L,

We may writev =7 @ v, w = s @ s’ wherer,s € M and #', s’ € N. Now let
¢ be an isometry on L such that ¢(v) = w. Welet ¢(r) =t @ ¢/,

o(r') = u®u,

wheret,u € Mandt',u' € N.Nowo¢(r) = (s — u) + (s" — #’) and we know
from the facts concerning critical indices that 27:|r (that is, 2=7ir € L) 2755,
27ilu. Therefore 27i|(s’" — u’). Hence

ord {r2 — (s —u)} —ord (s — )2 > 2f; + N+ s;+ 1

=fi +fi+1 + >\1+1 + 1.
Also, the facts that

ord u-L > ord 'L > )\i+l +f1;+1
and 27¢[s imply that ord 2s-u > f; + fis1 + Niy1 + 1. Thus
ord (r? — (s + u?)) >fi+fimn N+ L

We now prove that ord #? > f; 4+ fit1 + Ny + As. This will prove the
proposition since 7 = vy and s = w(;. Note that A;y; is the smallest critical
index of ¢ (') = u @ #'. This means that we may write

Nit-si
u = Z@ 2’””1
0

where #; is maximal in L; and
hy> firi+ g1 — 7)) = fo+ e+ N) — 4.
Hence
ord (2%u;*) > h; + Nipa + fin + E;
where E; = 1 if L, is improper, E; = 0 if L, is proper. But
hit N+ finn H E; > fi+ N+ fipn + Ay
for 0 < j < Ay + s,. This proves the theorem.
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We now find a similar relation holding for v(; and wy;. To do this, we first
need a lemma.

LemMa 4.1. Let L = @L; = @K, be two Jordan decompositions for L in
which L; >~ K. Then there is a finite sequence of decompositions

L=YeL® (=0,...,m)

with the following properties:
(@) L, = Ly;
(b) L™ = K;
(c) L ~L, (k=0,...,m);
d) of Sy = {¢:L,® == L&D}
then Sy consists of 2 integers or 3 consecutive integers.

Proof. We show the existence of a chain of decompositions
L=%gL®, (B=0,...,1)

satisfying (a), (c), (d) and such that Ly = K,. The result then follows by
induction on the lengths of the decomposition.
L, is obtained in the following manner: We may write

K0=x10+...+x,0.

Furthermore, each «x; has an expansion

S
X = Z:O@ Vije
=
Now let

2
1 1 1 1
x, P = Z@v” and Lo® = 5% + ...+ x,%0.
=0

Then LV ~ L, since x;:x; = x;V-x, (mod 8). Furthermore, there are
lattices LV, Ly such that Ly @ L; @ Ly = LV @ LV @ L™, Now if we
let L,V = L;whenj > 2, the decomposition L = ® L,V satisfies (a), (c), (d).
Now, if 2 > 1, we let
x+1

xi(k) = Z@ vij and Lo(k) = Z x,-(k)o.
=0
Then Ly® ~ L,. We define L;® inductively by the relations
LoD @ L™ = L™ @ Ly ®

and L,® = L®V if 40, k4 1. Clearly L~V = K, and the sequence
L™ possesses properties (a), (c), (d). This proves the theorem.

ProposITION 4.2. If v ~ w and T (vy;) #~ 0, then
(1 + {(va® — wia?)/2H-T}) =0

where T ; is any unit representing T (vy;).
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Proof. We establish the following equivalent result: If L = > g L, = > ¢ L';
where L;~ L’; and if T'(v\;) # 0, then

{1 + [orn® — (va”)?)/2%i- T} = 0.

By Lemma 4.1, we may assume that there exists an integer 7 or a pair of
integers s, t such that L;~ L', when either (a) j %5, tor (b) j =7, +1,
r + 2. We do these cases separately.

Case (a). The result is easily obtained except when s < \; < fort < \; <'s.
Assume s < ¢. Letting x = 2, ® v, and y = v'; ® v',, we see that x and y
have the same critical indices and exponents. There are three possibilities. The
critical indices of x may be (1) sand ¢, (2) s, (3) ¢. In the first case we have by
Proposition 4.1 that

ord ((v5)* — (@')? > gs+eg.,+t+1

where g, g, are the critical exponents of x. But g, +¢>f;+ N; 4+ 1 and
gs > fi + 1. Therefore

{(vs)2 - (v/s)Z} - {22f"+)"'Ti} =0 (mod 8),

hence the result.

