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The classical Helmholtz–Smoluchowski (HS) model of electroosmosis holds for
homogeneously charged interfaces in contact with a fluid layer bearing an equal and
opposite net charge. However, inhomogeneities in the surface charge and topography
are inevitable, either as practical materials and fabrication artefacts, or at times as
deliberately introduced modulations for flow control. In an effort to arrive at an analytically
tractable theoretical framework for addressing the underlying electro-mechanical coupling,
here, we generalize the traditional HS theory to an extent where both the surface
charge and topographies may bear arbitrary and independent periodic forms. Using a
spectral-asymptotic approach, we further arrive at closed-form expressions for describing
the resulting electroosmotic pumping for topographic features with small characteristic
amplitude to pattern period ratio, as relevant for most practical scenarios. We subsequently
execute full-scale numerical simulations without any restrictions on the surface charge
and topography variations to assess the efficacy of the theoretical framework. The
corresponding test beds include distinctive signature patterns – for example, a square-wave
surface charge distribution on trapezoidal pit topographies. Our results reveal that
the charge–topography interplay induces an anisotropic flow drift, deviating from the
classical HS paradigm. This, in turn, provides new quantitative insights into highly
selective electroosmotic flow control via judicious design of the charge and topographical
patterns, resulting in controllable accentuation, attenuation, nullification, deflection and
even complete reversal of the flow. Our analysis further establishes a provision of
estimating the zeta potentials of naturally ‘contaminated’ surfaces, as well as explaining
the electrophoresis of large inhomogeneous particles; a paradigm that remained to be
explored thus far.
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1. Introduction

An electric field, when applied tangentially to a charged solid–liquid interface in an
overall electrically neutral system, tends to pull the excess ions in the liquid along with
itself. The liquid, thus, gets forced to move via viscous interactions along with the excess
counterions, resulting in bulk liquid motion relative to the solid boundary, known as
electroosmosis or electroosmotic flow (EOF) (Hunter 2013). The resulting flow velocity
is known to depend on the electrical permittivity and viscosity of the liquid, the applied
electric field and the electrical potential built up at the interface, as commonly expressed
in terms of the zeta potential as per the traditions in colloidal electrochemistry. The zeta
potential, despite being conceptually straightforward, however, may not necessarily be
trivial to ascertain in practice, as attributable to its complex dependence on the substrate
composition and the solution chemistry (Kirby & Hasselbrink 2004). Irrespective of such
evidently complex confluences, nevertheless, their resulting culmination in modulating
the consequent interplay of electromechanics and hydrodynamics is commonly described
by an elusively simplified albeit highly insightful conceptual depiction via the celebrated
Helmholtz–Smoluchowski (HS) model. This model relates the EOF velocity to the zeta
potential of the substrate, the permittivity and viscosity of the ionized liquid in contact
with the same and the applied electric field. Despite its overwhelming simplicity, this
conceptual paradigm constitutes a deep-rooted theoretical foundation for the interpretation
of electrokinetic measurements (Hunter 2013) and its applications in areas such as
microfluidics and separation science (Dubov, Molotilin & Vinogradova 2017; Biagioni
& Cerbelli 2022).

The classical HS theory is built upon two major underlying assumptions, namely, a
homogeneously charged interface and a topographically uniform substrate. In practice,
however, deviations from such idealized electrokinetic interfaces may not only be the
obvious artefacts of real-life materials and manufacturing processes but also be introduced
artificially via strategic chemical patterning, embedded electrodes and imposition of
deliberate pH and salt concentration gradients (Stroock et al. 2000; Pirat et al. 2008;
Cho, Chen & Chen 2012; Prakash & Conlisk 2016; Ramos, García-Sánchez & Morgan
2016; Werkhoven et al. 2018; Ault, Shin & Stone 2019; Paratore et al. 2019a; Startsev &
Inglis 2019; Al Hossain et al. 2020; Ravnik & Everts 2020; Boyko et al. 2021; Pial et al.
2021). In an uncontrolled condition, the incidental spatial variations in the zeta potential
may result in unwarranted solute dispersion in capillary electrophoresis and isoelectric
focusing (Datta & Ghosal 2009). On the other hand, if judiciously designed, such patterned
interfaces may serve the purpose of tuneable flow control and mixing by creating vortex
patterns that may otherwise be difficult to realize in low-speed hydrodynamics (Lee et al.
2005; Chang & Yang 2006; Huang et al. 2007; Ghosh & Chakraborty 2012; Dehe, Rehm
& Hardt 2021).

With advents in laboratory-standardized micro- and nano-fabrication and surface
engineering technologies, a patterned zeta potential, which remained previously as a
mere theoretical proposition (Ajdari 1995; Ghosal 2002; Datta, Ghosal & Patankar
2006; Ohshima 2015; Bolet, Linga & Mathiesen 2018; Boyko et al. 2020), could be
brought to the experimental realm, focusing the spotlight on applying the same in
augmenting micromixing (Stroock & Whitesides 2003; Cho et al. 2012; Biagioni &
Cerbelli 2022), cloaking and shielding of objects (Boyko et al. 2021), and improving
other measures for flow control and transport (Dubov et al. 2017; Dehe et al.
2020). One central theoretical finding that could thus corroborate several experimental
outcomes concerned the consideration of a spatially averaged effective zeta potential
for quantifying the net flow over charge-modulated interfaces (Stroock et al. 2000;
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Generalizing EOF predictions over charge-modulated topography

Kirby & Hasselbrink 2004), which served the purpose of deriving essential theoretical
insights except for the situations where non-equilibrium effects such as those arising from
non-uniformities in ionic conduction could result in significant deviations in the interfacial
electrochemistry (Khair & Squires 2008; Khair & Balu 2020). However, providing insights
into highly localized flow control over surface topographical scales remained beyond the
purview of these simplified theories, as attributed to a coarse graining of the key interfacial
influences.

Dramatic recent advancements in nanotechnology, precision engineering and additive
manufacturing fostered the realization of surface topographies with highly intricate
features, spatially resolved up to the scale of the electrical double layer (Stroock &
Whitesides 2003; Qin, Xia & Whitesides 2010; Lim et al. 2017; Liu et al. 2020; Cheng
et al. 2021), ushering new vistas in augmented micromixing (Stroock & Whitesides
2003), electroosmotic pumping with a wide range of control features (Gitlin et al. 2003)
and highly efficient separation of solutes (Dubov et al. 2017; Goyal & Datta 2022).
Gate electrodes have been embedded inside micro-fabricated capillaries with periodically
repeating convergent–divergent sections (Kateb, Kolahdouz & Fathipour 2018; Kateb,
Fathipour & Kolahdouz 2020), thus bringing current technology closer to realizing
controlled charge modulation over a topography, although these capillaries are yet to be
employed in experiments to convey electrolytes.

Despite such progress and the notable early contributions from Ajdari that consider
sinusoidal grooves and sinusoidal surface charge patterning decorating the same (Ajdari
1996) as well as opposite (Ajdari 1995) walls of a plane channel in the thin Debye
layer limit, the role of a simultaneous and possibly independently configurable patterned
variation of the zeta potential and the surface topography remained underemphasized.
A study formulated to accept, as independent inputs, distinct shape functions for the
co-existent topographical and surface-charge modulations on a solid–liquid interface,
rather than using predetermined shapes like sines, uniform values, steps and boxcars, is
absent in the literature. Summarily, while the theoretical propositions on simple sinusoidal
topographies of solid boundaries (Ajdari 1996; Shu et al. 2010; Chang et al. 2016; Lei
et al. 2017; Lei, Chang & Wang 2019) or their modifications to more complicated forms
(Goyal & Datta 2022) emerged to be insightful, these remained inadequately coupled with
the consideration of a realistic variable surface-charge distribution so as to unveil their
intricate interplay and the resulting consequences in unexplored avenues of non-trivial
flow control.

Intuitively, one may superimpose the effects of the charge and topographical
modulations to explain the electroosmosis over interfaces that are simultaneously
patterned in terms of their geometries and induced electrical voltages (or local charge
densities). However, the resulting electro-fluidic coupling remains far from being well
understood, except for electroosmosis in slit microchannels having thicknesses much
smaller than the surface waviness length scales so that the lubrication theory may be
leveraged to explain the electro-fluidic coupling over the charge-modulated interfaces,
irrespective of the surface topography (Ghosal 2002; Yoshida, Kinjo & Washizu 2016;
Qi & Ng 2018). In addition, the reported studies in this regard remained restrictive
to sinusoidal and other pre-defined profile variations in the topographies (Ajdari 1996;
Jain & Nandakumar 2013; Masilamani et al. 2015; Bera & Bhattacharyya 2018), with
no particular emphasis on the dynamically coupled electro-fluidic interactions stemming
from the patterning waveforms of the surface charge and topography. Reported results
on special cases conforming to the applied electric field being aligned parallel to
the surface features, thin electrical double layer (EDL) limits and weakly charged
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Figure 1. (a) One periodic cell of a charge-modulated topography (CMT) of length L, and (b) a CMT with
grooves oblique to the applied electric field direction ξ . The axis ξ is inclined at an angle α to the direction of
patterning (x). The resultant far-field ( y → ∞) electroosmotic velocity U∞ is deflected from E by an angle δ
(here, counter-clockwise).

surfaces (Messinger & Squires 2010) also remained somewhat restrictive in extrapolating
to more generalized scenarios of an arbitrarily applied electric field interacting with
topographically modulated interfaces having arbitrarily distributed periodic charges,
which is the central focus of the present work.

