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1. Introduction. Let #0
m(12) denote the so-called Sobolev space consisting 

of functions denned on a region 12 in w-dimensional Euclidean space, which 
together with their generalized derivatives of all orders <ra belong to 82(0), 
and which vanish in a certain sense on the boundary d!2. (Precise definitions 
are given in the next section.) For each pair m, k of non-negative integers the 
inclusion Hom+k(iï) C #ow(12) defines a natural "embedding" map. For the 
case of a bounded region 12 it is well known that these maps are completely 
continuous, and even, for sufficiently large k, of Hilbert-Schmidt type. We 
have discussed complete continuity in the case of unbounded regions in an 
earlier paper; here we consider conditions on 12 which imply the Hilbert-
Schmidt property for embeddings. An application is given to the spectral 
theory of self-adjoint uniformly elliptic differential operators; that is, we show 
that the resolvent operator corresponding to such a differential operator is of 
Hilbert-Schmidt type provided that the order of the differential operator is 
sufficiently large. 

2. Embedding theorems. Let 12 be a region in n-dimensional Euclidean 
space En (n > 2). Consider the function 

r(y) = dist (y, <912), y Ç 12; 

d!2 denotes the boundary of 12. If the region 12 is unbounded but satisfies the 
condition 

lim r(y) = 0, 

then 12 is said to be quasi-bounded. 
Consider next the well-known Sobolev spaces i70

m(12), with norms given by 

\\u\\m2 = X] I \Dau(x)\2dx; 
|a|<m Jtt 

by definition i70
m(12) is the completion of Co°°(12) with respect to the norm 

|| \\m. It is obvious that each space H0
m+1(Q) is continuously embedded in the 

preceding space H0
m(2); the following stronger result is of importance in 

partial differential equations. 
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THEOREM 1 (Rellich, Sobolev). / / 12 is bounded, then the embedding maps 
H™+l(Q) -*77(T(&) (w = 0, 1, 2, . . .) are completely continuous. 

This result was sharpened considerably by K. Maurin (4). 

THEOREM 2 (Maurin). If 12 is bounded and if t > \n, then the embedding 
maps H0

m+t(tt) ->H0
m(tt) (m = 0, 1, 2, . . .) are of Hilbert-Schmidt type. 

A mapping T : X —> Y between two Hilbert spaces is said to be of Hilbert-
Schmidt type if X)* H^i l l r < °° for any orthonormal sequence {et} in X. 

In (3) we obtained the following generalization of Theorem 1. (Condition I, 
which we need not describe here, is a sort of regularity condition.) 

THEOREM 3. Let iïbea quasi-bounded open set in En, satisfying the u condition I11 

(3). Then the embedding maps H0
m+1(iï) —» H0

m(Çl) are completely continuous. 
Conversely, if 12 is not bounded or quasi-bounded, the embedding maps are not 
completely continuous. 

This theorem leads easily to a result of A. M. Molcanov (5) on discreteness 
of the spectrum of the Laplacian operator on 12, with zero boundary conditions; 
cf. (3). Theorems 1 and 2 are also valid for the Sobolev spaces denoted by 
ifm(12), but Theorem 3 fails in general for such spaces. (In particular, if 12 is 
contained in a cylinder of finite cross-section and if 12 has infinite n-dimensional 
volume, it can easily be shown that the mapping IP(Q) —> £2(12) is not com
pletely continuous.) For this reason we shall not consider the spaces Hm(iï) 
further. 

Our main interest in the present paper is to generalize Maurin's theorem to 
quasi-bounded regions. 

THEOREM 4. Let 12 be a quasi-bounded region in En. Suppose that for some 
non-negative integer v we have 

(1) (r(yr+2dy<œ. 

Then the embedding maps £T0
m+'(12) -> #om(12) (w = 0, 1, 2, . . .) are of Hilbert-

Schmidt type provided 

t>in + v + l. 

The proof of Theorem 4 is based on the following lemma. 

LEMMA. Let 12 be an open set in En. Then provided m > \n + k, we have 
Hom(ti) C Ck($l), with continuous embedding. 