Now if s is the only critical index of x, we have 27!y, since \; is a critical
index of » and s < \;. Therefore 27/i+1|p, since s is the only critical index of x.
Thus

ordv? >2(fi+1)+¢t>2(f:+ 1)+ + 1.
The same inequality holds for ord (¢',)2. Since x? = y?, we again obtain (x).

If ¢ is the only critical index, the result is obtained in a similar manner to
that of the above case.

Case (b). The result follows easily except when » 4+ 1 = \,;. But here if we
let x =9, + 0,01+ V40, y =9, 4+ 0,41+ 9149, then 7 is the only critical
index of x and y. Here the result follows directly from Theorem 3.1.

We have now obtained several necessary conditions for equivalence. The
rest of this section will be devoted to showing that these conditions are also
sufficient.

THEOREM 4.1. Using the notation previously defined, we have v ~ w if and

only if:
1. 92 = w?,
2. v, w have the same critical indices \;, and exponents f,
3. T(v)\i) = T(w)\i)y
4. ord (v(»n? — w? > Neja + fia + fi + Ay
5. 0(1 + {(vra® — wa?)/227i-T}) = 0,
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where

A, =1 if Ly 4s; 1S tmproper,

I

A, =0 if Ly;4s: 1S proper
and T ; is any unit representing T (vy,).

The sufficiency of the conditions will be proved in several stages. The
necessity, of course, has already been shown. We shall assume from here on
that 1-5 are satisfied for v and w.

PROPOSITION 4.3. Let x be a maximal element of a unimodular lattice L. Then
if o is any integer, there is a vector y € L such that y is maximal, T (x) = T (v),
and y* = x? + 4a provided d(1 + 4a/T,) = 0 when T (x) = 0 and T, is any
unit representing 1 (x).

Proof. Let x* = n. We first assume 7'(x) = 0. Then if ord n = 0 there is a
vector &' € L such that the lattice (x) @ (x’) splits L. Choose any integer $
such that (x')28%2 = a (mod 2). Then (x + 2B8x’) >~ (n + 4a) and furthermore
T(x + 2ex’) = 0; hence the result. Now if ord > 1, there is a two-dimen-
sional, improper lattice K, containing x, that splits L. Choose an integer u
such that

Then the result follows from the fact that

n+4a 1

K~ 1 ”

If 7(x) % 0, we may choose an orthogonal basis for L = g (x;) such that
x = Y x;. The result follows from the fact that{x,?) >~ (7o) =~ (%1% + 4a).

PROPOSITION 4.4. There is a decomposition L = 3 g L' with L;~ L'; such
that one of the following two congruence relations holds:

Lord ((0'w)? — (ww)?) > fi+fe+ N+ L
2. ord ((w(l) - w)\1+s1)2 - (vl(l) - v)\1+31)2) >f1 +f2 + A2 + 1.

Proof. If Ly, s, is improper, the result is trivial by condition 4 of Theorem
4.1.1f T'(v),) ## 0and s; = 1,thenvyy — on45, = vy and Wiy = Way — Way 5.
Here the result is an outcome of condition 5 since

ord 2 —wm?) >2i+Mn+2=N+fit+fot+ 1.
We now assume that Ly, s, is proper and s; # 1 if T'(n) # 0. Let
X = U1 — U+t

and ¥y = wuy — W45 We may assume that ord (x2 — ¥2) = f1 + f2 + Ao
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There is a vector z € Ly, such that
ord (2 + 2 —vw?) > N+ fo+fi+ L

We apply Proposition 4.3 to find a vector uy, € Ly, such that T'(m\,) = T'(wy,),
exp un, = f1, and
m = w? Fo? =yt — g

We now let #; = w; when j <\ —1 or i+ 1<j< M+ s —1, and
Urn 451 = 2. We also define
Ni+-s4
u = 2069 u,-.

Of course, u; € L;. Also u? = uy? = vuy% The requirements for Theorem 3.1
are satisfied for the vectors #(;) and v(;). Hence there is an isometry ¢ on L
such that ¢(xw) = v. Let L'y = ¢(L,). The decomposition L = 3 g L’;
satisfies condition 2 of the proposition since

ord [(2' () — Vn4s)? — (W) — Wa46,)%] = ord [(v)? — 2% — »?]
>Nt fot+fi+ 1
ProrosiTioN 4.5. Suppose L = L; ® L, where L; is 2-modular and L, is

2™ modular. Assume that v = v; ® v, has critical indices Ny = 7, N2 = m,
exponents 1, fo, and T (v;) = 0. Let 1 be an integer such that

ord (n —v7?) > fi+fot A+ L
Then there is a decomposition L = L' ; ® L",, such that v’ = nand L' ;~ L,
L, ~ L, provided
{1 + (02, — 0)/Ts. 22/} =0

when T2 # 0 and f1 — fo = 1.