Here, we report insights into the coupled effect of surface charge and topographical
patterning on electroosmotic transport over surfaces having arbitrary periodic variations.
Particular emphasis is laid on exploring the routes to flow accentuation, deflection and
reversal in contrast to the previously established notion of trivial suppression of the EOF
via surface corrugations (Messinger & Squires 2010; Goyal & Datta 2022), so as to
strategize more versatile EOF control as compared with what has been realized thus far.
With this vision, we first develop a semi-analytical framework based on the boundary
perturbation approach, where the patterns of surface charge and topography may be
taken as arbitrary, with only one restrictive assumption that the ratio of the characteristic
topographic feature size to its wavelength is small, whereas the magnitude of the surface
charge remains unconstrained within the physical limits of the chosen EDL model. These
considerations are further substantiated by executing fully coupled electromechanics and
hydrodynamics simulations. We subsequently put forward illustrative examples where the
various parameters may be exploited in tandem to deliberately deflect, reverse, augment
and suppress EOF at will, without altering the direction of the applied electric field.
These results are also shown to offer new insights into the interpretation of zeta potential
measurement that remains a continuously debated topic in electrokinetics (Hunter 2013).

2. Theoretical formulation

We consider an electric field (Eext) driving an incompressible electrolyte of viscosity
μ, relative permittivity εr and Debye length 1/κ over the charge-modulated corrugated
topography (CMT). Here, κ is termed the Debye-Hückel parameter. Figure 1(a) shows a
periodically repeating unit of length L of a representative topographical feature, which
also has a periodically varying zeta potential. The zeta-potential distribution has the
characteristic amplitude ζ

scale
. For example, ζ

scale
could be half the difference between the

maximum and minimum values of the spatially varying zeta potential, as considered for
the illustrative scenarios exemplified herein. Here, and in similar instances in the article,
the bar below a symbol indicates a dimensional variable, whereas the corresponding
dimensionless counterpart is denoted by the same symbol without the underbar.

We consider the characteristic small-scale feature size of the topography to be a. The
ratio of the same to the inverse of the wavenumber gives a dimensionless amplitude,
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ε = 2πa/L. This parameter will be taken as small for any subsequent asymptotic analysis.
If the fundamental (smallest) period of the charge modulation Lζ and topography Lh are
different, the distance L is to be evaluated as the least common multiple of Lζ and Lh.
Further, the asymptotic analyses will require that a/Lζ = O(ε) and a/Lh = O(ε).

Figure 1(b) shows a configuration that generalizes our chosen configuration with
oblique grooves. Here, Eext is directed along ξ , and is inclined to the grooves which run
along the z direction. This configuration can be reduced through the tensorial mobility
concept (Kamrin, Bazant & Stone 2010) into the solution of two canonical problems,
where the electric field far away from the surface is either directed along the grooves
(parallel flow) or across the grooves (perpendicular flow). In this section, both problems
will be analysed separately after the distribution of charges common to both of them
is calculated. The electrostatics within the EDL are analysed assuming the validity of
Debye–Hückel linearization of the Poisson–Boltzmann equation, which is justified at
electrostatic potentials comparable to or smaller than the thermal voltage (Hunter 2013).

Using the scale L/2π for the distance, ζ
scale

for the equilibrium EDL potential and
EextL/2π for the externally imposed voltage, the HS reference velocity reads: UHS =
−εrε0ζ scale

Eext/μ, where ε0 is the permittivity of the free space and εr is the dielectric
constant of the solution. Taking 2πμUHS/L as a reference scale for the pressure, the
equations governing the dimensionless fields of the EDL potential (ϕ), voltage (V) due to
the externally applied field, velocity (U) and the pressure p in excess over the equilibrium
EDL pressure read (Hunter 2013)

∇2ϕ = k2ϕ, (2.1a)

∇2V = 0, (2.1b)

∇2U = (∇p)+ (∇2ϕ∇V), (2.1c)

∇ · U = 0. (2.1d)

In (2.1), k = κL/2π is a dimensionless number signifying the characteristic EDL
thickness to pattern period ratio. The (signed) dimensionless location of the topography
measured from the metrological mean plane y = 0 is expressed as y = εh(x). The plane
y = 0 is so chosen that 〈h(x)〉 = 0. Here, 〈· · · 〉 = 1/2π

∫ π

−π
· · · dx is the spatial average

of any quantity · · · over a dimensionless period (2π). The unit normal on any location
within the topography is n̂ and the local normal coordinate is n. Equation (2.1a) governs
the electrostatic distribution of ions under the Debye–Hückel approximation and (2.1b) is
a form of the principle of conservation of charge at steady state under the assumption
of ohmic conduction. Equations (2.1c) and (2.1d) govern the steady incompressible
body-force-driven viscous flow with vanishing inertial effects, as typical for microscale
problems (Prakash & Conlisk 2016; Paratore et al. 2019b).

For the boundary conditions, the quantities (ϕ − ζ(x)), ∂V/∂n, U are set to zero on
the corrugated surface, implying a prescription of the spatially variable zeta potential,
zero current flux for an ohmic electrolyte through insulating walls and no slip as well
as no penetration at the solid boundary. The external electric field E = −∇V and
the other dependent variables are 2π periodic and remain bounded as y → ∞. The
boundary conditions are detailed in Appendices A and B. For the subsequent analysis
following the boundary perturbation approach, it is assumed that the corrugated surface
makes only small excursions from the mean plane of the topography. This implies that
the dimensionless geometric feature size ε = 2πa/L is small. However, no asymptotic
approximation is required regarding the nature of the surface charge variation.
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In the following, the patterning functions h(x) and ζ(x) will be expanded in their
respective complex Fourier series with ζn and hn denoting the complex Fourier
coefficients. Note that h0 = 〈h(x)〉 = 0 is already ensured by the choice of the plane y = 0
in figure 1 as the metrological mean plane (Whitehouse 2023).

2.1. The charge distribution in the electrolyte
The dimensionless local charge density in the electrolyte is given by −k2ϕ under the
Debye–Hückel approximation. The potential distribution governed by (2.1a) can be solved
using an asymptotic expansion of the form ϕ = ϕ0 + εϕ1 + O(ε2), along with a boundary
perturbation approach. The solution process is explained in detail in Appendix A. The final
expression for ϕ, accurate up to first order of ε is

ϕ =
∑

n

ζn exp(−Pny) einx + ε
∑

n

exp (−Pny) einx
∑

m

Pmζmh(n−m) + O(ε2). (2.2)

Here, Pn = √
k2 + n2 and i = √−1. In the preceding equation, and all equations to follow,

the indexing variable of any summation (Σ) indicated with a letter (here, m) belowΣ runs
over integers from −∞ to ∞ in steps of one, e.g.

∑
m = ∑∞

m=−∞.

2.2. Parallel flow: the electric and flow fields
When an external electric field is applied along the groove-parallel z-direction (α = π/2
in figure 1b), the symmetries of the creeping flow problem implicate that the electric field
is a constant and the flow is unidirectional. In terms of the dimensionless variables, E = k̂
and u = w(x, y)k̂, k̂ being the unit vector along z. The electric body-force-driven Stokes
equation (2.1c) for the parallel flow simplifies to ∇2w = −∇2ϕ, which can be expressed
as follows, using the auxiliary variable χ = w + ϕ:

∇2χ = 0. (2.3)

The wall boundary condition on χ is the same as that for ϕ if no slip is enforced on w.
Far-field ( y → ∞) boundedness is also imposed on χ in the same way as ϕ. This makes
the problem for χ as the k = 0 case of that for ϕ. As w = χ − ϕ, it follows that

w = −ϕ +
∑

n

ζn exp (−|n|y) einx + ε
∑

n

exp (−|n|y) einx
∑

m

|m|ζmhn−m + O(ε2),

(2.4)
where ϕ is calculated from (2.2).

2.3. Perpendicular flow: the electric field
Unlike in parallel flow, if an external electric field is applied along the x-direction (α = 0
in figure 1b), the electric field no longer remains uniform along the flow. Due to surface
modulations in the field direction, the electric field lines are denser where the surface
slopes upward and sparser where the surface slopes downward. This non-uniform electric
field, in turn, affects the body forces on the fluid and the resultant fluid motion.

The potential can be decomposed as V = −x + Ṽ where the first term signifies the linear
far-field component of V . The near-field part Ṽ represented by the second term originates
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Generalizing EOF predictions over charge-modulated topography

from the effects of the topography. The condition of no current conduction across the
insulating surface leads to

ε(1 − Ṽx)hx(x)+ Ṽy = 0. (2.5)

In (2.5) and subsequent numbered equations, the presence of an independent variable in
the subscript indicates differentiation with respect to the variable; e.g. ϕy is the partial
derivative of ϕ(x, y) with respect to y, hx(x) is the x derivative of the function h(x) and so
on. The following expansion for V is obtained on solving (2.1b) with (2.5) for Ṽ

V = −x + ε

(∑
n

sgn(n)ihn einx exp(−|n|y)
)

+ O(ε2). (2.6)

Here, sgn is the signum function, which is zero for n = 0 and n/|n| for other integers.

