
21

Angular derivatives ofH(b) functions

In the previous chapter, we characterized the boundary points where functions
in H(b) admit an analytic continuation. In this chapter, we pursue this study
and we characterize boundary points where functions inH(b) admit an angular
derivative up to a certain order.

In Section 21.1, we start by characterizing those points ζ ∈ T such that, for
all functions f ∈ H(b), the nontangential limit

f(ζ) = lim
z→ζ
�

f(z)

exists. As we will see, this is connected to the well-known Julia–Carathéodory
theorem. In fact, we recover this result using a Hilbert space approach based on
H(b) spaces. We also show how to deduce Julia’s inequality from the Cauchy–
Schwarz inequality. In Section 21.2, we study the connection between angular
derivatives and Clark measures. In Section 21.3, we give a simple sufficient
condition for a Blaschke product and its derivatives up to a fixed order to admit
radial limits at a boundary point. Then, in Section 21.4, we generalize this
result to arbitrary functions in the closed unit ball of H∞. In Section 21.5, we
study an approximation problem by Blaschke products that will be useful in
our studies on boundary derivatives of functions inH(b).

In Section 21.6, we give some interesting formulas for the reproducing ker-
nels of derivatives of functions in H(b). In Section 21.7, we establish the
connection between the existence of boundary derivatives in H(B), where B

is a Blaschke product, and an interpolation problem. In Section 21.8, we give
a nice characterization for the existence of boundary derivatives for functions
in H(b). This explicit characterization is expressed in terms of the zeros of b,
the singular measure associated with b and log |b|.

170

https://doi.org/10.1017/CBO9781139226769.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139226769.008


21.1 Derivative in the sense of Carathéodory 171

21.1 Derivative in the sense of Carathéodory

In Section 3.2, we studied the angular derivative of analytic functions on the
open unit disk D. In this section we consider the smaller class of analytic
functions f : D −→ D̄, i.e. the elements of the closed unit ball of H∞(D). We
say that such a function has angular derivative in the sense of Carathéodory at
ζ0 ∈ T if it has an angular derivative at ζ0 and moreover |f(ζ0)| = 1. By the
maximum principle, for some z ∈ D, f(z) ∈ T happens only if f is a constant
function of modulus one. Hence, from now on, we consider functions that map
D into D.

Theorem 21.1 Let b : D −→ D be analytic, let ζ ∈ T, and put

c = lim inf
z→ζ

1− |b(z)|
1− |z| .

Then the following are equivalent.

(i) The constant c is finite, i.e.

c <∞.

(ii) There is λ ∈ T such that

b(z)− λ

z − ζ
∈ H(b).

(iii) For all functions f ∈ H(b),

f(ζ) = lim
z→ζ
�

f(z)

exists.
(iv) The function b has an angular derivative in the sense of Carathéodory

at ζ.

Moreover, under the preceding equivalent conditions, the following results
hold.

(a) The constant c is not zero, i.e.

c > 0.

(b) We have |b(ζ)| = 1, c = |b′(ζ)| and

b′(ζ) =
b(ζ)

ζ
|b′(ζ)|.

(c) We have

kbζ(z) =
1− b(ζ)b(z)

1− ζ̄z
∈ H(b).
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172 Angular derivatives ofH(b) functions

(d) For each f ∈ H(b),

f(ζ) = 〈f, kbζ〉b.

(e) We have

lim
z→ζ
�
‖kbz − kbζ‖b = 0.

(f) We have

|b′(ζ)| = kbζ(ζ) = ‖kbζ‖2b = c.

(g) We have

c = lim
z→ζ
�

1− |b(z)|
1− |z| .

Proof Our plan is to show that

(i) =⇒ (ii) =⇒ (iii) =⇒ (i)

and then

(i), (ii), (iii) =⇒ (iv) =⇒ (i).

The properties (a)–(g) will be obtained at different steps of the proof.

(i) =⇒ (ii) If c <∞, then there is a sequence (zn)n≥1 in D converging to ζ

such that

c = lim
n→∞

1− |b(zn)|
1− |zn|

<∞.

Hence, we necessarily have limn→∞ |b(zn)| = 1. Therefore, we can write

c = lim
n→∞

1− |b(zn)|2
1− |zn|2

.

In the light of Theorem 18.11, this means that

c = lim
n→∞

‖kbzn‖
2
b .