Proof (suggested by the referee). For u 6 i70™(12), define 

- / \ _ ju(x) for x Ç 12, 
U{X) " \0 forx (E En-ti. 
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Then u G Hm(En) and \\u\\H
m

{En) = |M|#0
m(n). But by the Sobolevembedding 

theorem (e.g. 2, Lemma 5), Hm(En) C Ck(En) continuously, provided 
m > \n + k. Therefore u' = U\Q G Ck(Q) and 

lk'l|c*(Q) = ||#||c*(tf„) < £||#||/r»Cffn) = ^IMIwCG), 

completing the proof. 

Proof of Theorem 4. We write out the proof for the case m = 0, leaving to 
the reader the straightforward alterations needed to obtain the general case. 

Let y G 12 be given, and consider the linear functional Ty on i/0'(12) denned 
by Ty(u) = u(y). By the lemma we have, for u G iJ0'(12), 

(2) sup \D°u(y)\ < const. \\u\\t if \a\ < y + 1. 

In particular, 7 ,̂ is a continuous linear functional on H^ (12), so that there 
exists ĝ  G H0

l(Q) with ||g„||i = | | ry | | and 

Tyu = «(y) = (w, &,), for w G i^V(12). 

Now let {et} be an orthonormal sequence in iJ0 '(&). Then 

lln||2 = | |&||,2>E,|(e„g,),|2 = E<k<60l2. 

To show that the embedding flV (12) —» £2(12) is Hilbert-Schmidt, it suffices 
to show that 

£ < I N I o 2 = 5Z< k i C y ) l 2 ^ < ° ° ; 

and for this the following inequality is sufficient: 

(3) f \\Tv\\
2dy< » . 

«/Î2 

Now let w € Co00 (12), let ^ G 12, and let yQ be a point of 512 such that 

TGO = dist (y, d!2) = b - 3>o|. 

Expanding u(y) about y0 by Taylor's formula with remainder, we have 

« 60 = 2 n #"« (y«) (y - yo)a, 

where |y« — 3>o| < \j — 3̂ o|. Using inequality (2), we therefore obtain 

(4) \u{y)\<c\\u\\t-r(y)*\ 

c being a constant independent of u. 
Now we can easily show that (4) holds also for any u G H^iQ). For example, 

let e > 0 and let ux G C0°°(12) satisfy \\u — Ui\\ t < e. By (2) we have 

\u(y) — W16OI < Ke> 
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so t h a t applying (4) for Ui(y), we obtain 

\u(y)\ <c\\u1\\rr(y)'+1 + Kt 
<c(\\u\\t+e)r(yy^ + Ke 
= c\\u\\tr(y)^ + C1e1 

Ci being independent of u. Since e is arbi t rary , (4) now follows for any 

u e Ho*®). 
T h e proof of (3) is now immediate : 

\\Ty\\ = sup \u(y)\ <cr(y)v+1; 
\\u\\t<l 

the hypothesis (1) then yields (3) and the theorem is proved. Note t h a t the 
a rgument given also works for the case v = — 1, which includes the case of 
bounded 12. In fact in this case our proof is the same as Maur in ' s . 

T H E O R E M 5. Let 12 be a region in En, and suppose that for some non-negative 
integer v we have 

(5) ( T(y)2>+2dy=+<». 

Then the embedding maps i7om-M(12) —*i70
w(12) are not of Hilbert-Schmidt type 

(m = 0, 1,2, ...)ift< [$n] + v + 1. 

Proof. W e again t rea t only the case m = 0. There is no loss of generali ty 
in assuming t h a t 12 is quasi-bounded, for in the contrary (unbounded) case the 
embeddings are not even completely continuous, by Theorem 3. Moreover, 
we need consider only the case / = [^n] + v + 1. 

Following the first pa r t of the proof of the preceding theorem, b u t now 
taking {e^\ to be a complete or thonormal sequence in i70

f(12), we see t h a t 

Hi I kilo2 = \\Ty\\
2dy, 

so t h a t we mus t show t h a t 

(6) f I I T ; I I 2 ^ = +co. 

Since for quasi-bounded regions the norm || \\m in i70
m(12) is equivalent to 

the norm | \m given by 

\u\m = ]C I \Dau(x)\2 dx 
\a\=m JQ, 

(3), (6) is equivalent to 

(6') { Mdy^+n, 
where 

\Ty\ = sup \u(y)\. 
\u\t<l 
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(The new norm | \m is introduced here only for convenience; it could be 
dispensed with at the cost of some complication in the ensuing calculations.) 