2.4. Perpendicular flow: velocity field
The flow perpendicular to the grooves is two-dimensional. Both the net charge density and
the electric field driving the flow are spatially variable. Invoking a streamfunction ψ , the
governing equation can be expressed as (Datta & Choudhary 2013)

∇4ψ = k2(ϕyVx − ϕxVy). (2.7)

The two-term approximation ψ = ψ0 + εψ1 + O(ε2) can be described as follows:

ψ0 =
∑

n

(C1n + yC2n) exp(−|n|y) einx +
∑

n

An exp(−Pny) einx, (2.8)

ψ1 =
∑

n

(D1n + yD2n) exp(−|n|y) einx +
∑

n

A1n exp(−Pny) einx

+
∑

n

einx
∑

m

A2nm exp(−(Pm + |n − m|)y). (2.9)

The constants C1n, C2n, D1n, D2n, An, A1n and A2nm are the coefficients given in
Appendix B.

The first-order accurate formula for the streamwise velocity is given by

u = ψy = ψ0y + εψ1y + O(ε2). (2.10)

Henceforth, for conciseness, the order symbols will be dropped with the understanding
that the subsequent analytical findings are O(ε) accurate.

2.5. Bulk electroosmosis
Equations (2.4) and (2.10) provide the distribution of velocity in parallel and perpendicular
flow, respectively. Notably, the y-independent mode n = 0 of either of these two equations
furnishes a non-zero O(ε) correction to the far-field velocity, whereas all other modes
decay exponentially with y. For flow parallel to the grooves, the far-field velocity can be
found by setting n = 0 in (2.4). With the observation that, for a real-valued topography
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function, h(−m) = h∗
m, the far-field velocity for parallel flow is given by

w∞ = lim
y→∞ w = ζ0 + εS1︸︷︷︸

drift

, (2.11a)

S1 =
∑

m

|m|ζmh∗
m. (2.11b)

Here, and henceforth, the asterisk indicates complex conjugation. The meaning of ‘drift’
in the EOF outside the EDL, as interpreted in the current study, is concisely indicated in
(2.11) through the brace placed under the corresponding (dimensionless) term that solely
contributes to this phenomenon.

For flow perpendicular to the grooves, setting n = 0 in (2.10) evaluated using (2.8), and
(2.9), the expression for u∞ becomes, after routine algebraic simplifications,

u∞ = lim
y→∞ u = ζ0 + ε(3S1 − S2)︸ ︷︷ ︸

drift

= w∞ + ε(2S1 − S2), (2.12a)

S2 = 4
∑

m

m2

Pm + |m|hmζ
∗
m. (2.12b)

Equations (2.11) and (2.12) are the generalized HS equations (in dimensionless form) that
the current article set out to derive. It follows from (2.12a) that the ratio |u∞/w∞| of
perpendicular-to-parallel-flow speed may be either larger or smaller than unity.

An alternative, albeit more compact way to express (2.11) and (2.12) is

lim
ε→0

∂(w∞/u∞)
∂ε

= S (2.13a)

S =
∞∑

m=−∞
K(|m|, k)hmζ

∗
m = 2

∞∑
m=1

K(|m|, k)Re(ζmh∗
m) (2.13b)

K(|m|, k) =

⎧⎪⎨
⎪⎩

|m| : ||flow,

3|m| − 4m2
√

m2 + k2 + |m| :⊥ flow.
(2.13c)

The terms with braces under them in (2.11) and (2.12) signify the electroosmotic ‘drift’
effect and are labelled accordingly. A positive value for either of these terms is termed
‘forward drift’, which will reinforce the electroosmosis over a net positive charged surface
(〈ζ 〉 > 0). Similarly, a negative value for either of these terms is termed ‘reverse drift’,
which will attenuate the electroosmosis over a net positive charged surface.

In (2.13), the symbols || and ⊥ stand for parallel (w∞) and perpendicular flow
(u∞), respectively, and Re denotes the real part of a complex number. Appendix C
provides a derivation of the second equality in (2.13b). The leading ε-independent term
of (2.11) and (2.12) indicates that, if the surface is planar, the far-field effect of any
periodic zeta-potential distribution ζ(x) is equivalent to that of its arithmetic mean ζ0 =
(1/2π)

∫ π

−π
ζ(x) dx. The second term symbolizes the additional effect of the non-planar

surface topography εh(x) on the far field. Note that, as h0 = 0, ζ0 = 〈ζ(x)〉 does not
appear in the second term of either (2.11) or (2.12). Essentially, the spectral modes of the
zeta-potential defect function (ζ(x)− 〈ζ(x)〉) and the topographical pattern interplay to
produce the additional drift symbolized by the second term. Note that this is an effect of the
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topography that persists outside the screening charge cloud or the EDL (when appreciable
modulation in surface charge exists). This fact is emphasized by the use of the term ‘far
field’ in the current article. Another term with similar import to the context at hand could
be ‘long range’.

In case the coefficients hm and ζm are such that the sum(s) in (2.13b) are divergent
(Dewangan & Datta 2020), the current perturbative analysis fails. One situation where this
may happen is when both the charge and surface profiles have jump discontinuities, which
leads to O(1/n) decay of spectral coefficients (Canuto et al. 2012). Such a situation is
symptomatic of a need for a different set of gauge functions than powers of ε (Asmolov
et al. 2013).

Interestingly, in parallel flow (2.11) the far-field velocity has no explicit Debye-length
dependence, which is not the case in perpendicular flow (2.12), due to the k-dependence
of S2. It follows from the limiting form of (2.11b) and (2.12b) at small k that S2 approaches
2S1. On the other hand, for large k, S2 approaches 0. The above results can be summarized
as

uk∞ ≡ lim
k→∞

u∞ = ζ0 + 3εS1 = w∞ + 2εS1 Thin EDL (2.14a)

uk0 ≡ lim
k→0

u∞ = ζ0 + εS1 = w∞ Thick EDL, (2.14b)

where the symbol ≡ stands for ‘is defined as’. Thus, only in perpendicular flow can the
Debye length be used to veil at small k (thick EDL) and unveil at large k (thin EDL) the
electroosmotic-motion-intensifying effects of the non-uniform external field calculated in
§ 2.3, while the electric field is uniform in parallel flow. The above k-dependent behaviour
has an important consequence for the response of patterns aligned obliquely to the electric
field (figure 1b), as discussed in § 3.3 later.

Comparing (2.11) with (2.14a), we obtain the strikingly universal finding that, for
sufficiently thin EDLs, the change in the EOF due to surface topography is three times
stronger in perpendicular flow than in parallel flow, regardless of the specific shape of the
surface topography and the surface charge pattern.

Ajdari (1996), in its Section V, provides a rare theoretical analysis of the situation where
charge variation and corrugation coexist on a channel wall. However, the pattern shapes
in this study are restricted to 2π/q-wavelength cosine waves (with the corrugation leading
the charge modulation by a phase angle Φ). The patterning occurs on one wall of a plane
channel of mean width 2h, the other wall of which is uncharged. The analysis of Ajdari
(1996) is based on the thin EDL approximation, thus corresponding to the k → ∞ limit of
the current semi-infinite-electrolyte but finite-Debye-layer analysis, provided qh is chosen
to be large enough in Ajdari (1996) for the two walls to act independently. Reassuringly,
the large qh limits of the right-hand sides of the flow rate expressions (66) for parallel flow
and (59) for perpendicular flow from Ajdari (1996), when divided by h (as appropriate
for the shear flow prevailing over most of the channel except small O(1/q) recirculatory
zones), give expressions identical to the dimensional counterparts of (2.11) and (2.14a),
when the small parameter α of Ajdari (1996) is related to ε through ε = αqh, and the sum
S1 in (2.11b) is evaluated using the special values ζn /= 1 = hn /= 1 = 0, ζ1 = ζ−1 = 1/2,
h1 = h−1 = 1/2 exp(iΦ). A more elaborate discussion on this comparison is provided in
Appendix F.
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3. Results and discussion

Formally, the asymptotic predictions of § 2 are applicable to ‘sufficiently’ small values of
ε, where the limiting smallness ensuring this condition remains to be numerically assessed.
We assess this implication through numerical comparisons with an approach that is not
formally restricted to small ε. For such comparisons, the functions ζ(x) and h(x) need
to be given specific forms. These issues are addressed in § 3.1. As a by-product of this
analysis, we obtain new closed-form analytical predictions for specific shape functions
of the spatial modulation of charge and topography. Finally, §§ 3.2–3.5 discuss certain
non-intuitive consequences of the interplay between topography and charge modulation,
along with their possible practical significance.

3.1. Test problems: asymptotic theory vs numerical simulations
Due to their formal restriction to small values of ε, the analytical predictions of § 2 are
assessed here against the numerical simulations not using this assumption. Towards this
end, finite-element-method-based solutions of (2.1)) were obtained using the commercial
software COMSOL Multiphysics�. The methodological details of the simulations are
discussed in Appendix D.

