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Introduction. In 1974 B. J. Birch [1] published a description of some manuscripts of
Ramanujan which contained, among other things, a list of forty identities involving the
Rogers-Ramanujan functions

G(X) — 1 1 5n + l\/-i _ v5n+4\ '

and " : ° ( 1 X ) ( 1 X } (0.1)

H(X) = R (l-x5"+2)(l-x5n+3) •
At that time nine of these had been proven, and since then twenty-two more of them
have been proven, fifteen of them by David Bressoud in his thesis [2]. Bressoud gives a
synopsis of the extant proofs, where he attributes proofs to H. B. C. Darling [3], L. J.
Rogers [4], L. J. Mordell [5], and G. N. Watson [6].

G(x) and H(x) can be expressed as theta functions by using the Jacobi triple product
identity. Substituting x = e2ror we find that g(r) =x~vwG{x) and h(r) = xn/6°H(x) are
modular forms of weight 0 on a certain subgroup r0 i(5, 5) < T(l) of the modular group,
and for any positive integer n, the functions g(nr) and h(nr) will be modular forms on an
appropriate subgroup. It requires some work to get the multiplier system for these
functions in a workable form, but this is done in §2.

The identities involve the functions G(x) and H(x) only in the combinations

_ (G(xr)G(xs)+x^r+s)/5H(xr)H(xs), whenr + s 0(mod5),
rs~\G(xr)H(xs)-x^-s)l5H(xr)G(xs), whenrs=0(mod5) ( " }

In addition, the functions

P(x)=f\(l-x2"-1)
and "I1 (0.3)

P*(x)= [I (1+x2"-1)

appear. With these notations, and preserving Birch's numeration, eight of the iden-
tities are:

U6M=UA2.2 (#15)

U6M = ^[P*(x)P(x3)P*(x7)P(x2i)-P(x)P*(x3)P(x7)P*(x21)] (#16)

P(x13)-xP(x)
U2-l3~ P(x«)P(x) ( # 1 7 )
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D/"~17\3 _ ,

[P(x")P(x)f
(#33)

£/2,23 t V i = P(X)P(X23) +X+ D,jZ* (#34)

(#36)

(#37)

[
P(x) and P*(x) can be expressed in terms of the Dedekind eta function, and the

functions Ur>s yield modular forms when multipled by the appropriate power of x,

(g(rr)g(sT) +h(rT)h(sr), for r + s = 0 (mod 5),
r's \g(rr)h(sr)-g(sr)h(rr), for r -s = 0(mod5),

which are forms of weight 0 on the subgroup which is the intersection of the subgroups for
g(rr), g(sT), h{rx), and h(sr).

To get a proof of any one of these identities from this point requires knowing a
complete set of inequivalent cusps for the subgroup, checking that the multiplier systems
of each term in the identity agree, having a lower bound for the order of the identity at
each cusp, and then calculating sufficiently many of the coefficients of x" in the series
expansion to see that the valence formula (cf (1.5)) would be violated if the function were
not identically zero. This is a task which can certainly be done, with a computer, but
without further simplifications it is necessary to compute several hundred terms in the
series expansion.

To reduce the complexity of the computation we can try looking closer at the
modular properties of the functions urs. More turns out to be true than we have a right to
expect.

First of all we shall show that urs is a modular form on the subgroup TQ([r, s]), whose
index is 12 times smaller than that of the subgroup for g(rr) and g(sT). This translates to
a reduction by a factor of more than 12 in the number of terms necessary to be computed.

Besides this, there is an obvious symmetry in the above identities, when there is
more than one prime factor involved, as we can see most clearly by comparing (#36) and
(#37). We make this symmetry explicit by applying what we call the Fricke involutions,
whose properties are developed in §4. After doing this, it turns out that for a proof of
some of the indentities it is only necessary to check that the constant term vanishes, while
only one requires us to do as many as 5 terms.

Thus, we have managed to replace a lot of computation with a fair amount of theory,
which seems good in that it leads us to a better understanding of these functions.
However, this technique is only a technique of verification: it does not show us how to
construct new identities, only how to tell whether one we already have in hand is true or
not.
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SOME IDENTITIES OF RAMANUJAN 273

After completing the proofs of the identities which involve ur,s there is one identity
which remains unproven. It is

P(x38)U19A = P(x2)Ul6,u (#35)

where, with G*(x) = G(-x), and H*(x) = ff(-x),

£/£.! = G(x76)H*(x) + x15G*(x)H(x76).

This identity is not quite in the same mold as the other eight we consider, but a slight
adaption of the techniques used on them does yield a proof.

