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Abstract

A Bochner-Martinelli-Koppelman type integral formula with weight factors is derived on com-
plete intersection submanifolds of domains of C" .

1991 Mathematics subject classification (Amer. Math. Soc.) 32 A 25.

Introduction

A large part of complex analysis deals with problems of constructing holomor-
phic functions and more general analytic objects (differential forms, sections
of holomorphic vector bundles etc.) One of the most important tools for
such constructions is the d-equation (see for example Hormander [11] and
Henkin and Leiterer [9]). The version of the d-equation that one has to
study and the techniques to solve it, depend on the particular problem.

In recent years various forms of the d -equation (mostly on the complex-
analytic side of the subject) have been successfully studied using integral
formulas. These formulas are several complex variable analogues of Cauchy's
integral formula:

If D c C is a bounded domain in the complex plane with smooth bound-
ary dD then for / e C ' ( 5 ) and z e D w e have

( i ) /(r) [ / m d m A
2TH [JdD ; - z JJD C - z\

(see [11, p.3]); this is known as Ponpeju representation formula.
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[2] Integral formulas 27

It follows from (1) that for a bounded function / e c ' (D) we have

(see [11, p. 3]); in particular (2) gives a solution g of the equation dg/d'z-
f.

Generalizations of (1) and (2) to several variables consist in constructing
kernels Kq so that

/ = / fAK-fdfAK+d(ffAK)
JdD JD H

 \JD /

for appropriate domains D c C " and (0, #)-forms f in D (see, for exam-
ple, Ovrelid [12]). These are known as Bochner-Martinelli-Koppelman type
formulas and they can be modified to produce a variety of other formulas
with which the d-equation can be studied (see, for example, Henkin and
Leiterer [9, 10] and Range [13]).

More relevant to this paper is the work of Andersson and Berndtsson [2]
who constructed integral kernels with weight factors producing, in this way,
a large class of integral formulas. An example of (2) with weights is

(3) /(z) = A • dC
- z

where F(£, z) in any C -function which is holomorphic in z and F = 1
if f = z (see [2, p. 93]). If F = 1 then (3) becomes (2).

In this paper we generalize the construction of Andersson and Berndtsson
from domains of C" to submanifolds of domains C" which arise as complete
intersections. There are several applications of weighted integral formulas;
see for example Berndtsson [3], Charpentier [5], Dantov and Henkin [6] and
Skoda [14]. Berndtsson [4] recently used the construction of [2] to obtain
integral formulas in domains of complex projective space and then applied
these to study the Radon-Penrose transform. In fact we developed our in-
tegral formulas in the setting of this paper, trying to generalize the work of
[4] to the case of algebraic manifolds (complete intersections in domains of
complex projective space).

NOTATION. We will use determinants with entries differential forms: if
a{j are differential forms then

det[a,;, . . . , anj] = £ sign (a)ala{l) A . . . A ana(n)
a

where the summation is extended over all permutations a of { 1 , . . . , « } .
Thus when we write det[a, , . . . , an ] we mean that j runs from j = 1 to
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28 Telemachos Hatziafratis [3]

j = n forming the «-rows of the determinant. We will also write the same
determinant as

[ a X j . . . a n j

here we mean that j runs from j = 2 to j = n forming the 2nd up to the
n th row. If we put an integer above a column we mean that this column is
to be repeated in the determinant as many times as the integer indicates. For
properties of such determinants see [1, p. 8].

Statement of the results

Let D, Q c C" be bounded domains with smooth boundary so that
D c i l . Let h : Q -> Cp(p <n) be a holomorphic map and set K = { ( e f i :
h{Q = 0},M= VnD and dM = Vn(dD). Assume that dhx A. ..Adhp ± 0
on M and that V meets dD transversally so that M is a complex manifold
of (complex) dimension n - p and dM is a smooth manifold of (real)
dimension In - 2p - 1. Let htj e <?(£l x Q)(l < I < p, I < j < n) be
h o l o m o r p h i c func t ions in ( £ , z ) € Q x Q so tha t

Consider a c '-map s : 5 x D - » C " so that

{s,Z-z) = £>, . (C, z^j - z.) / 0 for C # z.