A CMT is defined through a combination of zeta potential and surface height
distributions. Four different CMTs are used for the numerical comparisons. Except
for the first (CMT I: ζ(x) = h(x) = cos(x)), the remaining topography charge pattern
combinations are shown in the left panels of figure 5 of Appendix E. The key findings
on each topography are tabulated in table 1. Crucially, the third and fourth columns of
the table report the analytically calculated rate of change of the far-field electroosmotic
velocity with the dimensionless amplitude in transverse and longitudinal flow, respectively,
as evident from (2.11), (2.12) and (2.13a). The ζ -profile in each model profile has zero
average (ζ0 = 〈ζ 〉 = 0), to enable convenient isolation of the effects of the interplay.
Smooth surface and charge profiles, as well as non-smooth profiles with ‘jumps’ and
‘corners’, are chosen to impart generality into the analysis.

The first CMT (labelled CMT I) shows the continuous function cos(x) for the surface
and charge variation profile as an example of a continuously varying profile. In the second
and third model problems (CMTs II and III), the charge is shown to vary discontinuously,
assuming only two values +1 and −1. In CMT II, the surface has a triangular profile,
whereas in CMT III the surface has trapezoidal variations. In the fourth model problem
(CMT IV), the surface variation is taken as a sawtooth-shaped profile exhibiting a jump
with a ‘cornered’ triangular charge profile (with odd symmetry) over it. Both profiles in
CMT IV have odd symmetry, while all other CMTs have profiles with even symmetry.

The second and third columns of table 1 show the spectral coefficients required by (2.11)
and (2.12) for the four CMTs. The third and fourth columns headers limε→0(∂w∞/∂ε) and
limε→0(∂u∞/∂ε) represent an alternative way to summarize the analytical prediction of
(2.11) and (2.12) (see also (2.13)). Closed-form analytical predictions for the parallel flow
problem based on (2.11) and the thin-Debye-layer limit transverse flow problem based
on (2.14a) are consolidated in the third column utilizing a known mathematical constant
(OEIS 2021) for the series sum S1 for all except for the third model problem. For the third
problem, the required series are summed numerically up to five decimal place accuracy.
The effect of finite EDL thickness is shown graphically in the right-hand side panels of
figure 5 (except for the cosine profile where an analytical result is reported in table 1. The
curves in figure 5 utilize numerical series sums of the k-dependent series S2.
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Generalizing EOF predictions over charge-modulated topography

CMT ζn hn S1 (3S1 − S2)

CMT I
1
2
δ|n|1

1
2
δ|n|1

1
2

3
2

− 2√
k2 + 1 + 1

CMT II
2 sin

(nπ

2

)
nπ

⎛
⎜⎝2 sin

(nπ

2

)
nπ

⎞
⎟⎠

2

16G
π3 � 0.47266 Plotted vs k in figure 5

CMT III
2 sin

(nπ

2

)
nπ

12 sin
(nπ

2

)
sin
(nπ

6

)
n2π2 �0.94532 Plotted vs k in figure 5

CMT IV
−i
nπ

−4i sin
(nπ

2

)
n2π2

8G
π3 � 0.23633 Plotted vs k in figure 5

Table 1. The four CMTs for numerical comparisons with corresponding spectral-asymptotic results for
evaluating (2.11) in parallel flow, and (2.12) in perpendicular flow. In the second and third rows, G =
0.91596 · · · is the Catalan constant (OEIS 2021).

Next, we make graphical comparisons between the numerical and asymptotic
approaches. To understand the limit of applicability of the developed asymptotic theory,
the largest ε value is shown on all the twelve panels of figures 2 to 4 to correspond to
approximately 5 % relative error between the numerical and analytically predicted values.

The equilibrium electrostatic distribution of the ions is governed by the potential ϕ,
regardless of the orientation of the applied electric field with respect to the stripes. Figure 2
shows the arithmetic mean 〈ϕ〉 of the EDL electrostatic potential ϕ at the level y = ε of
the peaks. The 〈ϕ〉 values are calculated using (2.2) for k = 1. The presence of topography
makes a net uncharged surface (CMTs I–IV) appear charged (non-zero 〈ϕ〉) at the peak
level ( y = ε). This effect is encoded by the second term of (2.2); the pattern shapes
interplay into it through the sum Sϕ = ∑

m Pmζmh∗
m. Interestingly, for the topography and

charge distribution with broadly coincident flat zones (CMT III), the asymptotic results are
exceptionally accurate (<5 % accuracy up to ε � 0.75). Unlike the bulk electroosmotic
velocities to be discussed in the remainder of the current subsection (§ 3.1), the period
average 〈ϕ〉 on the plane touching the tips of the topography is a quantity calculated inside
the EDL. Moreover, 〈ϕ〉 depends nonlinearly on ε, unlike the far-field velocity corrections.

Figures 3 to 4 pertain to the electroosmotic drift effect. These figures compare the
far-field electroosmotic velocity from the fully resolved finite element simulations with
the asymptotic predictions based on the third and fourth columns of table 1 (2.11) and
(2.12) for parallel and transverse flows, respectively. Each panel of figure 4 reveals that,
in the thin-EDL limit (k → ∞), where the EDL adheres to the topography, the bulk fluid
motion is stronger than when the EDL is thick (k = 1). This observation is consistent with
the last column of table 1 and the right-hand side panels of figure 5.

The comparison between numerical and asymptotic predictions in figures 3 to 4
suggests that analytical predictions remain accurate up to larger ε values (a) for parallel
flow compared with perpendicular flow, (b) in perpendicular flow, for thick (small k,
e.g. k = 1) compared with thin EDLs (e.g. k = ∞). Finally, it can be noticed that
(c) the analytical predictions remain accurate up to larger ε values for a CMT where
the jumps/corners of one profile (say ζ(x)) are substantially staggered from regions of
appreciable spatial variations in the other profile (say h(x)), in comparison with a CMT
where the jumps/corners are closer to each other (CMTs II and IV).
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Figure 2. Comparison between analytical and numerical predictions on the amplitude dependence of the
period-averaged electrostatic potential (〈ϕ〉) at y = ε for the four types of CMT shown in table 1 and the insets.
Symbols are numerical data and the lines are theoretical predictions using (2.2). In the insets, the topography
shape h(x) is shown using blue solid lines and the zeta-potential distribution ζ(x) is shown using red dashed
lines; (a) CMT I, (b) CMT II, (c) CMT III, (d) CMT IV.

3.2. Interplay of the patterning functions
Careful observation of the spectral coefficients in (2.11), (2.12) and (2.13) allows us to draw
several inferences on the interplaying influence of the charge patterning and topography
shape functions and even formulate design principles on them. The following subsection
describes a few important characteristics of the interplay and the relevant design of the
patterns. Some of the inferences below, especially those employing the phase of the
spectral coefficients, are more directly evident from (C6) derived in Appendix C.

3.2.1. Counter-intuitive electrokinetic motion
It is well accepted for mechanically (shear/pressure) driven flows over wetted (Kamrin
et al. 2010; Dewangan & Datta 2020) and superhydrophobic substrates (Asmolov et al.
2013; Song, Daniello & Rothstein 2014; Yariv 2023) and constant surface-charge EOFs
(Messinger & Squires 2010; Goyal & Datta 2022) that the flow along groove-shaped
topographic undulation is faster when directed along rather than across the undulation.
However, (2.11) and (2.12) suggest that the engineered or incidental presence of surface
charge variations would render the above assertion invalid. Depending on the shapes of
the distributions h(x) and ζ(x), the second term of (2.11) and (2.12) may be additive or
subtractive. Essentially, it is the sign of charges on the peaks of the topographies rather
than the sign of the average charge that is instrumental in choosing the direction of the bulk
electroosmotic correction (second) terms in (2.11) and (2.12). On a net positively charged

990 A1-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

49
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.491


Generalizing EOF predictions over charge-modulated topography

0.05

0.10

0.15

0.20

0.25

0.05

0.10

0.15

0.20

0.25

CMT I

(ζ(x) = h(x) = cos(x))

CMT II

–4 –2 0 2 4
–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

w∞

w∞

ε ε

0.30

0.25

0.20

0.15

0.10

0.05

CMT III

–1.0

–0.5

0

0.5

1.0

0 0.05 0.10 0.15

h(
x) h(
x)

h(
x)

ζ(
x)

ζ(
x)

0.20 0.300.25 0 0.05 0.10 0.15 0.20 0.25

0 0.1 0.2 0.3 0.50.4 0 0.1 0.2 0.3 0.50.4

0.02

0.01

0.03

0.04

0.05

0.06

CMT IV

–4 0–2 2 4–4 0–2 2 4
–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

00

0.5

1.0

ζ(
x)

–1.0

–0.5

0.5

1.0

(b)(a)

(c) (d )

Figure 3. Comparison between analytical and numerical predictions on the amplitude dependence of the
magnitude of the far-field electroosmotic velocity w∞ in parallel flow configuration for the four types of
CMT shown in table 1 and the insets. Symbols correspond to the numerical data, and the lines are theoretical
predictions using (2.11). In the insets, the topography shape h(x) is shown using blue solid lines, and the
zeta-potential distribution ζ(x) is shown using red dashed lines; (a) CMT I, (b) CMT II, (c) CMT III, (d) CMT
IV.