Let B\ denote the unit solid ball in En, centred at the origin. Choose a 
function u G Coœ(Bi) satisfying |^(0)| = a ^ 0 and \u\t = 1. For a given 
point y € &, let p = r{y) and consider the function 

u(z) = rnlClu\9-\z-y)l 

Then u £ CV^O) and \u\t = 1, whereas 

i~/ M t-n/2 j(rpv+1 if n is even, 
1 1 (crp ^* if ft is odd. 

Hence 
l 2 2J>+2 / \ 

2 Sa p (w even), 
2/1 ^ I 2 2v+l / j i\ 
tfl ' - p (n odd). Since p = r(y) < 1 except on a bounded subset of 12, the relation (6') is a 

consequence of (5). The proof is complete. 

Note that the proof shows that when n is odd, the hypothesis (5) can be 
weakened to 

(5') f r(y)2v+1dy= + œ 

In spite of this, Theorem 5 is not a complete converse to Theorem 4. Assuming 0 
to be a quasi-bounded domain, let us define ft = 0(12) as the smallest integer 
(if any exist) such that Jariy^dy < » . Likewise, let y = Y(12) be the 
smallest integer making all the embedding maps H0

m+y(ti) —» i/0
m(12) Hilbert-

Schmidt. Define X = [ § ( » + 0 + 1)]. Theorems 4 and 5 show that if 0 < + « , 
then either Y = \ o r Y = X + l ; i f w i s odd and 0 even, then Y = X. We 
conjecture that in general y = X + 1 when n is even and y = X when w is 
odd; this agrees with the case of a bounded region, corresponding to the case 
0 = 0. 

Theorem 5 has the following obvious consequence, corresponding to the 
case 0 = + °°. 

COROLLARY. If J a r(y)^dy = + °° for every positive integer 0, then none of 
the embedding maps H0

m+t(tt) —> H0
m(iï) is of HilbertSchmidt type. 

3. Application. We can use Theorem 4 to discuss the nature of the 
resolvent of a uniformly elliptic operator L (with null boundary conditions) 
acting in 82(12), 12 being a quasi-bounded region. For instance, consider the 
differential operator 

L = E aa(x)ZT. 
|a|<2j* 
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Let the coefficients aa(x) be real bounded functions on 12 and, without specifying 
details, let us assume a sufficient degree of smoothness for the aa. For simplicity, 
assume also that L is formally self-adjoint. Finally, and this is crucial, suppose 
that L is uniformly elliptic on 12, i.e. 

( - 1 ) " Z aa(x)t > const. |£|2" 
\a\=2fi 

for every x G 12, £ Ç £w. 
These conditions are sufficient to allow us to apply standard arguments for 

the construction of an operator A\ : ?2(12) —>H^{Q) with the properties that 
for sufficiently large X, A\ is bounded, one to one, and A\~l is an extension of 
the differential operator L + X in the sense that A\~lf = (L + X)/ for smooth 
functions/ £ î oM(12) ; cf. (1, p. 198) for this construction; also see (2, Theorem 
16(c)) for the proof of the basic Gârding inequality for unbounded regions. 

If JM denotes the embedding map i70
M(12) —> £2(12), we define the resolvent 

operator R\ = JM^4x; this leads to the operator L = Rx"1 — \I} which is a 
natural self-adjoint operator to associate with the differential operator L. 
By Theorem 3, R\ is completely continuous, and the spectrum of L is therefore 
discrete. Using Theorem 4 and the simple observation that the product of a 
Hilbert-Schmidt operator and a bounded operator is again Hilbert-Schmidt, 
we obtain the following result. 

THEOREM 6. Let 12 satisfy the hypotheses of Theorem 4 and let the operator L 
satisfy the above conditions. Then for large positive X the resolvent operator R\ is 
of Hilbert-Schmidt type provided that /x > \n + v + 1. 

If the inequality \x > \n + v + 1 does not hold, we may consider instead 
the operator Lk where kfi > \n + v + 1. Thus the resolvent R\(k) of Lk will 
be of Hilbert-Schmidt type for large X. Since, however, in general (Lk)~ ^ (L)k, 
we do not obtain any immediate information about spectral properties of L. 
One might expect the eigenvalues of (Lk)~ and those of (L)k to have the same 
asymptotic growth, but this would probably be difficult to verify in the case 
of an unbounded region 12. 
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