Proof. We may assume by scaling that j = 0, fo = 0. Let f = f1.
Our method is the following. We show thatiford {ve? — 9} =f+m + £ + 1
(where & > 0), then there is a splitting L = L’y @ L/, such that

ord {v/0)2 — 9} > f+m+ k 4+ 2.

This allows us to construct a sequence of vectors v ~ v ~ »® such that

lim {,'?}® = n.

1>
By the compactness of the unit sphere of F, there exists a vector w such that
v ~ w and w,®> = 7. This fact is equivalent to the result we wish to prove.

Now since »o may be embedded in an improper two-dimensional sublattice

of Ly, we may assume that L, is itself two-dimensional, improper. Choose a
basis {x, v} for L, such that x? = 92 =8, x-y = 1 where § = 0 or 62 = 4p
(mod 8). Then there are units ¢, €, and an integer ¢ > 0, such that

v = 27(ex — 2'y).
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Now let @ be any unit. Then there is a vector u,, € L,, such that
U Uy, = 2"

and ord #,? > m + 1if T'(v,,) = 0. Let u,,2 = 2™ 8 where 8 is a unit.

We let &' = x 4+ 2*u,, and L’y = x’0 + yo. Since d(L,) = d(L'y), we have
Ly~ L'y. Choose L', such that L' @ L',, = Ly ® L,,. Now let
v’y = ux’ + vy. We have

ui{d + 2% HIgY Ly = 27ed 4 270 4 2y,
w0y = 27e + 2718,

as a result of the relations v'¢-x’ = v-x" and vy y = v9-y.
We solve the above equations for u and v and then calculate (¢'y)2. Using
the facts that # > f > 0 and ord § > 1, we arrive at the congruence

{7)02 _ (vlo)z} = QrFmhtley 4 22f+2k+m+i€26 (mod 2f+m+k+2).

Nowf+m+k+1<2f+ 2k +m+ ¢ provided T'(v,) =0,0r f # 1 or
E > 0. In this case we choose u, such that 2™+ +ley = 92 — . Now if
T(v,) #0,f=1,and k = 0, then

f+m+Eek+1=2f+24+m-+17=m-+ 2.
Therefore
202 = (¥'0)% = 2™ 2(ea + €*B) (mod 2™+3),
But the hypothesis implies that there is an integer v such that
Vo2 — m = 2" (y 4+ v2).

If we choose u,, such that a = y7T'y/¢, it is easily seen that 8 = 27T/ (mod 2).
Thus

202 — (¥/0)2 = 22T (y + v%) = vo> — 7 (mod 2™+3).

This proves the proposition.

ProposITION 4.6, Letv € L = Lo @ Ly,. If the critical indices of v are Ay = 0,
\e = n, and the critical exponents are f1 = f, f» = 0, and if n 1is an integer such
that ord (v — ) > f + m + 1, then there is a second decomposition

L= L’O @ L,m

such that Lo~ Lo, L, >~ L'm, and (v'y)® = n provided:
1.0(1 + 2™ (2% — )/Ts) = 0 when T (v,,) # 0,51 = m — 1.
2. 0(1 + 2™ (2% — 9)/T1) = 0 when T (vo) # 0, 51 = 1.

Proof. If T(vy) = 0, the proposition follows from Proposition 4.5. If
T (v,) = 0, the result follows by applying Proposition 4.5 to L# = 2=™"L,, ® L,.
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We now assume that 7"(vo) # 0, T (v,,) # 0 and use the same method as in
Proposition 4.5. We assume that vy2 — y = 62™+4*¥1 where £ > 0, and 6 is
a unit. We find L'y >~ Ly such that ord { (v/4)2 — 8} >m + f + & + 2.

We choose y; € L, such that

r

Lo= 2o () @M

1

where r = 1 or 2, and
v = 21@ 2fy,-.

Given any unit e, there is a vector u,, € L,, such that w,-u, = 2™« If we let
2™8 = u,?, then B = a?/7Ts (mod 2). We define

.
L'y = .Yf@ OneM
where y'; = ;1 @ 2*u,, and y'2 = yqif r = 2. We have
(’1/0)2 — 92y = B2HIAM . GO . G2 T —192k42m (mod 2,r+k+m+2)_

We first assume that m > 2. Then {(v;) >~ (y¥’;) and therefore L’q ~ L,. Since
2k + 2m > f + m + k + 1, the above congruence is the same as the relation
obtained in Proposition 4.5. The relation ord { ¥0)2 — )} > f+m + £k + 2
can thus be solved.