Moreover assume that

|s(C,z)| = 0 ( | C - z | ) and | ( 5 , C - z ) - 1 | = O ( | C - z r 2 )

uniformly in £ e Z) and z in compact subsets of D. Also let Q:D x D —>
C" be a C'-map and G(t/;) a holomorphic function of iu defined in a
neighborhood of the image of the function D x D 3 (£, z) *-+ {Q(£, z), £ -
z) e C, with (7(0) = 1 (see below for examples). In this setting we introduce
the following kernels:

k n-p-k-l

xdet[A„., . . . ,hpi,sJtdQj, d~Sj ]
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(defined for £ ^ z) and
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• • • ' hPi

where

here d = d,. + dz . Also define 0 = 0 ( 0 as follows:

- 2
det

n-p

where

d(hlt... ,hp)

With K({, z) = K(Z, z) A 0 ( 0 and P(C, z) = P(C, z) A 0 ( 0 let Kq{Q, z)
be the part of K(C, z) which is a (0, ^)-formin z and (n—p, n—p — q—l)-
form in £. Similarly define P9(C. z) from P(C, z ) . More precisely

n-p-l ? , n t _

= c E
where

' fc.ro,<
= (k\(n-p-

\m)\ q-

x det

-p-k-1

I</<P m k—m q-m n—p—q—k+m—Y

and

\<l<p n-p-q

A

Also let ^_ , = 0 .
The main result of this paper is the following Bochner-Martinelli-Koppel-

man type formula.
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30 Telemachos Hatziafratis [5]

THEOREM 1. Let f e (Cl(M)){Oq), that is (0 , q)-form with coefficients in

Cl(M). Then for &zeM,

f(z)= f f(C)AK(C,z)-[ d / (C)Atf (C,

f(QAK (C

Observing that Pq — 0 for q>\ if Q(C, z) is holomorphic in z, we obtain
from Theorem 1 the following.

THEOREM 2. If (?(£, z) is holomorphic in z then for

we have

f(z)= [ fAK-fdfAK+d(ffAK)
JdM JM \JM /

for z eM.

THEOREM 3. Suppose that Q(C, z) is holomorphic in z and that s(£, z)
is also holomorphic in z for each £ e dM. Then for f e (C(Af))(0 q^{q > 1)
with 9 / = 0 we have, in the sense of distributions, the following equation

EXAMPLES. (1) A simple choice for 5 is 5. = £. — z •, the map Q is quite
general and as for G one may choose, for example, any entire function of
w eC with G(0) = 1; for example G(w) = ew .

(2) Suppose cp is negative convex function on Q and set

Then Re((Q, £ - z) + 1) > 0 (see [2, p. 101]). Hence one may choose
G(w) — (1 + w)~N, N > 0. (For more details on this example and other
examples of choices of s, G and Q see [2, pp. 101-108]).

REMARKS. (1) Let us point out that, in view of Sard's Theorem, the as-
sumptions that M be smooth and that V meet dD transversally are satisfied
generically, in the sense that given V and D, arbitrarily small perturbations
of the system (V, dD) will satisfy these assumptions.

(2) The case Q = 0 (or G = 1) and Sj = C, - z ; for |C - z\ < small
constant, is in [8]. In fact the proof of Theorem 1 will be reduced to this
case.
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(3) The case p = 0, that is, when M — D is in [2]; although the kernels
there are introduced differently, they coincide with ours (for p = 0) .

Preparation for the proof

The proof of Theorem 1 will involve two steps: one is an application of
Stokes's Theorem and the other is a process of passing to a residue. For the
first part we will need the following lemmas.

LEMMA 1. If tp is a smooth function then
i i

det[<psj, dSj , * * * ] = (p +
 &Q\[SJ , dSj , * * *]

where * * * denote some appropriate terms which are the same on both sides
of the equation.

PROOF. Since

we obtain

det[q>Sj, d ( < p s j ) , * * * ] = det[<pSj, tpdSj + S j d i p , * * * ]

i

— d e t t ^ , <pdSj , * * * ] + (terms of the form det[<pSj, Sjdip, ...])

where the dots denote various terms.
Now the identity of the lemma follows from the above equation since

/ /

det[q>Sj, <pdSj , * * * ] = <p + det[Sj, dSj , * * *]

a n d
det[q>Sj, Sjd<p , . . . ] = ±? det[Sj, Sj... ] A dtp = 0.