1. Background on modular forms. For a general theory of modular forms we refer
the reader to Rankin [7], Schoeneberg [8], Knopp [9], and Rademacher [10], although the
notation we use here is not strictly in accordance with any one of these.

By MJ(R) and A/J (Z) we denote the sets of 2 x 2 matrices with positive determinant
and real and integral entries, respectively. The modular groups is

= {A e Af J(Z) | det(.4) = 1},

the principal transform subgroup of level n is

b
ro(«) = [A =

For M = I ) e A/J (R) we define the bilinear transformation
\c d)

ax + b

cx + d'
for any reH={reC:ImT>0}, and the automorphic factor

(M: x) = ex + d.

For any / : H—» C U {°°} the stroke operator of weight r is the operator / *~*f \ M defined
by

/ | M = (det M)+r/2(M: x)'J(Mx). (1.1)

When r = 0 this is / I Mix) = / ( A / T ) , and when M = I ) the bilinear transformation
\0 n)

mis Mx = — x. We write / | m and /
n

m— as abbreviations for /
m 0
0 1

and

I. Although/ \M\ A =f I MA does not hold in general, we do have this equality

when r is an integer, or when M or A is of the form ( I with both a and d positive.

For A = ( ) and AJ a natural number, we define two auxiliary matrices "A and nA so as
\c dl

https://doi.org/10.1017/S0017089500007850 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500007850


274 ANTHONY J. F. BIAGIOLI

to satisfy

f\n\A=f\"A\n=f\nA\-n> (1.2)

or, in other words,

; ; ) and nA = (na * ) . (1.3)
/n d I \ c din)

In addition, we shall use ™A = m(nA).
We say / is a modular form if it is a form on some F of finite index in F(l). The

functional property which a modular form must satisfy is its functional relation:

f\ir)A = v(A).f for all A e F.

v(A) is called the multiplier system of/and r is its weight.
If / i s a modular form on F and n is a natural number, then/ | n is a modular form of

the same weight on the group F' = {A e F(l) | "A e F} with multiplier system v \ n defined
by

\ v(nA). (1.4)

If /and g are two modular forms on F and F', respectively, then/, g is always a modular
form on F D F'. However, / + g is only a modular form when their weights are equal, and
then it is a modular form on the subgroup

F" = {A e F n F' | v(A) = v'(A)},

provided this has finite index in F(l). The first step in each of our proofs will be to find
the subgroup on which all of the multiplier systems agree.

Any non-zero modular form of weight 0 must satisfy the valence formula:

2 Ordr(F;z) = 0, (1.5)
zey

where &* is a fundamental set for F. We shall use this to prove that a modular form is
identically zero by showing that it fails.

We shall need the following properties of F0(n).

LEMMA 1.1. / / (r, s) = 1, then the width of F0(n) at-is
s

Proof. If B € F(l) is such that - = fi^H00). then
s

B->U*B = (1-k:S kT] W 0 ( n )
V -ks2 l + krs/ v '

if and only if n divides ks1.
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LEMMA 1.2. / / no square divides n other than 1 or 4, then a complete set of

inequivalent cusps for Fo(«) is \-:a I n\.

La J

LEMMA 1.3. / / no square divides n other that 1 or 4, and if (r, s) = (/•', s') = 1, then

- and — are equivalent cusps modulo T0(n) if and only if (s, n) = (sr, n). I We allow °°
S S 1 \
in the form °° = - . I

Lemmas 1.2 and 1.3 are proven in Berndt, Biagioli, and Purtilo [12], [13].
If Ordr(/; £) denotes the order of / with respect to F at the cusp £ e Q U {°o} and

*r(F; £) denotes the width of F at £, then the invariant order, ord(/; £) is defined by the
equation

Q. (1.6)

It has the following property for the order of the transform / | M of / by the matrix M —

\ ) e MUZ): If r,s e Q, (r, s) = 1, m = det(M), and if g = (ar + bs, cr + ds) (this is

the factor which cancels from the numerator and denominator when M - = is
reduced to lowest terms), then s cr as

ord(f\M;-)=*-oid(f;M-). (1.7)

\ s/ m \ s/

(See Berndt, Biagioli and Purtilo [11].)

Suppose d\\n,i.e.,d\n and Id, — J = 1. Then a Fricke involution of level d for Fo(«)
is a transformation M = B\ \, where B = ( ) eF o ( -1 and 6=0(modd). These

\U 1/ \y o) \dl
satisfy the following property:

LEMMA 1.4. If d \\ n, f is a form onT' = F0(n), a«d M is a Fricke involution of level d
for T0(n), then for every z e H U Q U {°°},

Ordr(/ | M; z) = Ordr(/; Mz).