This is the main observation, due to Sarason, that allows us to use Hilbert
space techniques. By Theorem 1.27, (kbzn)n≥1 has a weakly convergent subse-
quence in H(b). Since (b(zn))n≥1 is bounded, it also has a convergent subse-
quence in the closed unit disk. Hence, replacing (zn)n≥1 by a subsequence if
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21.1 Derivative in the sense of Carathéodory 173

needed, we assume there are λ ∈ D̄ and k ∈ H(b) such that b(zn) −→ λ and
that kbzn

w−→ k. Therefore, for each z ∈ D,

k(z) = 〈k, kbz〉b
= lim

n→∞
〈kbzn , k

b
z〉b

= lim
n→∞

kbzn(z)

= lim
n→∞

1− b(zn)b(z)

1− z̄nz

=
1− λ̄b(z)

1− ζ̄z
.

Since k ∈ H2(D) and 1/(1− ζ̄ z) �∈ H2(D), we must have |λ| = 1 and thus

λζ̄k(z) =
b(z)− λ

z − ζ
∈ H(b).

Clearly k �≡ 0 and, by (1.30), the condition kbzn
w−→ k implies that

0 < ‖k‖2b ≤ lim inf
n→∞

‖kbzn‖
2
b = c. (21.1)

This also establishes part (a).
(ii)⇐⇒ (iii) By assumption, k ∈ H(b). Hence,

b(z) = λ+ λζ̄(z − ζ)k(z),

which, by (4.15) and the fact that k ∈ H2(D), implies that

|b(z)− λ| ≤ |z − ζ| ‖k‖2 ‖kz‖2 = ‖k‖2
|z − ζ|

(1− |z|2)1/2 .

Thus, if z ∈ SC(ζ), we have

|b(z)− λ| ≤ C ‖k‖2(1− |z|2)1/2,

and the last quantity tends to zero when z tends to ζ from within SC(ζ).
Therefore,

lim
z→ζ
�

b(z) = λ.

Let us write b(ζ) for λ, and kbζ for k, i.e.

kbζ(z) =
1− b(ζ)b(z)

1− ζ̄z
.
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174 Angular derivatives ofH(b) functions

With the new notation, we have kbζ ∈ H(b). This is part (c). We also have

kbζ(z) = 〈kbζ , kbz〉b (z ∈ D).

Moreover, by the Cauchy–Schwarz inequality,

|kbζ(z)| ≤ ‖kbζ‖b ‖kbz‖b.

Since

|kbζ(z)| =
|1− b(ζ)b(z)|
|1− ζ̄z| ≥ 1− |b(z)|

|z − ζ| =
(1− |z|2) ‖kbz‖2b

(1 + |b(z)|) |z − ζ| ,

the preceding two inequalities imply that

‖kbz‖b ≤ ‖kbζ‖b
1 + |b(z)|
1 + |z|

|z − ζ|
1− |z| .

Hence, in each Stolz domain SC(ζ),

‖kbz‖b ≤ 2C ‖kbζ‖b (z ∈ SC(ζ)). (21.2)

This inequality means that ‖kbz‖b stays bounded as z tends nontangentially
to ζ. This fact is exploited below.

For each fixed w ∈ D,

lim
z→ζ
�

kbz(w) = lim
z→ζ
�

1− b(z)b(w)

1− z̄w
=

1− b(ζ)b(w)

1− ζ̄w
= kbζ(w).

We can rewrite this relation in the form

lim
z→ζ
�
〈kbz, kbw〉b = 〈kbζ , kbw〉b.

Therefore,

lim
z→ζ
�
〈f, kbz〉b = 〈f, kbζ〉b, (21.3)

where f ∈ H(b) is any element of the form f = α1k
b
w1

+ · · ·+αnk
b
wn

. But the
collection of such elements is dense in H(b), and thus, by (21.2), the identity
(21.3) holds for all f ∈ H(b). At the same time, (21.3) shows that

f(ζ) = lim
z→ζ
�

f(z) = 〈f, kbζ〉b (f ∈ H(b)).

This is part (d). In particular, with f = kbζ , we obtain kbζ(ζ) = ‖kbζ‖2b . This

is partially part (f). The relation (21.3) also implies that kbz
w−→ kbζ as z tends

nontangentially to ζ.
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21.1 Derivative in the sense of Carathéodory 175

(iii) =⇒ (i) Fix any Stolz domain SC(ζ). Consider kbz as an element of
the dual space of H(b). Then the relation f(z) = 〈f, kbz〉b along with our
assumption imply that

sup
z∈SC(ζ)

|〈f, kbz〉b| = C(f) <∞.

Thus, by the uniform boundedness principle,

C ′ = sup
z∈SC(ζ)

‖kbz‖b <∞.