CMT (ζ0 > 0), locating negative charges preferentially near the peaks would tend to make
electro-osmosis due to an electric field aligned parallel (α = π/2 in figure 1b) to the
corrugations faster than that due to an electric field aligned perpendicular (α = 0) to the
corrugations, while positively charged peak regions would have the opposite effect. If h(x)
and ζ(x) could be appropriately engineered, the ‘fast direction’ can, in principle, be chosen
to cater to contrasting needs of deflecting the bulk EOF either toward (counter-clockwise
from the ξ axis in figure 1b) or away from (clockwise) the patterning direction x.

Because of this freedom to choose the fast direction, as discussed later in § 3.3, the
flow can be deflected either toward the patterning direction x in figure 1(b) or away
from x, relative to an electric field oriented obliquely to the pattern, e.g. in microfluidic
chamber configuration (Boyko et al. 2015). This provides an unprecedented ability to steer
microfluidic flows, which may be valuable for applications such as pumping, cloaking
(Boyko et al. 2021), separation and mixing.

A related counter-intuitive situation may arise when the effect described by the second
term in (2.11)/(2.12) becomes comparable to or even larger than the net electroosmosis
due to the mean charge described by the corresponding first term. Then, flow may occur
from the positive electrode to the negative one even over a net positively charged surface,
in exception to the anticipation based on the electrokinetic theory over flat interfaces.
Extending the above to the conjugate electrokinetic phenomenon of electrophoresis of
a heterogeneously charged (Bianchi et al. 2017) particle which is nearly flat on the
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Figure 4. Comparison between analytical and numerical predictions on the amplitude dependence of the
far-field electroosmotic velocity u∞ for k = ∞ and k = 1 in perpendicular flow configuration for the four types
of CMT shown in table 1 and the insets. Symbols are numerical data and the lines are theoretical predictions
using (2.12). In the insets, the topography shape h(x) is shown using blue solid lines and the zeta-potential
distribution ζ(x) is shown using red dashed lines; (a) CMT I, (b) CMT II, (c) CMT III, (d) CMT IV.

scale of the size and pitch of the topographic undulations (Hunter 2013), a carefully
charge-patterned negatively charged particle may be counter-intuitively attracted toward
the negative electrode.

3.2.2. Embossed replica vs its master nanostructure
If h(x) is flipped with a possible vertical shift, which may be implemented in practice
by embossing a pattern through soft lithography (Qin et al. 2010; Faustino et al. 2016),
the far-field electroosmotic drift (signified by the expression after the second equality in
(2.13b)) will change its sign, since the spectral coefficients hm (m /= 1) also change sign
through the embossing operation.

3.2.3. Odd–even symmetry
If h(x) and ζ(x) are functions of opposite parity (odd/even), no far-field electroosmotic
drift occurs. As an odd pattern has purely imaginary complex Fourier coefficients, this
conclusion follows from (2.13b). Choosing both patterns as even or both as odd gives the
drift of maximum magnitude. This conclusion can be based on (C6).

3.2.4. Differential principles for the design of patterns
If one of the two patterning functions is shaped as (a linear combination of) odd-order
(first, third, etc.) derivatives of the other, no bulk electroosmotic drift occurs. Conversely, if

990 A1-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

49
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.491


Generalizing EOF predictions over charge-modulated topography

one of the two patterning functions is shaped as (a linear combination of) the function and
its even derivatives, the electroosmotic drift magnitude is at its maximum. The finding
does not depend on the odd–even parity of the function and essentially arises from the
Fourier coefficient of the first derivative of a function being i = √−1 times the original
Fourier coefficients and so on.

3.2.5. Phase-shifted patterns
If h(x) is phase shifted by an angle θ , considering patterning functions that are related by
an affine transformation given by ζ(x)− ζ0 = Ah(x + θ) with A > 0, the argument of the
sum in (2.13b) becomes 2|hm|2 cos (nθ)/A and it follows that:

(i) the maximum forward electroosmosis results when there is no phase-mismatch
(θ = 0);

(ii) with the additional restriction of anti-periodic or half-wave symmetric waveforms,
which satisfy h(x) = −h(x + π) by definition (Stade 2011), in-phase patterns(θ = 0)
maximize forward electroosmotic drift, anti-phase (θ = π) patterns maximize the
reverse electroosmotic drift and a phase shift of π/2 results in zero electroosmotic
drift. The anti-periodicity restriction ensures only the odd Fourier harmonics
contribute to the shape of h(x).

A phase shift can be related to the (mis-)alignment of patterns during fabrication
(Feuillebois, Bazant & Vinogradova 2010).

3.2.6. Using the phase spectrum of h(x) and ζ(x)
A more general set of inferences that does not involve the restriction ζ(x)− ζ0 = Ah(x +
θ) used in § 3.2.5 can be drawn from (C6) from Appendix C. If the pattern shapes are
not restricted to be geometrically similar, designing patterns with identical phase spectra
(Canuto et al. 2012) (∠hn = ∠ζn, where ∠ denotes the principal value of the argument of
the corresponding complex Fourier coefficient), would result in the maximum forward
electroosmotic drift. In real variables, pattern waveforms with identical phase spectra
mean θn = φn in ζ(x) = ∑

n≥0 Pn cos(nx + θn) and h(x) = ∑
n≥0 Qn cos(nx + φn), where

Pn and Qn are real numbers, and θn and φn can be restricted to (−π,π]. So, for maximum
forward electroosmosis, distortions arising from phase mismatch of waveforms should
be avoided. On the other hand, θn differing from φn by −3π/2,−π/2,π/2 and 3π/2
will lead to the absence of electroosmotic drift. The maximum reverse drift is obtained
from θn = φn ± π. Thus, appropriate design of the phases of the two types of surface
topographic patterns can cause ‘constructive’ and ‘destructive’ (no-drift) interferences in
analogy with optical (and acoustic) interferometry. As a generalization of a more restrictive
finding discussed in § C, (C6) can also be used to infer that a change in the physical
alignment of either ζ(x) or h(x) by half a wavelength (shifting x by π) will reverse
the direction of the far-field electro-osmotic drift, provided one of the two patterns is
synthesized from odd harmonics.

Before moving in the next section (§ 3.3) to oblique stripes from aligned stripes, we
re-emphasize a few characteristics of the charge–topography interplay. The identities of
h(x) and ζ(x) have no bearing on the above six observations because of the symmetry of
the sums S1 and S2 in (2.11) and (2.12). Further, it can be expected that the direction of
electroosmosis when a weak (or zero) net charge resides on a mildly corrugated surface
may even be opposite to that apparent from its weak net charge since the second term of
(2.12) can admit a reverse electroosmotic drift, as discussed above. In a similar vein, during
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electrophoresis, a positive but weakly charged particle can drift opposite to the electric
field, provided that it has a radius that is large compared with both the Debye length and
the pattern pitch. The last two restrictions are needed to ensure that electroosmosis and
electrophoresis are truly conjugate effects (Hunter 2013).

Messinger and Squires (Messinger & Squires 2010) reported that, at large Dukhin
numbers where surface conduction by ions in the Debye and Stern layer is predominant,
the bulk electroosmosis is suppressed by the roughness on a constant-charge surface, while
this effect disappears as the Dukhin number is lowered. Electroosmotic-flow suppression
on a uniformly charged surface by roughness elements was also reported (Lei et al. 2017;
Goyal & Datta 2022) in the small-Dukhin-number regime. Here, it is shown that, in the
small-Dukhin-number regime, if an appropriate charge modulation is present on the rough
surface, the bulk EOF may also be augmented on purpose. Although left out of the scope of
the current study, it can be speculated that these two effects may compete when moderate
values of Dukhin numbers are considered.

3.3. Anisotropic response of oblique grooves
If the external field is oblique to the groove direction, the electroosmosis in the far
field ( y → ∞) will be anisotropic and a tensorial formalism for the mobility (Bahga,
Vinogradova & Bazant 2010; Feuillebois et al. 2010; Kamrin et al. 2010; Fan &
Bandaru 2019) may be used. Let A = u∞/w∞ be the ratio of the far-field transverse and
longitudinal flow velocity. In what follows, we consider only positive values of A to be of
plausible physical interest, though (2.11) and (2.12) do not prohibit the situation of A < 0
wherein the mobilities along and across the grooves are oppositely directed. Referring to
the geometry of figure 1(b), for an electric field applied along the oblique axis Oξ̂ , the flow
outside the EDL is deflected by an angle δ from Oξ̂ . It can be inferred through a rotation of
co-ordinates (Bahga et al. 2010; Feuillebois et al. 2010; Kamrin et al. 2010), that, (a) the
deflection is given by δ = tan−1 [(1 − A) sinα cosα/(sin2 α + A cos2 α)], and (b) that
(Feuillebois et al. 2010) the maximum deflection δmax = tan−1 1

2(
√A − 1/

√A) will be
observed, when the grooves are inclined at α = tan−1(1/

√A).
Importantly, the ratio A can either be greater (faster mobility along the grooves) or

less than unity (faster mobility across the grooves), depending on the sign of (2S1 − S2),
as evident from the last equality in (2.12). Then, it follows from the relations given in
the previous paragraph that both clockwise (δ < 0) and anti-clockwise (δ > 0 as depicted
in figure 1b) deflections are possible. Similar flow situations over topographies reported
in the literature would afford only a one-sided deflection toward the ‘fast direction’
(along the grooves), as previously exemplified over superhydrophobic surfaces (Feuillebois
et al. 2010), wetted (Wenzel-state) (Dewangan & Datta 2020) and constant-charge
electroosmosis supporting topographies (Goyal & Datta 2022).