Proof. For z e Q U {°°} this was proved partially in [13], and the complete proof is
similar to the one given there. For a point z € H, this follows because P € F0(n) if and
only if MPM~l e Fo(«), so that z and Mz are both non-fixed points of F0(n) or they are
both fixed points of the same order, and / | M, as an analytic function in H has the same
order at z as / does at Mz.

LEMMA 1.5. Suppose d\\n, m\n, B = [ J, and M = B[ 1 is a Fricke
\y o) \0 1/

involution of level d for F0(n), and suppose f is a form on Foi —) with multiplier system v.
\m/
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276 ANTHONY J. F. BIAGIOLI

n • / J \ m , dm , , ( va (iB\
Setting v = (d, m), ju = —, m' = — -~, and B ' = %B = I , I, (this agrees

v (a, m) v/A* O/V/
wif/i f/ie notation introduced in (1.3)), then

f\m\M = v(B').f\m'.

This says, essentially, that, for a Fricke involution, the stroke operator changes / | m
into/ \m'. The proof follows from

d . , .. _ i d
f | m | M = / | juv | B | d =f | ju

v ' v

V

LEMMA 1.6. Suppose d \\ n, a \ n, n is divisible by no square other than 1 or 4, and M

is a Fricke involution of level d for ro(n). Then with a' = 5, f/ie cusp M(- )
j («, fl) W

is equivalent modulo F0(n) to —.

Proof. Setting Af = 5l I with B = l s l e M ^ ) and 6 = 0(modd), and

d a
setting d0 = -——, a0 = -——, we have

(a, d) (a, d)

/1X / d o ^ ^ o + ^ o
\a/ \a0/ yd0 + 5a0

Since det(fi) = 1, this fraction is reduced, and we can apply Lemma 1.3. Using

'1*7 y, \l'd) = (d> y ) = !> a n d \d' 1 ) = 1> w e h a v e

(yd0 + 8a0, n) = (yd0 + 6a0, d)( yd0 + 8a0, -) = d0 . ao = a'.
\ a)

and we are done.

2. Transformation properties and multiplier systems. We begin with some pro-
perties of the Dedekind eta function

TJ(T) = e2™'24 f [ (1 - e2"inT), (2.1)
n=l

and the theta function

•& (v I T ) = — i y \ f—\\m
e"

iz(.h^+i/2)2
e
2">vim+1/2) (2 2)
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which are defined for T e H and v eC. With x = e2nix, #a satisfies
oo

a) #i(u | T) = 2JC1/8 2 (-l)msin((2m + l)v)xm(m+m,
m=0

c) # , (u + mr + n\r) = (-l)"-+»e-'
til2mv+'n2xl&1(v \ r).

The Jacobi triple product identity is b); the other two follow from the definition.

For A = ( j e T(l), the transformation properties of r]{x) and &t(v | T) are:

V(r), (2.4)

where

(-) exp(^[-3c-bd(c2-l) + c(a + d)]j, fore odd,

&r

and

where

, for d odd,
(2.5)

(2.6)

= v3
n(A) = (2.7)

f(d\* (2nir , \
I - I expl-—[—3c + c{a + d)\ I, for c odd,
\ c / \ 8 /

(^) exp(— [3d-3 + d(b-c)]), ford odd.

For (2.3b), (2.4), (2.5), and (2.6), see Rademacher [4, §§74, 80], although the

specific form of (2.5), using the extensions (-) and I- I of the Legendre symbols to

allow the lower entry to be negative, follows Knopp [5]. (2.7) follows from (2.3b) by
observing that

3 " ' ' r) =2nr](r)3.
v=0-U

Suppose p, n e Z with « > 1 and n \ p. Then we define

nt), (2.8)

where [ ] denotes the greatest integer function. This has the product form, after the triple
product (2.3c),

- xmn-p)(l -
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la b\
LEMMA 2.1. If A = , e ro(n), then

\c a)

Recall that "A = ( °, " ) , as in (1.3).
\c/n d Ic/n d

Proof. Using the transformation property (2.6) of #1; we have

a{nx) + nb
cr + d

-(nr)
n

+dexp(p2g | nr)

n t )

(a2r + afc BT)

Since fn>p+n=fn,-P — fn,p a nd the quadratic reciprocity symbol satisfies (—-—1 =

I- j and ( — ) = (~), the following definition makes sense.

DEFINITION 2.1. Suppose 6 = ±1. Then

where r is any integer with I - j = 6.

We shall sometimes write g+ and g_ for g+1 and g_]. By the product expansion we
see that

g(T) = g_(T)=^-1/6OG(Jc)( and

DEFINITION 2.2. For natural numbers r and s and for 8 = ±1, we define

U6,r,s=g- .g-d+8g+ .g6, (2.10)

If r and s satisfy r.s = ±1 (mod5), then we define implicitly <5e{±l} by r + 8s=0
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(mod 5) and shall write
(2.H)

These modular forms are related to the power series UrtS of the introduction by:

when r + s = 0 (mod 5),
Jr-S, when r — s = 0(mod5).