L E M M A 2. For differential forms restricted (in (£ , z)) to MxM-{C = z}
we have

(1) z

PROOF. Let us consider the term
k n—p-k—\

Ak = G{k\(Q, C-z))((s, Z-z))-{H-p-k)det[ft,;, . . . , hpj, Sj,!^ , ^ ]
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32 Telemachos Hatziafratis [7]

(C 7̂  z) and write it as

k n-p-k-Y

where y, = (s, £ - z) ' s , so that

(2) < y , C - z ) = l.

The fact that we can write Ak in this way follows form Lemma 1, applied
) ~ lwith <p = (s, C - z)~l . In proving (1) we may assume £} ^ z, ; then

x det

n-p-k-l

ay,

multiplying the y th-rows of the above determinant by (£, - z,)(2 < j < n)
and adding them to the first row we obtain, in view of (2) and the fact that
C, z G M, that

hu

Therefore

n-p-fc-ll

8((Q±C-Z)) _0
d7j

(C i -^ i ,C-

A det

n-p-fc-l •

0 1 d((Q,Z-z))

0 0
dyj
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Expanding the determinants we obtain

33

(C, - zi)0Ak = (-l)pGik+l\(Q, C - z))d((Q, C - z))

Adet

k n-p-k-Y

2<j<n

+ (-l)pkG{k)((Q, C - z))d((Q, C - z))

Adet

\<l<p k-\ n-p-k'

or equivalently,

where

Bk+l =
(-1)

Adet

\<l<p k n-p-k-Y

2<j<n

for 0 < A : < n - p - l and BO = 0.
Summing from k = 0 to k = n - p - 1 we obtain

n—p—l

U-if^-zjek- £ (**+1 - *fc) = *„_,
k=0

(-1) n-p

(3)

(n-p-l)\

Adet

G(n p)((Q,Z-z))d((Q,Z-z))

n—p—Y
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On the other hand

Telemachos Hatziafratis [9]

x det

n-p

dQJ

\"-P
n-p

0
h,

d{(Q,C-z))

'\<l<pn-p-Y

(4) A det

• 2<><n

Now (3) and (4) prove that dK = P. Moreover it follows from [7, Corol-
lary 1] that dP(t) = 0 and therefore d{K A 0) = P A P . This completes the
proof of Lemma 2.

Proof of Theorem 1

The integral formula of Theorem 1 will follow as soon as we prove that
for p(z)6(C0

1(M))( n_p n_p_9 ) we have

/ f(z)Mp(z)= f ( 7 /(C)Atf (C

(f
M \JC€M

( 7 AC) A P,'q(C, z)) A <p(z).
\JieM H J

age 44 of [9]) this is equ

/ f(z)A<p(z)= [ f/\K/\(p-( OfAKAcp
JzeM J(£,z)€(dM)xM JmxM

/ (
JzeM \JieM

By degree reasons (see the remark on page 44 of [9]) this is equivalent to
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Let us keep in mind the variables of integration and the way the various
differential forms depend on them, that is

z),cp = cp{z) and / = /(£)

(unless otherwise indicated).
Since cp has compact support in M we have

(2) / fAKAf=f fAKAcp.
J(i,z)€(dM)xM Jd(MxM)

The singularities of / A K A (p in (2) occur at £ = z and the {In - 2 / 7 - 1 ) -
dimensional cycle d{M x M) surrounds "£ = z"; and this will give the
extra term (the residue term) in (1), namely fMfAq>; the other terms in
(1) arise from the "volume" integral in applying Stokes's theorem to the
right-hand side of (2). Indeed, by Strokes's Theorem,

(3) / fAKA(p=j d{fAKA<p)+ f fAKAcp
Jd(MxM) JMxM-{\i;-z\<e} JCC

where C£ = {(£, z) e M x M : |£ - z\ = e}.
By Lemma 2 and degree reasons,

lim/ d(fAKAcp)= f ~5fAKAcp + (-1)* / fAPAcp
e~t° JMxM-{\C-z\<e} JMxM JMxM

(4) + ( - l ) ? + 1 / fAKAdcp.
JMxM

Since cp = cp{z) has compact support in M, integration by parts gives,

(5) / fAKAdcp = {-l)9f{d(ffAK])Acp.
JMxM JM \JM J

Thus, in view of (2), (3), (4) and (5), the proof of Theorem 1 is reduced
to showing that

(I) timj f(OMC(C,z)*q>(z) = J J{z)Acp{z).