Take zn = (1 − 1/n)ζ, n ≥ 1. Since zn ∈ SC(ζ) for sufficiently large n, we
have

1− |b(zn)|2
1− |zn|2

= ‖kbzn‖
2
b ≤ C ′2 (n ≥ N),

which implies in particular that limn→∞ |b(zn)| = 1. Moreover,

c ≤ lim inf
n→∞

1− |b(zn)|2
1− |zn|2

= lim inf
n→∞

‖kbzn‖
2
b ≤ C ′2.

(i), (ii), (iii) =⇒ (iv) Since kbζ ∈ H(b) we have

b(z)− b(ζ)

z − ζ
=

kbζ(z)b(ζ)

ζ
= 〈kbζ , kbz〉b

b(ζ)

ζ
(z ∈ D).

On the other hand, we know that kbz
w−→ kbζ as z tends nontangentially to ζ.

Hence,

lim
z→ζ
�

b(z)− b(ζ)

z − ζ
= ‖kbζ‖2b

b(ζ)

ζ
,

which, by Theorem 3.1, means that

b′(ζ) = ‖kbζ‖2b
b(ζ)

ζ
. (21.4)

Thus, |b′(ζ)| = ‖kbζ‖b. This is partially part (f).
By (21.1), c ≥ ‖kbζ‖2b . To show the reverse inequality, we prove that

‖kbz‖b −→ ‖kbζ‖b
as z tends nontangentially to ζ. This fact has three consequences. First, it
implies c ≤ ‖kbζ‖2b , and thus we indeed have c = ‖kbζ‖2b . This is partially

part (f). Second, since kbz
w−→ kbζ , as z tends nontangentially to ζ, we have

‖kbz − kbζ‖b −→ 0. This is part (e). Third,

lim
z→ζ
�

1− |b(z)|
1− |z| = lim

z→ζ
�

1− |b(z)|2
1− |z|2 = lim

z→ζ
�
‖kbz‖2b = ‖kbζ‖2b = c.

This is part (g).
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176 Angular derivatives ofH(b) functions

To prove that ‖kbz‖b −→ ‖kbζ‖b, as z tends nontangentially to ζ, let

g(z) =
b(z)− b(ζ)

z − ζ
− b′(ζ) (z ∈ D).

Thus

b(z) = b(ζ) + b′(ζ)(z − ζ) + (z − ζ)g(z) (z ∈ D)

and, by (21.4),

|b(z)|2 = 1− 2 ‖kbζ‖2b �(1− ζ̄z) + h(z) (z ∈ D),

where

h(z) = (|b′(ζ)|2 + |g(z)|2) |z − ζ|2

+ 2�
(
g(z)(z − ζ)(b(ζ) + b′(ζ)(z − ζ))

)
.

The only important fact about h that we need is that

lim
z→ζ
�

h(z)

1− |z| = 0.

It is also elementary to verify that

�(1− ζ̄z)

1− |z|2 =
1

2
+

1

2

|z − ζ|2
1− |z|2 ,

which immediately gives

lim
z→ζ
�

�(1− ζ̄z)

1− |z|2 =
1

2
.

Therefore,

lim
z→ζ
�
‖kbz‖2b = lim

z→ζ
�

1− |b(z)|2
1− |z|2 = ‖kbζ‖2b .

(iv) =⇒ (i) If b has an angular derivative in the sense of Carathéodory at ζ,
then the inequality

1− |b(rζ)|
1− r

≤
∣∣∣∣b(rζ)− b(ζ)

rζ − ζ

∣∣∣∣
implies that

c = lim inf
z→ζ

1− |b(z)|
1− |z| ≤ lim

r→1

∣∣∣∣b(rζ)− b(ζ)

rζ − ζ

∣∣∣∣ = |b′(ζ)| <∞.

Remark 21.2 It is trivial to see that, if

d = sup
r<1

1− |b(rζ)|
1− r

<∞,
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21.1 Derivative in the sense of Carathéodory 177

then the quantity

c = lim inf
z→ζ

1− |b(z)|
1− |z|

is finite. The converse is also true. Indeed, if c < ∞, then, by Theorem 21.1,
we know that kbz tends to kbζ in norm as z −→ ζ nontangentially. In particular,
we have that ‖kbrζ‖b −→ ‖kbζ‖b as r −→ 1. Hence, the norms ‖kbrζ‖b are
uniformly bounded with respect to r, which precisely means that d <∞.

Corollary 21.3 Let b1, b2 : D −→ D be analytic, let ζ ∈ T, and assume that
b1 and b2 have angular derivatives in the sense of Carathéodory at ζ. Then
b = b1b2 also has an angular derivative in the sense of Carathéodory at ζ and,
moreover,

|b′(ζ)| = |b′1(ζ)|+ |b′2(ζ)|.