We also define

and

THEOREM 2.4. p{x) is a form of weight 0 on Fo(2) with multiplier system

p*(r) is a modular form of weight 0 on Fo(4) »VIV/I multiplier system

and ur j is a modular form of weight 0 on F0([r, 5]) wifn multiplier system

vr,s = vl\r.v1\s,

where v^A) = vv(A)u denotes the multiplier system of »J14(T), i.e.,

c d

so then

(2.12)

(2.13)

(2.14)

(2.15)

(a b\
Me d) =

~[-3c-bd(c2-l) + c(a + d)]j, codd,

expC? [3d - 3 - ac{d2 - 1) + d{b - c)]V d odd,

- ^ . -—- [-3c - bd(c2 - rs) + c(a + d)]\ c odd,
O rS /

(2.16)

6 rs

(2.17)
d odd.

Note that vrs is the multiplier system of rfu(rt). JJ14(ST).
The assertions about p{x) and p*(r) follow directly from the general property (1.4)

about transforms / | r, and the transformation property (2.4) of JJ(T). The rest of this
section is devoted to proving the assertion for urs. We shall first establish the
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transformation properties of g6(r), then use this to establish the multiplier system for urs

on ro(5[r, s]), and finally extend the result to T0([r, s]).
In the transformations of g6 we introduce a function #5(m) defined as follows:

= +l ,+2(mod5),
- 1 , form—1,-2 (mod 5). (2"18)

This function is determined by the property

and satisfies

X5(mn) = (-I)neg(m/5)neg("/5)^(m)x5(«), (2.20)

where negx = | ' ' To see that (2.20) is valid, let m = 2g, and n = 2" (mod 5).

Then *5(m) = (-1)* and (-i)te+*K»+*-1V2 = (_i)»c«-iV2+*(*-i)«+«*-

PROPOSITION 2.5. For >1 = ( I e Fo(5), we set d' — {-). Then the functions g+ and
\c a! \5/

g_ transform according to the rule
g66,(r). (2.21)

where
vg,6(A) = v0,s(A)v1(A) (2-22)

and

(2.23)

Thus, when ( - ] = —1, g+ transforms into g_, and vice-versa.

Proof. We apply Lemma 2.1, with p chosen to be either 1 or 2. Then, using

^ = 5c (mod24), and (—) = [f)[-)> we get v^A)lvv{A) = (£)vM). Then a couple

of applications of (2.19), using the fact that ab = a + b + 1 (mod 2) for any A e F(l), and
that 5p + p2 = 20 - 86, gives us (2.21).

COROLLARY. For any positive integer r, gs(rr) is a modular form of weight 0 on
rOjl(5r, 5) = {A e T0(5r) | a - ±l(mod 5)}.

PROPOSITION 2.6. Suppose r, s are positive integers, d e {±}, and r + Ss = 0 (mod 5).
7ften wrj is a form of weight 0 on ro(5[r, s]) with multiplier system vrs(A).

We isolate the following sign argument for use here and again at the end of the
section.
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LEMMA. / / 6, 6' e {±1} and R±1, S±1 are any four quantities, then

R-6.S-66. + 6R8.SdS, = (<5')negd[J?-,S_6 + 8R+lSa]. (2.24)

Proof. Check each of four cases.

Proof of Proposition 2.6. For any m e N , oe{±\\, A = ( , ero(5m), and
/a\ V c dl

o' = (-) , we have

ga{mAr) = vgS(
mA)ga6,(mr),

so for A € F0(5[r, s]), we have

uriS(Ar) = ug,-1CA)^,_6(M)[g_s.('-T)g_66.(5T) + 6^g6.(rr)g66isr)], (2.25)

where § has the value

because r + 8s = 0 (mod 5). Applying the sign argument above, we have

/a\neg6

urs(Ar) = vg,_(rA)vg,_6(
sA)[ - urs(r).

Finally, applying the definition (2.23) of v0 6.

and this completes the proof.