Since A is k-dependent, the ionic strength (I) of the solution offers one more modality
to control the deflection δ. This is because k ∝ 1/λD ∝ √

I. The ionic strength (I)
is altered by increasing or decreasing the concentration of salt(s) dissolved in the
aqueous electrolyte. For example, from (2.14), it can be inferred that the grooves behave
isotropically (δ = 0) at infinite dilution (k → 0), whereas for the higher salt content, the
electroosmotic flow gets more deflected from the electric field direction.

In the situation of a surface patterned to have zero average zeta potential (ζ0 = 0) and
with a thin EDL over the same, it can be concluded from (2.11) and (2.12), that 1 = A(0) <
A(k) < 3 = A(∞). In this case, the optimum angle between the grooves and the external
field is θ = π/6 = 30◦, which would result in a 30◦ flow deflection. Aside from intentional
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Generalizing EOF predictions over charge-modulated topography

patterning, the zero (or weak) average zeta potential could be reminiscent of an incidentally
non-uniform application of electroosmotic-flow suppressive coating (Bahga et al. 2010).

The anisotropic and Debye-length-dependent flow response may be potentially
leveraged for mixing, flow control (Stroock & Whitesides 2003), portable electroosmotic
pumping (Gitlin et al. 2003) and separations (Asmolov et al. 2015; Dubov et al. 2017;
Goyal & Datta 2022). It can be mentioned here that reported experimental demonstrations
involving the use of flow (pressure-driven/electroosmotic) over a topography alone to
augment microfluidic mixing and pumping (Gitlin et al. 2003; Stroock & Whitesides 2003;
Jain & Nandakumar 2013) exploit an effect that is less sensitive to the pattern amplitude
(being O(ε2)) than the O(ε) effect discussed herein. The O(ε) scaling can therefore be
considered an attractive feature to approach the practical need if other constraints of
realizing CMTs can be overcome.

3.4. Tuneable electrokinetics
The discussion in §§ 3.2 and 3.3 clearly provides us with four important handles to
intentionally control the direction and magnitude of EOF through topography, namely
the shapes of the topography h(x) and charge modulation ζ(x), the angle α between
the grooves and the electric field (figure 1b) and the ionic composition of the solution
through the ionic strength I. For example, independent control on the functions h(x) and
ζ(x) (surface topography and surface patterning) with grooves oriented either along or
across the external electric field should be capable of achieving design objectives such
as bulk flow reversal, augmentation and reduction, perhaps even creating counter-intuitive
scenarios. In addition, the feature size and pitch of the topographical features (affecting k
and ε) are more obvious control parameters.

Deflecting flows, and therefore particle trajectories for separation applications (Asmolov
et al. 2015), requires the grooves to be oblique to the electric field (α /= 0/π/2). As
discussed in § 3.3, the flow may be deflected by choosing the parameter A through the
two patterning functions and the pattern-averaged value of the zeta potential. Uniquely, the
flow can be steered either toward the patterning direction x (δ > 0 as depicted in figure 1b)
or away (δ < 0) from x in the x–z plane of figure 1(b), depending on whether the fastest or
slowest electroosmosis occurs when α = π/2 or α = 0. The deflection is further tuneable
using the ionic strength I of the solution. It is possible to realize these effects for the
conjugate electrokinetic phenomenon of electrophoresis as well.

3.5. Interpreting the zeta-potential estimations
Measurement of the zeta potential (ζ

meas
) is among the most important electrochemical

characterizations of a substrate in microfluidics, separation science, geochemistry
and allied areas. Several common zeta-potential estimation methods are based on a
direct/indirect measurement of the far-field flow velocity and corroborating the same
with the traditional HS ‘slip velocity formula’. These experimental approaches include
the current monitoring method and methods based on the transit time of a neutral tracer
moving with the flow (Kirby & Hasselbrink 2004; Hartkamp et al. 2018). The inferred zeta
potential from the HS equation is given by ζ

meas
= −(μUHS/εrε0Eext), where UHS is flow

speed outside the EDL as inferred from the measurements when the electrolyte is subject to
an electric field strength Eext. When the surface is topographically flat, ζ

meas
corresponds

to its period (L)-averaged value (Anderson & Idol 1985; Kirby & Hasselbrink 2004).

990 A1-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

49
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.491


V. Goyal, S. Datta and S. Chakraborty

This period-averaged value is the dimensional counterpart of 〈ζ 〉, which, for example,
appears as the first term in (2.12) for transverse flow.

The analysis of § 2 suggests that ζ
meas

may become extraneously influenced by the
inevitable unevenness of the surface topography, as represented by the second ε-dependent
terms of (2.11) and (2.12). Therefore, on topographically uneven surfaces, ζ

meas
may

not represent an intrinsic electrochemical characterization. For example, if the grooves
are oriented transverse to the applied electric field, the prediction for ζ

meas
should

rather be based on (2.12) and not by following the classical HS equation. Following
the normalization scheme followed in our work, this prediction reads: ζ

meas
= u∞ζ scale

,
where u∞ is given by (2.12). For flow along the grooves, w∞ calculated by using (2.11)
should replace u∞. If the stripes are oblique, a corresponding tensorial equation will follow
from § 3.3.

To elucidate the quantitative implications of the above consideration, we consider one
representative illustrative example. Consider CMT II (square-wave zeta potential on a
triangular wave topography or vice versa), as shown in figure 4(b) for perpendicular
flow and infinitely thin Debye layers (k → ∞), to describe the distribution of the
zeta-potential defect function (ζ − 〈ζ 〉) and the topography. The only difference from
figure 4(b) in this example is a possibly non-zero pitch average for the zeta-potential
distribution. Let the range of local spatial variations in zeta potential be 20 mV, so
that its scale becomes ζ

scale
= 10 mV. Then, from (2.14a) and table 1, an excess zeta

potential can be predicted: 48ζ
scale

/π2(a/L)G, where G is the Catalan constant. This
measure is in excess of the period-averaged dimensionless zeta potential 〈ζ 〉 of the surface.
On a periodic topography of amplitude a = 1 μm and pitch L = 18 μm, ε = 2πa/L =
0.35. Thus, the charge–topography interplay results in an elevation in the effective zeta
potential to the tune of 0.5ζ

scale
= 5 mV over and above the period-averaged value

expected on a flat surface (Anderson & Idol 1985; Kirby & Hasselbrink 2004). The value
48ζ

scale
/π2(a/L)G ∼ 0.5 can also be read out from figure 4(b).

Therefore, it is not far fetched to hypothesize that the interplay of incidental variations in
surface topography and surface charge remains an unacknowledged contaminating factor
in the experimental estimations (Kirby & Hasselbrink 2004; Hartkamp et al. 2018) of the
zeta potential. Similar inferences can be drawn on the streaming potential and streaming
current measurements (Kirby & Hasselbrink 2004), necessitating appropriate corrections
to their estimations.

The example of CMT II can also be used to demonstrate the numerical implications
of the special forms of ζ(x) and h(x), as discussed in § 3.2. For example, an embossed
replica of the topography will register a reduction of 5 mV in its zeta-potential estimation.
Also, misalignment between the two waveforms in the half-wave symmetric (anti-periodic)
CMT II can result in 5 mV fluctuation in ζ

mess
on either side of 〈ζ 〉.

4. Conclusions

We showed how the bulk EOF over a charged interface may be selectively manipulated
by the interplay of a patterned unevenness of the surface charge and surface topography.
To resolve the effect analytically, we adopted the boundary perturbation approach
with spectral representation of the spatial shapes. While the amplitude of the surface
roughness was considered to be small as compared with its pattern wavelength, the
theory required no restrictions on the surface-charge limits. We showed that the resulting
electrostatic–hydrodynamic interactions may result in selective augmentation, attenuation,
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complete suppression of the bulk electroosmosis and even its direction reversal altogether.
These findings are distinct from the previous reports on electroosmosis over corrugated
surfaces that predicted a trivial suppression of the flow due to the roughness effects alone
(Messinger & Squires 2010; Lei et al. 2017; Goyal & Datta 2022). When the ratio of
the characteristic EDL thickness and the surface profile waviness is small, we found
that a threefold augmentation of EOF results from the application of an electric field
perpendicular to the topographic features compared with parallel to them, universally
across all plausible surface topography variations in a periodic pattern.

In addition to the obvious roles of the feature size and wavelength of the surface
topography, our analytical results further brought out the role of four distinct design
parameters, namely, the shape of the surface topography, the shape of the charge
modulation function, the obliqueness of the stripes with respect to the electric field and
the concentration(s) of the salts in the electrolyte, which could potentially be leveraged in
tandem to preferentially steer, augment, reverse and suppress the bulk EOF. As a particular
scenario, the electroosmotic drift with respect to the base flow could be completely
nullified if one of the patterns featured a different odd/even parity with respect to the other.
Also, among surface-charge and topographic modulation functions synthesizable from
the odd harmonics, anti-phase and in-phase patterns were shown to produce the largest
(but oppositely signed) alterations to bulk electroosmosis, whereas phase lag/lead by right
angle could make the electroosmotic drift completely disappear. Our analyses revealed that
non-uniformly charged topographies in EOF, unlike their mechanically driven (Kamrin
et al. 2010; Yariv 2023) and uniformly charged counterparts (Goyal & Datta 2022), do not
possess any geometrically pre-determined direction for faster viscous permeation; rather,
the patterning functions can be engineered appropriately to select the ‘fast direction’.