Suppose now that m = 2. Then f = 1, s; = 1. The proposition follows if we
can show the existence of an « such that (y';) ~ (y,) and

(Tt + Ty 1)24 % 4 .24 = (n — 552)  (mod 24+5+1),

If 2 > 0, this is easily done. We assume & = 0. Now 7 — 9,2 = 24. A solution
to the equation (717! 4 Ty !)x% + x — & = 0 exists because the hypotheses
1, 2) imply b1 + 46/T;) = d(1 4 46/T2) = 0, which in turn implies
p(1 +46(T1 '+ T2')) = 0. Let a be an integral solution to the equation.
We need only show that (y;)=~{y';). Let v'¢-y; = 2v(¥'1)%. We have
vo-y1 = 2y:% Then (v'0)? — ve® = 4(v2(%'1)? — ¥%). Since we may choose
T, = ¥, thereis a unit u such that ¥2(y'1)?/y,2 — 1 = 4(p + p?) (by hypoth-
esis 2). Therefore (y'1)%/y:2 = (1 + 2u)2y72% 1e. (y1) >~ (y'1).

PRrOPOSITION 4.7. There is a decomposition L = 3 g L" ;suchthat L, ~ L',
and either (V"' (1y)? = Wiy or (V' (1) — Vnas)? = (W) — Way4s1)2

Proof. Let L = 3 ¢ L'; be a decomposition satisfying Proposition 4.4. Let

a1 = (V'w)?— wly and o = (@@ — Vn4a)? — (W) — W)

Then either
(1) ord Ay > )\2 +f1 +f2 + 1 or
(2) ord a2 > \g +f2 +f1 + 1.
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We also have (1) if sy = As — Ay — 1 and (2) if s; = 1. The proposition will
be true if we can find L"y,, Ly, such that L'y, ~ L"\, and

L'\, ® L'y, = L'\, ® L',

and (@"3)*— @\)?+ a; =0 for j =1 or 2. We let m = Xy, f = f1. Then,
the existence of such L'y, is a direct outcome of Proposition 4.6, provided that
(A) ¥ + 27" %a;/Ts) = 0if T'(vy) 2 0and s; = \g — A\; — 1; and
(B) (1 + 2" %q,;/T1) = 0 when T (vo) # 0 and s; = 1.
Both these conditions must be satisfied for j = 1, if (1) is satisfied, or else for
j = 21if (2) is satisfied. Now (A) is a consequence of hypothesis 5 of Theorem
4.1 (taking ¢ = 2) because if s; = m — 1, then v'(5y = v/(1y + 9'x» and

d(A + 27" () — (Whe)?}/T2) =0,

if 722 0 (mod 2). Now if s; = 1 and s; # XA — A\; — 1, (2) is satisfied and
(B) follows from (5) of Theorem 4.1 (taking < = 1). The only remaining case
is where s; = 1, fi — fo = 1, but here it is not difficult to find a decomposition
L = Y g L'; such that both (A) and (B) are satisfied.

The proof of the Theorem is now quite easy. By Proposition 4.7, there is a
decomposition L = > g L’; with L~ L’; and an integer £ = 0 or 1 such

that if
Nit-s1—k M+s1—k

x = Z@U’i and y = Z@wi'
0 0

then x? = y2 But both x and y have only one critical index, \;, and satisfy
the conditions of Theorem 3.2. Thus there is an isometry ¢ on L such that
¢(L';)) = L;and ¢(x) = y. Furthermore, both (v — x) and w( — y) have one
less critical index than v and w, and in addition they satisfy Theorem 4.1,
1-5. The proof now follows by induction.

We quote the corresponding result of Rosenzweig (3) obtained for the
non-dyadic case. The procedure in this case is greatly simplified by the fact
that non-zero modular lattices are proper, and the Jordan decomposition is
unique up to an isometry between the components.

THEOREM 4.2. Let F be a local field in which 2 is a unit. Then of v, w € L,
we have v ~ w if and only if:

1. 92 = w2

2. v, w have the same critical indices \; and exponents f;.

3.ord (vp»? — ww? > fi+ firr + Mg

The following result is also proved in (3), again for non-dyadic fields.

THEOREM 4.3. Let M, M’ be isometric sublattices of L. Then if ¢(M) = M’
is an isometry, there is an isometry ¥ on L such that Y|\M = ¢ if and only if
x ~ ¢(x) over L for all x € M.

No such result is known for the dyadic case.
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