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OSCILLATING PROPERTIES OF THE SOLUTIONS
OF A CLASS OF NEUTRAL TYPE

FUNCTIONAL DIFFERENTIAL EQUATIONS

A.I. ZAHARIEV AND D.D. BAINOV

The present paper deals with some oscillating and asymptotic

properties of the functional differential equations of the form

x"(t) + \x"{t-x) + F[t, x(t-x), x'(t-t)) = 0

where X is an arbitrary positive constant and T > 0 is a

constant delay.

The present paper deals with some oscillating and asymptotic

properties of some functional differential equations of the form

(1) x"{t) + Xx"(t-t) + F[t, x(t-r), x'{t-x)) = 0

where X is an arbitrary positive constant, and T > 0 is a constant

delay. We should point out that the oscillating properties of second order

functional differential equations when X = 0 have been studied in many

papers. Shevelo's monograph [2] contains a detailed bibliography on that

subject.

We introduce some definitions.

DEFINITION 1. We shall consider as a solution of equation (l) every

function
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t € [*Q-T, tQ] ,

x(t) =

{t) , t € [tQ, +») ,

for every t 2 tQ , tQ € IR
1 , where x°(t) € C H ^ - T , tQ] , IR̂ J ,

x(t) € C2 [t , +«>) , IR1 and by x'' [t ) we shall denote a right

derivative.

By W we shall denote the set of solutions of equation (l),

satisfying the condition x{t) | 0 in every interval [t, +°°) , t > t ,

and we shall assume that W + 0 .

DEFINITION 2. The solution x{t) £ W will be called oscillating if

it changes its sign in every interval [t, +°°) , t > t .

THEOREM 1. Let the conditions (A) be satisfied:

Al. the function F(t, u, v) : ID -»• IR1 (D= [* , +«.J x |R2] is

continuous, F(t, 0, 0) E. 0 for t > t and it satisfies

the inequality

Fit, u, v) sign u > p(t)f(u)

for all points (t, u, v) € D ;

A2. t?ze function f{u) : IR ->• IR is continuous, uf(u) > 0 for

u # 0 and inf|f(u)| > 0 /or |M| 2 e > 0 ;

A3. the function p(t) : [t , +<*>) •+ [0, +«>) is continuous and

for every closed set E whose intersection with every

segment of the form [t, t+2x] (i 5 t < +°°) has a measure

not smaller that x , the equality

(2) I pit)dt = -H»

>E

holds.

Then every solution xit) € W will be an oscillating one.
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In order to prove Theorem 1 we need the following

LEMMA 1. Let £_ € IFT be an arbitrary fixed point, X > 0 be an

arbitrary constant and T > 0 be a constant delay. We shall assume that

the conditions (B) are satisfied:

Bl. the function ip(t) : \tQ, +°°) •+ [0, +») is continuous in

the interval [t , +°°) ;

B2. for every t > t the function ip(t) + Xip(i-x) i s monotone

increasing and cp(t) + Xcp(t-x) 2 C , C > 0 .

2%erz / o r every t € [ t . , +°°J there exists a set

A = {t | ^ 5 t < t^+2-r, Xip(t-x) > 5}

u?zose measure is not smaller than x . Sere B = min(C/2, XC/2) .

Proof of Lemma 1. Let t € [t_, +°°) be an arbitrary fixed point and

let us consider the set P = {t \ t € [t t +T] , cp(t) > C/2} . If we

assume that P = 0 , then from B2 it follows that the inequality

Xtp(t-x) > C/2 will hold for every t 6 [t , * +T] and therefore we could

set A = [*i, *i+TJ .

Let P # 0 and let us denote by a , 0 < a 5 x , its measure. If we

denote by P the closure of P , then from Bl it follows that the

inequality q>(t) > C/2 will be satisfied for every t € P . Let us

consider the set ? + T = (t | t-T f ?} . From B2 it follows that the

inequality Xcp(t-x) > XC/2 will hold for every t € P + x . Let us set
A = ([*!> t1

+T]\p) u (P+T) • Since the measure of \t , t +x]\P is

x - a , and the measure of the set P + x is equal to that of P , then

the set A will have a measure x . From the definition of the sets P

and P + x it follows that the inequality X<p(t-x) > 3 holds for every

t € A . Thus Lemma 1 has been proved.

Proof of Theorem 1. Let us assume that there exists a non-oscillating

solution x(t) of equation (l) belonging to the set W . Without loss of

generality we consider that there exists a point t > t such that
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x(i) > 0 and x(t-x) £ 0 for every t > t . (The case when there exists

a point t such that x{t) < 0 and x(t-x) < 0 for t > t follows

similarly.)

Let us rewrite equation (l) in the form

(3) [x'(t)+Xx'(t-x)]' = -F[t, x(t-x), x'(t-x)) .

From (3) it follows that the function x'(t) + Xx'(t-x) is a monotone

decreasing one for t > t . If we assume that there exists a point t^ > t

such that

then for every point t > tp the inequality

x'(t) + Xx'(t-x) 5 -C

is satisfied.

Integrating the latter inequality from £ to t > t~ , we obtain

(h) x{t) + Xx(t-x) 5 x[t2) + Xx[t2-x) - C^t-t^ .