A reduction in the proof of Theorem 2.4. Choose an integer m such that

fm = 0(mod24rs),

I m - l ( m o d 5 ) , ( 2 2 6 )

and define

H : ")•
Then ro([r, s]) is the group generated by r,,(5[r, s]) and V, and vrs(V) = 1, so Theorem
2.4 follows if we know that

( k T\
— -) as a linear combination of /5 ,

and/52- The other shows that g6l -I is a certain linear combination of g+ and g_.
\AfZT i" X. /

These two lemmas are then used to prove (2.28).
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fk\ . V5 + 1
LEMMA 2.7. Suppose k e Z, 5 + k,o = I - J, and co =—-—. Then

(2.29)

Proof. Choose pe{\, 2} so that k = ±p (mod 5). Then (-) = (-j = a and

so it suffices to show that

(2.30)

sin
Setting sm = •

sin(y)
-, and using the series expansion (2.3a) for ftx, we have

w ^ + 1 iSince cos — = = 5 to, we have
5 4

- and 2cos(^) - m«.

Setting c = 2 cos — we get

Then, by induction, sSm = 1, j 5 m + 1 = a<wa, 55m+2 = 0, s5m+3 = -CTWCT, and s5m+4 = - 1 , for
all m. Putting these into the above series and collecting together the terms with m = 0 and
m = 4 (mod 5) and likewise the terms with m = 1 and m = 3 (mod 5), and rearranging the
series, we obtain

*1(2r I 5T) - flwV^t I 5T)],

which is (2.30), and the lemma is proven.

LEMMA 2.8. Suppose 6' e {±1}, 8 | A: and 5 \ k. Let a = (-) and 6" = 6'o. We define

Rs.{k) = [(6"o}m2e-(4jli'5)ak) . g_(r) - (a*-*'0*"^^0*) . g+(r)], (2.31)
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Then

283

(2.32)

(2.33)

Proof. We shall do the proof only for the case 6' = — 1, the case 6' = +1 being
analogous. In this case we have 6" = -a, and ga(r) =g(r) = e(4jI'/5)Td1(2T | 5T)/T/(T).

Let /3 = — ok = — \-)k. Then /3& = — 1 (mod5), so with a = , we have

(5 T V(5 T
\0 l/V/t 1/ \ik or/VO

Setting z = , we have

5 .
kx + 1 jfcz + or'

and 2.
2T/5

kx + 1

By the transformation properties (2.4)-(2.7) of r/(r) and

(5 P)

^i)= expll4y) (kxTi)) • -7T-57V5

+ a

| T), we get

A 5 \

(2.34)

Since5ar-/3Jt = l and/3 = A: ^ 0 (mod 24), we have ( - ) = f - V — ) =(—^—=) (-) =
\a/* VS/VSar/* \1 — ok /*\5/

(5 fi\ / I 0\
aand ar=5 (mod8), so we get v# I I = aand also u^l I = 1. Hence (2.34) becomes

\K (Xl \K 1/

(f
f

5 /

= i5-1/4x5(2A:)e(4jI'/5)CT*[-aa)<7/2/5i2(T + aA;) - a)-6/2f5A(x + ok)].

Now, since 6"= d'o= -o, we get (2.33) by applying the transformations property of/5p
from Lemma 2.1, and the definition (2.9) of g±.
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Conclusion of the proof of (2.2) and Theorem 2.4. Let c ^ f - ) - Then from

) (r + 3s = 0 (mod 5) and ra = l ( m o d 5 ) , it follows that (~) = (~^~) = ( ) = °>
r2 = sz = a (mod 5) and rs = -do (mod 5). Hence V 5 / V 5 ' V 5 '

' -)=X5(omr) = oX5(r), (2.35)

and

For 6' e {±1} we define

R6, = [<5'cy~d'/2e(4j"75)CT(m/r)g_(rT) - <ab'ae~^

Then the last lemma, with 6' = od — (~r~)<5» says

7 ( r r )

Similarly, with

we have

Setting

we then have

\ /MT

We use the definition (2.32) of £_ and §+, and the values (2.35) and (2.36) of ^5 to
calculate

= -<5(-<5)CTn e g 6

= aneg*,
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and, similarly,

u = °nee6,
so then

by the sign argument (2.24).

For 8 = +1, since —I— = 0 (mod 5), and co H— = V5, we have
r s (o

This proves (2.28) and completes the proof of Theorem 2.4.

3. Orders of the functions.

LEMMA 3.1. Suppose a, b, c, d are real, c¥=0, and suppose / ( T ) = ftx{aT + b \ ex + d)
does not vanish identically. Then when f is expanded as a power series in x = e2mr, the
lowest order term has degree

Proof. From (2.6) we get / ( T ) = £-«> %nx
a", where an is a quadratic expression in n

whose minimum for integral values of n is the expression in (3.1). The coefficient of this
a ad — be

term vanishes only when - e Z and e Z. But then, from (2.3a,b), we would have
/ (T) -0 . C C

