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OSCILLATING PROPERTIES OF THE SOLUTIONS
OF A CLASS OF NEUTRAL TYPE
FUNCTIONAL DIFFERENTIAL EQUATIONS

A.I. Zanariev anp D.D. Bainov

The present paper deals with some oscillating and asymptotic

properties of the functional differential equations of the form‘
z"(t) + Azx"(t-1) + F(t, x(¢-1), x'(t-1)) = 0O

where A 1is an arbitrary positive constant and T > 0 is a

constant delay.

The present paper deals with some oscillating and asymptotic

properties of some functional differential equations of the form
(1) z"(t) + a"(t-t) + F(t, x(t-1), x'(t-1)) =0

where A 1is an arbitrary positive constant, and T > 0 is a constant
delay. We should point out that the oscillating properties of second order
functional differential equations when A = 0 have been studied in many
papers. Shevelo's monograph [2] contains a detailed bibliography on that

subject.
We introduce some definitions.

DEFINITION 1. We shall consider as a solution of equation (1) every

function
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L), t e [y, t] s
x(t) =

E(t) 5 b€ [ty +) ,

for every t = t. , to € lRl , where xo(t) € Cl[[to—‘r, to], lRl .
N 2 1 , .

x(t) € C [to, 400] , R and by < (to) we shall denote a right
derivative.

By W we shall denote the set of solutions of equation (1),
satisfying the condition (%) $O in every interval [Z, +») , = 2‘:0 )
and we shall assume that W # @ .

DEFINITION 2. The solution x(%Z) € W will be called oscillating if
it changes its sign in every interval [E, +®) , £ = to .

THEOREM 1. Let the conditions (A) be satisfied:

Al. the function F(t, u, v) : D > Rt (D= [to, +o) x IR2) is

continuous, F(t, 0, 0) =0 for t =t  and it satisfies

0
the inequality
F(t, u, v) sign u = p(£)f{u)
for all points (&, u, v) €D ;
A2. the function flu) : R* > R s continuous, uf(u) > 0 for
u#0 and inf|f(u)| >0 for |u| ze >0 ;

A3. the function p(t) : [to, +) > [0, +°) {3 continuous and

for every closed set E whose intersection with every

segment of the form [t, t+21] (to =t < +°°] has a measure

not smaller that T , the equality

{
(2) J p{t)dt = +=
E

holds.

Then every solution xz(t) € W will be an oscillating one.
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In order to prove Theorem 1 we need the following

LEMMA 1. Let £y ¢ R be an arbitrary fixed point, X > 0 be an

arbitrary constant and T > 0 be a constant delay. We shall assume that
the conditions (B) are satisfied:

Bl., the function o(t) : Bb’ +o) > [0, +®) 1is continuous in

the interval [to, +) ;

B2. for every t = t. the function o¢(t) + Ap(t-T) <s monotone

0
increasing and o(t) + M(t-1) =2 C, ¢ >0.

Then for every t, € [}0, +o)  there exists a set
4= {¢ | £ = ¢ = tv2r, Mlt-1) 2 B}

whose measure is not smaller than T . Here B = min(C/2, AC/2) .
Proof of Lemma 1. Let tl € [to, +w) be an arbitrary fixed point and
let us consider the set P = {t | t € [tl, t1+T], o(t) > 0/2} . If we

assume that 2 = @ , then from B2 it follows that the inequality
dp(t-T) = C/2 will hold for every t € [tl, tl+T] and therefore we could

set A = [tl, tl+'r] .

Let P # @ and let us denote by o, 0 <a =T, its measure. If we
denote by P the closure of P , then from Bl it follows that the
inequality ¢(t) = C/2 will be satisfied for every ¢t € P . Let us
consider the set P + T = {t | t-T € P} . From B2 it follows that the
inequality A(t-T) = AC/2 will hold for every ¢t € P + T . Let us set
A4 = ([tl, t1+'r] \P) u (P+1) . Since the measure of [tl, tl+~c] \P is

T - a , and the measure of the set P+ 1 is equal to that of P , then
the set 4 will have a measure T . From the definition of the sets P
and P + T it follows that the inequality Mp(£-T) = B holds for every
t € A . Thus Lemma 1 has been proved.

Proof of Theorem 1. Let us assume that there exists a non-oscillating
solution (%) of equation (1) belonging to the set ¥ . Without loss of

generality we consider that there exists a point t=zt such that

0
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x(t) >0 and x(t-T) 2 0 for every ¢ = t. (The case when there exists
a point % such that (%) <0 and x(t-1) <0 for ¢t =t follows

similarly.)

Let us rewrite equation (1) in the form

(3) [x'()+ e’ (¢-T)]" = -F(t, z(t-1), x'(t-1))

From (3) it follows that the function x'(%t) + Ax'(t-t) is a monotone
decreasing one for t© = t . 1If we assume that there exists a point t2 )
such that

z'(t,) + ! (t,-1) = -c; <0

then for every point ¢ = ¢ the inequality

2

x'(¢) + Az’ (t-T) < —Cl

is satisfied.