After a limit transition £-»•+<» in inequality (h) we come to a

contradiction with the assumption that the function x(t) is non-negative

for t > t . Therefore for every point t > t the following inequality

(5) x'(t) + Xx'(t-x) > 0

holds. From (3) and (5) it follows that

ft
(6) lim _ F[s, X(S-X), x'(x-x))ds

•£-H-°° ' t

t-x)]' - lim [x'(t)+Xx'(t-T)] < -KO .

Furthermore from (5) it follows that x(t) + \x(t-x) > C > 0 for

t > t . Then according to Lemma 1 the intersection of the set

E = {t | t S £ < -H=°, AX(*-T) > ̂ J , 6X = min(C2/2, XCg/2) with the

segment [s, S+2T] , s € [t, +«) , will have a measure not smaller than T

and therefore from conditions (A) we shall have
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f F[t, x(t-z), x'(t-j))dt > inf ftu) [ p(t)dt = +» ,

which contradicts inequality (6). Thus Theorem 1 has been proved.

DEFINITION 3. The solution x(t) € W will be called & -oscillating

%c

[?] if there exists a number k € IR such that the function x{t) - k

changes its sign in every interval [t, +°°) , t 2: t .

THEOREM 2. Let the conditions Al and A2 <rf Theorem 1 fee satisfied

and let the function p(t) : [tQ, +<*>) -»• [0, +°°) satisfy

(7)

*0

Then every solution x{t) € W will be k -oscillating.

In order to prove Theorem 2 we need the following

LEMMA 2. Let the conditions of Theorem 2 be satisfied. Then all

non-osdilating solutions of equation (l) belonging to W will have the

property lim inf |x(t)| = 0 .

Proof of Lenuna 2. Let us assume that there exists a point, t > £

such that x{t) 2 0 for t > t . The case when x(t) S O for t > t is

similar. In the proof of Theorem 1 it has been established that if there

exists a point t > t such that x{t) > 0 for t > t , the following

inequality will hold:

,+co

(8)
,+co

_ F(t, x(t-x), x'(t-j))dt

If we assume that lim inf x{t) > C. > 0 then there exists a point

> 1 such that a;(t-x) > C /2 for t > t^ . From (8) it follows that

J.+CO ,+00

inf f(u) p(t)dt < f(t, x(t-i), x'(t-T))dt < +« ,
u>C,/2 Jt, J*,'3/ 2
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which contradicts equality (7). Thus Lemma 2 has been proved.

Proof of Theorem 2. In the proof of Theorem 1 it has been established

that if there exists a point t > t such that for t > t , x{t) > 0 and

X(*-T) > 0 , then

(9) x'(t) + \x'(t-T) > 0

holds for every t 2 t .

From (9) it follows that the function x{t) + \x(t-r) is a monotone

increasing one and that is why two cases are possible:

(a) lim [x(t)+Xx(t-T) ] = +°° ;

(b) lim [x(t)+\x(t-i)] = C, < +<» ;

(the constant C, can not be zero because x(t) £ W ).

First let us consider (a). Then from Lemma 2 it follows that for

every number k € (0, +°°) there exists a point t, i t such that the

function x{t) - k changes its sign in every interval [s, +°>) , s 2 i,

and therefore x(t) is /c-oscillating for every fe € (0, +») .

For (b) we set

k = CJ2 = % lim |>U)+Aa:(*-T)] ,

and from Lemma 2 we obtain that x(t) is fe-oscillating for k = C_/2 .

Thus Theorem 2 has been proved.

Finally we give two examples.

EXAMPLE 1. We consider the equation

(10) x"(t) + x"(t-2-n) + 2x(t-2v) = 0 .

In this case Fit, u, v) = 2f(u) , f(u) = u , and p(t) = 2 . One can

immediately verify that the functions F(t, u, v) , f(u) and p(t)

satisfy the conditions A1-A3 of Theorem 1 and, therefore, all solutions of

(10) will be oscillating. (For example, the functions

x(t) = C^ cos t + C^ sin t where C and C are arbitrary constants,
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\C I + \C \ > 0 , define oscillating solutions of (10)

EXAMPLE 2. In the equation

(11) x"(t) + X"U-T) + = 0

we have F(t, u, v) = p(t)f(u) , fiu) = if , and

pit) =

"* , t (. [t +2kT, t +(2&+1)T] ,

-x)/x)[t-[to+(2?c+(3/2))x)] + x

t € [*0+(2

k = 0, 1, 2, ... .

The functions F(t, u, v) and /(u) satisfy the conditions Al and A2 of

Theorem 1, and the function p(t) {pit) > 0 for t > t ) satisfies (7).

Then, from Theorem 2, it follows that there exists numbers k ,

k € (_<», +°o) such that all the solutions of (ll) are fe-oscillating.

Note. The function pit) from (ll) is an example of a function

satisfying the conditions of Theorem 2 but not satisfying the condition A3

of Theorem 1.

Actually, let us denote by E the set

CO

E = U [>.+2fcx, t.+(2fc+l)x]
k=o ° °

whose intersection with every interval of the form [t, t+2x] has a

measure x ; then

pit)dt = e cdt <
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