To prove (/) we make two reductions: one to the case Q = 0 and then
another one to the case Q = 0 and s = b where & = £ — z .

REDUCTION TO THE CASE Q = 0. This will be made by proving the fol-
lowing

(1) l im I f{QAAk{C, z) A cp{z) = 0 for \<k<n-p-\

where Ak = Ak A p {Ak was denned in the proof of Lemma 1) and

(2) l i m / /(C) A R{C,z) A cp{z) = 0
e^O Jc
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where
n-p-V

A

To prove (1) observe that

( / \ n—p-\

uniformly in £ e M and z in compact subsets of M; this follows from the
assumptions made about J and from the fact that k > 1. Hence

(3) \Ak(C, z)\ = O(e~{2n-2p)+3)

uniformly in (£, z) € Ce n (Af x supp(^>). But C£ = U{€Af{(C, z) : z € A/,
|C - z\ = e} and by Fubini's Theorem

(4)

(here Vol means (4n - 4p — 1)-dimensional HausdorflF measure). Let us
also keep in mind that e goes to 0 through e > 0 so that Ce is a smooth
{An — 4/7 — 1)-dimensional manifold; that can be done in view of Sard's
Theorem.

From (3) and (4) we obtain

/ f A A k A <p = O(e2) (k> 1)
J c .

which implies (1).

The proof of (2) is similar; indeed, by G(0) = 1 we obtain

|1 - G((Q, C - z))\ - < 9 ( | « 2 , C - z)\) = O(\C - z \ )

and therefore

Thus, as before, we obtain

which gives (2).
This completes the reduction to the case Q = 0. This means that, in order

to prove (/) it remains to prove

l i m / fALs A<p= f f{z)A<p(z)
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where Ls is K with Q = 0, that is,

\-(n-P) det

n—p—l'

Sj, l)Sj A >»(C).

Now we will show that to prove (IIs) it suffices to prove (IIb) (recall b-

£. -~Zj)- For this we need the following lemma.

LEMMA 3. For (£, z , Q e A/ X A? x C" H>#/Z (£, £ - z) ^ 0

'det

n—p—l

. . . ,hpj, Cj, d^

The proof of lemma 3 is similar to that of Lemma 2 (in fact it is simpler
as it corresponds to the case (2 = 0; see also [8, Lemma 1])

REDUCTION OF (7/^) TO (IIb). First we may assume that (s, C - z) > 0
(for C # z) since

w h e r e / =_«5, C - z)/|(5S_C -_£>|)s and (s*, f - z) = |<s, C - z)\. Define
^ : M x Af x [0, 1] -» A/ x Af x C" by >/(£, z, A) = (f, z , 5A) where
5A = A5 + (1 - A)i. Let iV = ?7*[/f] be the pullback of ft via >/. It follows
from Lemma 3 that d'N =: (d^ + dz + dx)N — 0. Now consider the integral

-L fANAfp.

By Stokes's Theorem

(1) [ NAd{fA<p)
ccx[0,\]

(here we use the equation d'N = 0) . Also

cJ = f NAlf A<p- f fALbA<p
Jct Jce

provided that e > 0 is small enough; this follows the fact that q> has compact
support in M.

But by degree reasons the integral in (1) can be written as

(2)
JCcx[0,l]

N Ad{f Aq>)
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where N is that part of N which contains the differential dk, that is,
\<l<p n-p-l

N = (constant)^, £-z) det

Hence, since (sx, £ - z) - k{s, £ - z) + (1 - A)|£ - z|2 and (5, £ - z) > 0,

N = 0(|£ - z|2 • (|C - z\-2)n-p) = 0(|£ - z r ( 2

and therefore by (2) we obtain that J(e) = O(e). Thus

l im/(e) = 0, that is, lim / N ALs A <p = lim / AT ALb A (p.

Therefore the reduction of (IIS) to (IIb) has been established.
COMPLETION OF THE PROOF OF THEOREM 1. Theorem 1 has already been

reduced to (IIs) which, in turn, has been reduced to (IIb). But (IIb) is
exactly what is proved in the proof of [8, Theorem 1]. This completes the
proof of Theorem 1.
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