LEMMA 3.2. / / (a, c) = 1, n \ p and e = (n, c), then

(a b\ a
Proof. Choose b, deZ so that A = I I e T(l). Since A<*> — -, we have

\c dl c

ord[/; -J = ord(/ | A;»). Then
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ft dc — cic
Let e = (n, c) and m = - . Then there is k so that 6 = e Z. Finally let 8 = be — ak

e n
(ma 6\

and B = , ) . Then B e IY1), and
\c/e o)

ami-
+ b) \nax + nb e{ax + b) \ m

1 x c (er + k
— (CT + a) - I
m e \ m

so that, after applying (2.5) and doing some simplifications as in the proof of Lemma 2.1,

S ) 1 (
m \ n ) \m m m m

for an appropriate constant |f. Hence, by Lemma 3.1,

THEOREM 3.3. Suppose p e {1, 2}, 6 = 1 — 1, and a, c are integers with {a, c) = 1. Then

11 (a\ (p\
—, when I — ±1 (mod 5)
16 \c) \ 0 /
1 (3-2)

— — , otherwise.

4. Applying the Fricke involutions. The modulary group of level n is the set Gn of
2 x 2 matrices whose entries are residue classes modulo n with determinant 1 (modn).

LEMMA 4.1. The mapping Y(\)—>Gnis onto.

The map referred to is, of course, reading the entries modulo n. For a proof see
Schoeneberg [9].

We shall add additional conditions to those of the definition (0.9) of the Fricke
involution in order to simplify the multiplier systems that will arise. We assume that M is

(a b\(m 0\ . ,
given by M = ̂  J ^ Q J with

ab = ac = cd = be = 0 (mod 2a3"5y) (4.1)
and

a = d = \ (mod 5), if 5 + m, (4.2)
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where a, j8, y are sufficiently large natural numbers. Usually, sufficiently large will mean
a > 3 , P> 1, and y > l . We can also require, when it helps,

r = l(mod8), when m is odd, and
= l(mod8), when m is even.

The consistency of (4.1), (4.2), and (4.3) is guaranteed by the lemma.

fa b

(4.3)

LEMMA 4.2. / / A = \ J ) e IY1) and ab = ac = bd = cd = 0(modl20), then
\c dl

~cl2, c odd,

(J)*c,
(4.4)

c odd,

, c odd,

~d, d odd.

Proof. If c is odd, then c2 = 1 (mod 8) and we need only use bd = 0 (mod 3) and

c(a + d) = 0(mod24) and (1.2) to ensure that vv(A) = (-) c<
2™/8>(-3c> = (-Yrc/2. The

rest follow similarly from (1.2), (1.17), and (1.18).
The conditions a = d = 1 (mod 5) and c = 1 or d = 1 (mod 8) were not considered

here because they are not preserved under the transition A >-» ^A.

PROPOSITION 4.3. Suppose r\n, s\n, and m\\n and let the matrix M =

A\ I wit/i A = I , I e F ( l ) , with m I d, and — c be a Fricke involution of level m
\ 0 1/ \c d) m

for ro(«), chosen so that (4.1) and (4.2) hold. Suppose d e {±1} so that r + ds = 0 (mod 5).
Then

urs | M = £wr.,s.,

where %, r', and s' are determined by

rx = (r, m), r2 =
rm

s1 = (5, m),

(r, m) '

5, m ) '

r = (r ,m)2 '

sm
\s,mf
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m odd.

If, in addition, [m, 2r] | n, and ifp(r)= then
r/2\
I —Jp | r', m odd,

| r | Af =

Proof. For r e N, 6 e {±1}, we have

m even.

where 5 = 1-̂ -1 and A' = J>/1 = 1 x 2 ). Applying the congruences (4.1) and (4.2),

and proposition 2.5, we have

We have used the fact that when m is even, r2 is odd, so — = r2c = r2 (mod 4), and,

d
similarly, — = rt (mod 4) when m is odd. Consequently,

6* | s'

where

and

| r ' . g_M. |

meven,

Since 6neg6' = d'neg6, and 6'neg*' = 6', we have

], meven,
w o d d >

when m rs.
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For p{t), we have, when m is odd,

p \r\M = :

289

where
r)\2r\M

<clr2

- = 9 1 / 4 -
2/-' \r'>

V dlrx) (d/ri_lV2
•©•

and similarly, when m is even,

p I r I M = 21

r' W

5. Proving the identities. We now use the properties derived above to prove the
identities stated in §0. This is mostly a matter of some calculation. We do the identity
(#16) in some detail and give only a few intermediate results of the calculation in the
rest.

The first step is to calculate the multiplier systems of each term in the identity.
Second we compute the result of applying the Fricke involutions and observe what effect
this has on the orders at the cusps. If there are any cusps which are not obtained from 00
by the application of one of the Fricke involutions, we use the formula (1.5) for the
(invariant) order of a transform to get a lower bound for the order at the remaining cusps.
Finally we calculate the necessary number of terms in the series expansion to prove the
identity from the valence formula (0.4).