Integrating the latter inequality from ¢ to t > t2 , we obtain

2
(%) 2(t) + Me(e-1) = 2(t,) + M(t,-1) - ¢ (¢-t,)
After a limit transition ¢ + +° in inequality (4) we come to a

contradiction with the assumption that the function =x=(%t) is non-negative

for t =t . Therefore for every point ¢ = £ the following inequality
(5) z'(t) + Ax'(¢t-1) = 0
holds. From (3) and (5) it follows that

t
(6) 1im f_ Fs, z(s-1), z='(z-1))ds
Tt I

= [2"(B)+Ax(E-1)]1" - Llim [z'(£)+Ax’'(£-T)] < += .
£+

Furthermore from (5) it follows that x(¢t) + Ax(¢t-1) =2 C, > 0 for

2
t=>7% . Then according to Lemma 1 the intersection of the set
E={t | t=t <+, x(t-1) 2 8}, B =min(C,/2, A\(,/2) with the

segment [s, s+21] , s € [£, +°) , will have a measure not smaller than T

and therefore from conditions (A) we shall have
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J F(t, z(t-1), «'(t-1))dt = inf  f(u) J p(t)dt = +=
E uzf At B

wvhich contradicts inequality (6). Thus Theorem 1 has been proved.

DEFINITION 3. The solution a(t) € ¥ will be called kx-oscillating

[7] if there exists a number kx € R* such that the function x(t) - kx

changes its sign in every interval [, +°) , 2 to .
THEOREM 2. [Let the conditions Al and A2 of Theorem 1 be satisfied

and let the function p(t) : [t,, +°) + [0, +=) satisfy

o,

00
(1) j p(2)dt = +o .

%o

Then every solution x(t) € W will be k -oscillating.

In order to prove Theorem 2 we need the following

LEMMA 2. Let the conditions of Theorem 2 be satisfied. Then all
non-oscillating solutions of equation (1) belonging to W will have the
property lim inf |z(¢)| =0 .

Lo

Proof of Lemma 2. Let us assume that there exists a point. t =z to

such that «(t) 20 for ¢t = ¢ . The case when x(t) SO0 for ¢ = ¢ is
similar. In the proof of Theorem 1 it has been established that if there

exists a point T = to such that x(¢) =20 for ¢t = t , the following

inequality will hold:

400
(8) J_ F[t, z(t-1), 2'(t-1))dt < += .
t

If we assume that 1lim inf x(¢) = C3 > 0 then there exists a point
Lo

t), = % such that z(t-t) = 03/2 for t =t . From (8) it follows that

+o0 400
inf  f(u) I p(t)dt < J P(t, 2(t-1), 2'(t-1))dt < +=
uzC3/2 2 2

s
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which contradicts equality (7). Thus Lemma 2 has been proved.

Proof of Theorem 2. In the proof of Theorem 1 it has been established
that if there exists a point ¢ 2 to such that for ¢t = ¢ , x2(f) >0 and
x(t-1) = 0 , then
(9) 2'(t) + Ax'(t-1) = 0

holds for every ¢t =t .

From (9) it follows that the function (%) + Ax(¢t-T) is a monotone

increasing one and that is why two cases are possible:

(a) lim [x(£)+dx(t-T)] = += ;
£>400
() 1im [x(£)+rx(t-T)] = C), <+

Eoo
(the constant Ch can not be zero because xz(t) € W ).

First let us consider (a). Then from Lemma 2 it follows that for
every number Kk € (0, +®) there exists a point tk > % such that the
function x(#) - k changes its sign in every in%erval [s, +0) , s = tk ,
and therefore x(t) is k-oscillating for every k € (0, +»)

For (b) we set

k=Ci/2 =% lin [z(t)z(t-1)] ,
L0

and from Lemma 2 we obtain that (%) is k-oscillating for k = C3/2 .
Thus Theorem 2 has been proved.

Finally we give two examples.

EXAMPLE 1. We consider the equation
(10) x"(t) + x"(t-2m) + 2x(¢t-2w) = O .

In this case F(t, u, v) =2f(uw) , flu) =u , and p(t) =2 . One can
immediately verify that the functions F(t, u, v) , f(u) and p(t)
satisfy the conditions Al1-A3 of Theorem 1 and, therefore, all solutions of
(10) will be oscillating. (For example, the functions

x(t) = Cl cos t + 02 sin ¢ where Cl and 02 are arbitrary constants,
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ICll + |02| > 0 , define oscillating solutions of (10)
EXAMPLE 2. 1In the equation

(11) z"(t) + z"(t-1) + p(t)z>(t-1) = 0

we have F(t, u, v) = p(t)flu) , flu) = u , and

,

et t e [tget, tr(2hen)T]
-[t. +(2k+2)T - [t +(2k+1)1]
(2(1-e o ])/r)[t_(to+(2k+1)r)] +e O ,
p(t) =4 t € [t r(2ke)T, g+ (2k+(3/2))1]
—[t0+(2k+2)r]

(2(e -T)/T][t—[to+(2k+(3/2))1]] +T,

t ¢ [t0+(2k+(3/2)]1, tyt(2k+2)T]

\
k=o0,1, 2,

The functions F(t, u, v) and f(u) satisfy the conditions Al and A2 of
Theorem 1, and the function p(%) (p(t) >0 for t = to ) satisfies (7).

Then, from Theorem 2, it follows that there exists numbers k ,

k € (-», +°) such that all the solutions of (11) are k-oscillating.

Note. The function p(£) from (11) is an example of a function
satisfying the conditions of Theorem 2 but not satisfying the condition A3

of Theorem 1.

Actually, let us denote by £ the set

=]
E=1U

[t +2kT, t +(2k+1)T)
x=0 - O 0

whose intersection with every interval of the form [Z, t+21] has a
measure T ; then
400
-t

I plt)dt = J etat < J ™" < 4w,
E E

%o
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