We confronted the central outcomes from our semi-analytical theory with full-scale
numerical predictions and confirmed that these results agreed well for small grooves
except for minor variations when the regions of strong charge variation (such as jumps and
corners) are located close to the corners of the topography. Generalizing further forward,
these results should also apply to the electrophoresis of particles whose radii are large
compared to the EDL thickness and the pattern wavelength of the surface topography.
Further, when the surface modulations are not externally imposed but rather inevitable
practical artefacts, our results could offer explanations for the possible contamination
of the currently available experimental data on zeta potentials by appealing to the
specific contribution stemming from the interplay between topographic and surface charge
inhomogeneities. Although left out of the scope of the current work, it will be of additional
interest to probe how the other important length scales of a microfluidic device, such as
the microchannel depth, interplay with the electrokinetic problems addressed in our work,
which may be considered in future investigations.
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Appendix A. Boundary conditions and solution for ϕ

The potential at the wall ( y = εh(x)) is given by zeta potential (ζ(x) = ∑
ζn exp (inx)).

First, the boundary condition is expanded using its Taylor series about (y = 0) as shown
below

ϕ(x, 0 + εh(x)) = ϕ(x, 0)+ εhϕy(x, 0)+ O(ε2). (A1)

Substituting the above expansion and collecting terms with the same power of ε, the
boundary conditions for ϕ0 and ϕ1 are obtained. At the leading order, the boundary
condition at y = 0 will be

ϕ0(x, 0) = ζ(x). (A2)

The boundary condition for the first-order correction ϕ1 at y = 0 is

ϕ1(x, 0)+ h(x)ϕ0,y(x, 0) = 0, (A3)

and, at infinity, the gradient of the potential will approach zero. In this paper, the solution
for the potential and other variables is obtained only up to the first order of ε, and terms
beyond the first order are neglected.

Leading-order solution (O(ε0)): the leading-order problem corresponds to one of charge
varying over a flat plate, for which governing equation can be written as

ϕ0xx + ϕ0yy = k2ϕ0. (A4)

In the above equation and hereafter, differentiations with respect to x and y are indicated
through appropriate subscripts. The above equation subject to boundedness at infinity and
the boundary condition (A2) has the solution

ϕ0 =
n=∞∑

n=−∞
ζn exp(−Pny) einx, (A5)

with Pn = √
n2 + k2

First-order solution (O(ε1)): the governing equation for the first-order problem can be
obtained as

ϕ1xx + ϕ1yy = k2ϕ1. (A6)

The application of the boundary condition (A3) proceeds as follows:( n=∞∑
n=−∞

C1n exp(−Pny) einx

)∣∣∣∣∣
y=0

+
n=∞∑

n=−∞
(hn einx)

( n=∞∑
n=−∞

−Pnζn exp(−Pny) einx

)∣∣∣∣∣
y=0

= 0. (A7)

The product of infinite sums appearing in the second term can be replaced by their
convolution (Cauchy product). It can be noted that the inner summation over m must be
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convergent for physically meaningful results from convolution

n=∞∑
n=−∞

C1n einx +
n=∞∑

n=−∞
einx

m=∞∑
m=−∞

−Pmζmh(n−m) = 0. (A8)

On comparing coefficients in the above equation, C1n will be obtained as∑m=∞
m=−∞ Pmζmhn−m, which, on substituting, gives the solution for ϕ1 as

ϕ1 =
n=∞∑

n=−∞
exp (−Pny) einx

m=∞∑
m=−∞

Pmζmh(n−m). (A9)

Combining (A5) and (A10)

ϕ =
∑

n

ζn exp(−Pny) einx + ε

n=∞∑
n=−∞

exp(−Pny) einx
m=∞∑

m=−∞
Pmζmh(n−m) + O(ε2).

(A10)

Appendix B. Perpendicular flow: boundary conditions and solution

B.1. Governing equations and boundary conditions for ψ0 and ψ1

The governing equation for fluid flow in the perpendicular direction is given by (2.7),
with the boundary condition being a diminishing velocity gradient at infinity and no-slip
boundary condition at the wall. Moreover, being a solid boundary, the wall is a streamline,
therefore ψ = 0 can be used on the wall. The boundary condition on the wall can be
represented as

ψ |y=εh(x) = 0 (Streamfunction value at wall) (B1)

ψy|y=εh(x) = 0 (No-slip condition). (B2)

Substituting ϕ and V from (2.2) and (2.6) in above equation and expanding ψ in the form
of an asymptotic perturbation series up to the first order of ε, the equation can be rewritten
for various orders of controlling parameter ε as

∇4ψ0 = k2
n=∞∑

n=−∞
Pnζn einx exp(−Pny), (B3)

∇4ψ1 = k2

[∑
n

einx
∑

m

Pmζm(n − m)2h(n−m) exp(−(Pm + |n − m|)y)

+
∑

n

PnCn,1 einx exp(−Pny)

−
∑

n

einx
∑

m

mζm(n − m)h(n−m) exp(−(Pm + |n − m|)y)
]
. (B4)
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Expanding the boundary condition (B1) and (B2), using Taylor’s series expansion at (y =
0 + εh(x)), the following is obtained:

ψ(x, (0 + εh)) = ψ(x, 0)+ εh(x)ψy(x, 0)+ O(ε2) (B5a)

ψy(x, (0 + εh)) = ψy(x, 0)+ εh(x)ψyy(x, 0)+ O(ε2). (B5b)

Substituting the asymptotic expansion for the streamfunction in the above equation and
collecting coefficients with the same power of ε, the boundary condition will be obtained
for various orders of perturbation parameter ε as given by

ψ0|y=0 = 0 (B6)

ψ0y|y=0 = 0 (B7)

ψ1 + h(x)ψ0y = 0 (B8)

ψ1y + h(x)ψ0yy = 0. (B9)

B.2. Solution for the streamfunction
Leading-order solution (O(1)): a solution of the form

∑
CnF0n exp (inx) satisfies the

solution for ψ0, where F0n is a function of y for ψ0 and submission index n goes from
(−∞) to +∞. The governing equation at the leading order (B3), is a non-homogeneous
equation, so the complementary function and the particular integral both exist. The
complementary function satisfies F0nyyyy − (2n2F0nyy)+ (F0nn4) = 0 and is of the form
F0n = (C1n + yC2n) exp (−|n|y) as a consequence of the boundedness at large y, where the
coefficients {C1n,C2n} will be obtained from the wall boundary condition, before which a
particular integral of the solution is needed.

A solution of the form (
∑

An exp (inx) exp (−Pny)) qualifies as a particular integral of
(B3), which on substituting in (B3) gives coefficient An as given in (B10). Substituting
the boundary conditions (B6) and (B7) in the full solution (sum of the complementary
function and particular integral) of ψ0, the coefficients (C1n) and (C2n) will be obtained,
which are also given in (B10)

An = k2Pnζn

(P2
n − n2)2

(B10a)

C1n = −An (B10b)

C2n = An(Pn − |n|). (B10c)

The first-order correction (O(ε)): the first-order governing equation (B4), has
a similar form as the leading-order equation. A complementary function and a
particular integral also exist for the solution of this equation. Analogous to the
leading order, a solution of the form (

∑
DnF1n exp (inx)) satisfies the governing

equation. Substituting this in the governing equation, the complementary function
bounded at large y will be obtained as F1n = D1n exp (−|n|y)+ yD2n) exp (−|n|y).
The order-one equation (B4) has two different functions on the right-hand side, so
two different forms of particular integrals satisfying (B4) have to be added to the
complementary function, which are

∑
n A1n exp(−Pny) einx for

∑
n PnC1n einx exp(−Pny),

and
∑

n einx∑
m A2nm exp(−(Pm + |m − n|)y) for the remaining part on the right-hand

side of (B4). After solving, coefficients A1n and A2nm are obtained, and on substituting

990 A1-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

49
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.491


Generalizing EOF predictions over charge-modulated topography

boundary conditions (B7) and (B9), the coefficients D1nm and D2n will be obtained. The
expressions for these coefficients are given in (B11)

A1n = k2Pn
∑

m Pmζmhn−m

(P2
n − n2)2

(B11a)

A2nm = k2ζmh(n−m)(Pm|n − m| − m(n − m))
((Pm + |n − m|)2 − n2)2

(B11b)

D1n = −
(

A1n +
∑

m

A2nm

)
, (B11c)

D2n = A1n(Pn − |n|)+
∑

m

(Pm + |n − m| − |n|)A2nm

−
∑

m

h(n−m)Am(Pm − |m|)2. (B11d)

Appendix C. Deriving the second equality in (2.13b) and effect of phase spectra of
patterns

The electroosmotic drift is given by εS, as per (2.11), (2.12) and (2.13). Here, S is expressed
in a form convenient for understanding the interactions between h(x) and ζ(x)

S =
∞∑

n=−∞
K(|m|, k)ζmh∗

m (C1)

=
1∑

m=−∞
K(|m|, k)ζmh∗

m +
∞∑

m=1

K(|m|, k)ζmh∗
m [∵ h0 = 0] (C2)

=
∞∑

m=1

K(|m|, k)ζ ∗
−mh−m +

∞∑
m=1

K(|m|, k)ζmh∗
m [Changing index: m → −m] (C3)

=
∞∑

m=1

K(|m|, k)(ζmh∗
m + ζ ∗

mhm) [h−m = h∗
m, ζ

∗
−m = ζm for real values] (C4)

= 2
∞∑

m=1

K(|m|, k)Re(ζmh∗
m) (C5)

= 2
∞∑

m=1

K(|m|, k)|ζm||hm| cos (∠ζn − ∠hn) Using polar forms. (C6)

Here, | · · · | denotes magnitude, Re stands for the real part of a complex number. In
(C6), ∠ is used to denote the principal argument of a complex number. Note that (C5) is
the equality sought (the second equality of (2.13b)).