(#16). We set Q(x) = P(x)P(x7), and Q*(x) = P*(x)P*(x7), and

ID(x) = U6M - ^ [Q*(x)Q(x3) - Q(x)Q*(x3)],

and obtain from it a modular form

I(r)=x-mID(x) = u6M - \[q* . q \ 3 - q . q* \ 3],

where ^(r) = p{x)p(Jx), and q*(t) = P*(T)P*(7T). Each factor of each term of / is a form
of weight 0 on ro(84). q and q* each have multiplier system

(see (4.8)) and ^(3T) and ^*(3T) have the multiplier system

vq | 3(/l) = vq(
3A) = e x p ( ^ rf(-36 + -^ ),
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so q* . q | 3 and q. q* \ 3 have multiplier system

va . va 3 = exp —— d\—b+ —

which agrees with the multiplier system v6M of M6>14 (cf. (4.5)), so / is a modular form of
weight 0 on ro(84).

We compute the effect of the Fricke involutions M3, M4, M7, the rest being obtained
by Ml2 = M3M4, M2i = M3M7, Af28 = M4M7, and M84 = M3M4Mn. (Cf. Proposition 4.3.)
The result is

«6,14 I M3 = "6,14 | M4 = - M 6 , 1 4 | M-, = M6 i l 4 ,

( ? ? | ) | 3 9 ^ | , ( 9 9 | ) | 3 g 9 | ,
(9* . q | 3) | M7 = - ? * . 9 | 3, (q.q*\3)\M7=-q\3. q*,

(q*.q\3)\M4=-2-^, (q . q* \ 3) | M4 = ~ 2 ^ | .

Hence, setting /d = / | Md, we get

/ = /3 = - / 7 = -/21,
and

/ 4 = /,2 = "/28 = " 4 4 = -"6,14

We obtain a power series ID4(x) from /4 by /4 = x~1/3/D4(x). We do not need to know
precisely the form of ID4(x), as we will see below, we only need to know that it does not
involve any negative powers of x, which it does not.

Suppose now that we calculate mx terms of ID(x), i.e., the coefficients of
1, x, x2, . . . , *m i~\ and m4 terms of ID4(x) and these all turn out to be 0. Then we know

Ordro(84)(/; oo) > m, - i Ordro(84)(/4; «) > m4 - I
But

Ordr o ( 8 4 ) ( / ; - J = Ordro(84)(/d; °°),

so we know a lower bound for Ordro(84)(/;-j for d = 1, 3, 4, 7, 12, 21, 28, and 84. The

function / has no poles in the upper half-plane, so we have Ordro(g4)(7; z) a: 0 for all

z e H . We still need a lower bound for the orders at - for d = 2, 6, 14, 42. To get these,
a

we need only calculate a bound for d = 2, because, for d odd,

Ordro(84)(/; ̂ ) = Ordro(84)(/d; | ) = Ordro(84)(7; 1).

We have, by the definition of the invariant order,
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and we apply the transformation property (1.5) of the invariant order, together with the
orders for g =g_, and h = g+ from Theorem 3.1 to get

oid(g | 6; \) = -jo, ord(g | 14; | ) = - ^

ord(/i I 6; \) = - 4 ord(/! | 14; | ) = - ^
so that

ord(w6>14; i) > - ^ .
Also,

) = - A , ord(<? | 3; \) = - £ ,

) = ^ , and ^ ^

follow from ordl JJ(T); -) = ^ for all - e Q*, together with the definitions of q and q*. Thus
\ S / A

Ordro(84)(/; | ) > 21. min{-^ , £ , ^ } = ~ i

Combining the above bounds gives us

2 Ordro(84)(/; z) > 4(m! - 1) + 4(m4 - ^) + 4(-^) = 4(«, + m4 - 1).

The identity will be proven, i.e., 7 = 0, if

mi + w 4 > 1.

However, we can easily calculate in the ring of formal power series modulo the
ideal (x2):

06.14=1,
and

±[P*(x)P(x3)P*(x7)P(x21) - P(x)P*(x3)P(x7)P*(x21)] = l [ ( i + x) - (1 - * ) ] = 1,

so wt >2, and (#16) is proven.
For the remaining identities we give only the modular form variation / of the

identity, the multiplier system v(A) for /, the results ld = /1 Md of applications of the
Fricke involutions, and the inequality for the valence formula, assuming that m terms of
the power series have been calculated. None of the rest have cusps which are not the
result of 00 after application of the involutions, so that part of the calculation can be
omitted.

(#15).
1 = x-mID(x) = u3,7-u2hl.

V(A) = ^3,7 = 1-21,1-

/=-/3=-4 = /2i-
2 Ordro(21)(/;z)>4(m-|).
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(#18). For the computation of I2 and /13 here we need the identity (#17) from the
complete list of forty, which was proven by Bressoud [2]. It is

"2,13 ="26,1- ( # 1 7 )

We could prove this here with virtually the same computations as for (#15). We take it as
known.

We set q{x) = p(13r)/p(r).

) = ul13-q+-,

v(A) = (-l)"-(c'26\

(#34). We set u = u2,23 • "46,i and q(r)=p(r)p(23r).

-= x~lID(x) = u - q - l - - .

v(A) = 1.

I = h = h3 = 1M>-

2 Ordro(46)(/;z)>4(m-l).

(#36) and (#37).

r=x-1V24ID'(x) =P(33T)M1 1 > 6-P(T)M2 2 ,3.

v(A) = v'(A) = l.

j I ~V2 I
33> " 2 p(llT)p(3T) '

r t r r r r V »»

Ordro(66)(/; z) > 4(m - I ) + 2(^) + 4(m' - iJ) + 2(i) = 4(m + m' - I).

(#40). We set « = MIJ94M47,2> and q(r) =p{x)p{AlT).

I = x-*ID(x)=\u-q-2--] -Uq+9 + -].

v(A) = 1.
I = I2 = /47 = /94.

2 Ord r o ( 9 4 ) ( / ; z )>4(m-4) .
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It is rather remarkable that very few terms need to be computed any of these series.

The remaining identity. The only identity of the forty not proven after this is

UWAP(x38) = U^P(x2), (#35)
where

£/?„,, = G(x76)H*(x) +xl5G*(x)H(x76),

and H*(x) = H{—x), G*(x) — G(—x). From the infinite products defining H(x) and
G(x), we obtain

G(x2)

So we define

gsir)'i g-«(4r)'
so that

gl(r) = xul6°H*(x) and g*(r) = x~VMG*(x),
and we let

From (1.2) and (2.21), it follows that for A = ( Je ro(20), g |(r) transforms according

where 6' = ( - j , and

Afab exp ( | [ M 3 ac(d2
exp 6 A-fab e x p ( | [ M - 3 - ac(d2 - 1) + d(-5b +

From this we get u*61 is a form on ro(380) with multiplier system

v^iA) = e x p ( | [ac(d2 - 1) + d(-b + c)],)

as we did for wri in Proposition 2.6. Then we check that both sides of (#35) have the
same multiplier system, which they do.

It appears that a further reduction, as was possible for urs in Theorem 2.4, to Fo(76)
may not be possible; the identity (#24) in Birch's list specifically lacks this final symmetry
and it involves a similar combination, i.e. «* l = g(r)h*(r) — h{r)g*{r).

At any rate, the apparent lack of symmetry for the factor 5 forces somewhat more
calculation. We let Md, for d = 4, 19, 76 be Fricke involutions for ro(380) and calculate:

h =p(2r ) . u?M -/?(38r) . M19,4,

/ | M19= ~ / 1 9 = /?(38T) . M?> 1 9-/?(2T) . M76I1,

Pifi
\t I "1,19 M19,4
^ 7 6 = ~ / 7 6 = — "
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where
g*(T)-h(19r)h*(r)

M*I9(T) = g(r)g*(19r) - h{T)h*(l9x),

«4,I9(T) = h{4x)g*{19x) + g(4x)h*(19x).

We can use our knowledge of the orders of g, h, and p to get a lower bound

Ordr0(380)

for d = 1, 4, 19, 76 at any of the cusps - , r \ 380 of Fo(380). We can also calculate some

number nd of terms in the series IDd{x) associated with Id. Then since

l\—x IU\, 14 — x IL>4, iig — x **-'i9> ana i76 — x iUif,>

we would have

o ( ) ( ) ("19 - 1) + ("76
380 \ r/

i l + m19i l + m76,! + mU2

(These estimates correspond to the cusps », ^ , 93, 5, ̂ , -^, \, \, j§, j ^ , \, and j^.) The
resulting values for the mdr are, respectively,

_ 59 41 41 _ U 8 _ 5 9 _ 1 7 2 59 _ 41
120, 120> 24) 12 > 24) 12 , 24, 120-

This gives us a lower bound of

(/; -)>«! + n4 + «»2 Ordro(380)(/; - ) > « ! + n4 + «» + «76 - T > 2 "<< ~ 37-
r | 380 >

Hence, if the first 10 terms of each of the four identities vanish, then the valence formula
tells us that 7 = 0. They do, so the proof of (#35) is complete.
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