Insights into the phase spectrum are provided by both (C5) and (C6). In (C5), the
summand K(|m|, k)|ζm||hm| can assume only positive values for any topographic feature.
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Therefore, it follows that S lies between the extremal value −2
∑∞

m=1 K(|m|, k)|ζm||hm|
causing maximum reverse drift, and the extremal value 2

∑∞
m=1 K(|m|, k)|ζm||hm| causing

maximum forward drift. No drift results if the spectral phases differ by π/2 or 3π/2.
Maximum forward drift results if the spectral coefficients are in phase (same phase, or a
2π difference). Maximum reverse drift results if the spectral coefficients differ by π.

Appendix D. Numerical methods

The numerical solution of the governing equation system (2.1) is obtained through
finite-element-method-based simulations in the COMSOL Multiphysics� software.
Quadratic basis functions were chosen for discretizing the weak forms of (2.1) for
all dependent variables with the exception of pressure, which was discretized with
a linear basis function. The mesh consisted of non-uniform triangular elements. For
obtaining results for parallel flow, the ‘Coefficient Form PDE’ interface was used to
solve equations (2.1a) and (2.3). For perpendicular flow, the problem was solved using the
‘Electrostatics’ module, ‘Coefficient Form PDE’ interface and ‘Creeping Flow’ module.
The ‘Electrostatics’ module solved for the variation in ϕ. The PDE module was used for
solving the equation for Ṽ , and the creeping flow module was used to solve the flow
equations in a steady-state primitive variable formulation employing damped Newton
iterations. The boundary conditions for the electrostatics module were periodic conditions
for the left and right walls and zero charge gradient on the far-field boundary. On the wall,
a specified zeta potential was applied. Similarly, for the creeping flow module, periodic
boundary conditions were applied on the left and right walls while a no-stress condition
was applied on the far-field boundary. On the topographically modulated wall, the no-slip
boundary condition was applied.

The grid generated for the system consisted of triangular elements with numbers
in the range 3–5 × 105, depending on ε value and surface geometry. Studies for grid
independence and independence of the numerical results from the mean distance of the
top wall from the bottom corrugated wall were conducted. The grid size and the height of
the top wall of the numerical domain were chosen such that the electroosmotic velocity at
the top wall and mean electrostatic potential on the plane connecting topography crests
remained unchanged up to four decimal places, when subjected to both twofold grid
refinement and twofold height enlargement. As discussed in Goyal & Datta (2022), the
numerical model, when specialized to flat surfaces, also compares favourably with the
experimental data of Lim et al. (2017).

Appendix E. Debye-length dependence of charge–topography interplay

Figure 5 shows the dependence of the transverse-flow correction to bulk electro-osmosis
on the dimensionless inverse Debye length in terms of a ‘roughness sensitivity’ parameter
∂u∞/∂ε (see also (2.13)). The last column of table 1 of the main text refers to this
figure. The right panels confirm that the thin-Debye-layer limit correction is three times
larger than the thick-Debye-layer limit correction. The transition to the thick-Debye-layer
limit (k → 0) lower bound of far-field effects is sharper than the more gradual transition
to the thin-Debye-layer limit (k → ∞). The fastest variation in roughness sensitivity
occurs at small to intermediate values of k (roughly in the k = 1–3 regime), and, in
fact, each dependence has a point of inflection. The largest correction to bulk flow in
the topographies investigated occurs for CMT III, where the charge variation and surface
geometry have flat and roughly coincident peak regions. On the other hand, the smallest
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Figure 5. Dependence of topographical correction (∂u∞/∂ε) to the far-field electro-osmosis on the
dimensionless Debye–Hückel parameter k table 1. In all three left-hand side panels, dotted lines indicate the
surface charge profiles (a) CMT II sketch, (b) CMT II k dependence, (c) CMT III sketch, (d) CMT III k
dependence, (e) CMT IV sketch, ( f ) CMT IV k dependence.

far-field effect is observed for CMT IV, where the topographic and charge-patterning peaks
are mismatched and each localized to corners.

Appendix F. Comparison with Ajdari (1996)

Ajdari (1996), in its Section V, formulates a perturbation theory where topographical
and surface charge patterns can coexist. However, the theory differs from the current
formulation in the following aspects:

990 A1-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

49
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.491


V. Goyal, S. Datta and S. Chakraborty

(i) In Ajdari (1996), both the charge and corrugation patterns have the specific shape of
2π/q-wavelength cosine waves, with the corrugation leading the charge modulation
by a phase angle Φ. Further, the period-averaged surface charge is zero, resulting
in the surface being net neutral. In contrast, the analysis in the current work uses
arbitrary and, in general, dissimilar shapes for the charge-variation and corrugation
patterns, where phase-shifted patterns arise as a special case (§ 3.2.5).

(ii) The theory for corrugated-wall and charge-modulated channels (Ajdari 1996) (but
not for flat-walled channels) is based on the thin-Debye-layer assumption. This
assumption, following the notation of Ajdari (1996), means that the dimensionless
parameters κh and κq (but not necessarily qh) are both large, where κ−1 is the Debye
length and h is the mean half-width of a plane channel. On the other hand, the current
study develops a finite-Debye-layer theory by avoiding any assumption on the order
of magnitude of qκ . Any comparison with Ajdari (1996) would, at least, require the
limit k = qκ → ∞ of the current findings. For example, this limit process reduces
(2.13) to (2.14).

(iii) Being formulated for internal flows, the perturbation procedure in Ajdari (1996) uses
the relative roughness parameter notated as α, which is the ratio of the amplitude
of corrugation to the channel mean half-width as the perturbation parameter. The
pattern-specific small parameter ε used here can be related to α through ε = αq h.

(iv) The theory of Ajdari (1996) applies to a planar channel of mean half-width h, which
also has an uncharged planar top wall (pictured in figure 5 of Ajdari 1996), in
addition to the bottom patterned wall. The current formulation is developed for an
unbounded electrolyte overlying a single patterned surface. Therefore, the current
study has no equivalent to the parameter qh of Ajdari (1996). Further, the top
unpatterned wall adds a linear shear flow over circulatory flow patterns in Ajdari
(1996) in place of the uniform flow added in the current study. However, as discussed
in Ajdari (1996), certain results from its Section V would signify each channel wall
acting independently of the other when considered in the limit qh → ∞. Under this
condition, a comparison with our findings can be made, as discussed below.

Referring to figure 5 of Ajdari (1996), when qh → ∞, the net effect of the bottom
charge-modulated and shape-modulated wall is to provide a near wall slip velocity Us,
which must, however, linearly decay to the value zero on the top uncharged wall. In (59) for
perpendicular flow and (66) for parallel flows of Ajdari (1996), the flow rate (termed ‘flux’)
arising from the shear flow Us(2h)/2 = Ush is reported. Therefore, the corresponding Us
can be inferred simply by dividing the large qh limits of the right-hand sides of (59)/(66) by
h, as appropriate for shear flow. The inputs, notational interconversions and limit processes
required for validating (2.11)/(2.14a) of the current study against (59)/(66) of Ajdari (1996)
are specified in the main text. The end result is a mutual agreement between the two
equation sets.

The right-hand side of the vector valued (67) from Ajdari (1996) can be interpreted
as a cross-sectionally averaged velocity of the above-discussed shear flow with the flow
rate given by (59) in perpendicular flow and (66) in parallel flow, when the direction of
patterning makes an angle θ with the applied field direction. The special case of patterns
(θ = 0) perpendicular to the electric field in (67) is precisely 3 times of the special case
θ = 90◦, which corresponds to patterns aligned with the electric field. The same ratio
emerges from the right-hand sides of (2.14a) and (2.11), thus generalizing this finding
from Ajdari (1996) to arbitrary periodic patterns. However, Ajdari’s interpretation of the
left-hand side of (67) as a slip velocity appears to be off by a dividing factor of 2 when
compared with the slip velocities calculated from (59) and (66) of the same work (and also
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from (2.11)/(2.14a) of the current work). This could be an (arguably minor) analytical or
typographic oversight. Further, the use of sufficiently small values for ε in our numerical
simulations using CMT I, which happens to be the Φ = 0 case of the corrugation-charge
profiles in Ajdari (1996), produces predictions in close agreement with (59) and (66) of
Ajdari (1996) and (2.11) and (2.11b) of the current work, rather than with (67) of Ajdari
(1996).
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