Proof In the proof, we repeatedly appeal to several parts of Theorem 21.1.
Since b1 and b2 have unimodular nontangential limits at ζ, then so does b.
Write

1− |b(z)|
1− |z| =

1− |b1(z)|
1− |z| + |b1(z)|

1− |b2(z)|
1− |z| .

Upon letting z = rζ −→ ζ, the result follows.

According to Theorem 21.1, the condition

lim
z→ζ
�

1− |b(z)|
1− |z| <∞ (21.5)

is equivalent to (b(z)−λ)/(z−ζ) ∈ H(b) for some λ ∈ T. Knowing this fact,
one may naturally wonder if the condition

b(z)− λ

z − ζ
∈ H2

is still strong enough to imply (21.5). The following example provides a nega-
tive answer. Fix a number p ∈ (1/2, 2/3) and let

b(z) = 1− 2−p(1− z)p.

It is clear that b has the nontangential limit 1 at the point ζ = 1 and, due to the
assumption p > 1/2, that

1− b(z)

1− z
∈ H2.

Moreover, since

1− b(r)

1− r
= 2−p(1− r)p−1
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178 Angular derivatives ofH(b) functions

and thus the quotient tends to∞ as r −→ 1, the condition (21.5) fails for b. It
just remains to show that b is in the closed unit ball of H∞. For that, it suffices
to show that the mapping z �−→ zp (where we take the principal branch) sends
the disk |z− 1/2| ≤ 1/2 into the disk |z− 1| ≤ 1. To verify this fact, note that
the boundary of the disk |z − 1/2| ≤ 1/2 is parameterized by

[−π/2, π/2] −→ C
t �−→ eit cos(t).

Hence, its image under the mapping z �−→ zp is given by

[−π/2, π/2] −→ C
t �−→ eipt cosp(t).

Therefore, we need to verify that

[1− cosp(t) cos(pt)]2 + [cosp(t) sin(pt)]2 ≤ 1 (0 ≤ t ≤ π/2).

This can be rewritten as

cosp(t) ≤ 2 cos(pt) (0 ≤ t ≤ π/2),

which is an elementary inequality. The assumption p < 2/3 is exploited here.
However, despite the above example for the general case, whenever b = Θ

is an inner function, then the assumption

Θ(z)− λ

z − ζ
∈ H2, (21.6)

where λ ∈ T, is enough to ensure (21.5). In fact, by (4.15), we easily see that
condition (21.6) implies that Θ(z) tends to λ as z nontangentially tends to ζ.
Hence, we can write λ = Θ(ζ) and

Θ(z)− λ

z − λ
=

Θ(z)−Θ(ζ)

z − ζ
=

Θ(ζ)

ζ

1−Θ(ζ)Θ(z)

1− ζ̄z

or equivalently

1−Θ(ζ)Θ(z)

1− ζ̄z
= ζ Θ(ζ)

Θ(z)− λ

z − λ
∈ H2.

For almost all z ∈ T, we also have

1−Θ(ζ)Θ(z)

1− ζ̄z
= z̄Θ(z)

(
Θ(z)−Θ(ζ)

z − ζ

)
.

Therefore, the function

1−Θ(ζ)Θ(z)

1− ζ̄z

actually belongs to KΘ = H2 ∩ ΘH2
0 . We can now apply Theorem 21.1

(implication (ii) =⇒ (i)) to conclude that Θ satisfies the condition (21.5).
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21.1 Derivative in the sense of Carathéodory 179

A function that has an angular derivative in the sense of Carathéodory has
an interesting geometrical property, which was discovered by Julia.

Theorem 21.4 Let b : D −→ D be analytic, and let ζ ∈ T. Suppose that b
has an angular derivative in the sense of Carathéodory at ζ. Then

|b(z)− b(ζ)|2
1− |b(z)|2 ≤ |b′(ζ)| |z − ζ|2

1− |z|2 (z ∈ D).

Moreover, the equality holds if and only if b is a Möbius transformation.

Proof By the Cauchy–Schwarz inequality,

|〈kbζ , kbz〉b|2 ≤ ‖kbζ‖2b ‖kbz‖2b .

But, by Theorem 21.1, this is exactly the required inequality. To see when
equality holds, note that Julia’s inequality can be rewritten as

�
(
z + ζ

z − ζ
− c

b(z) + b(ζ)

b(z)− b(ζ)

)
≥ 0,

where c = |b′(ζ)|. A positive harmonic function either identically vanishes or
has no zeros. Hence, if equality holds even at one point inside D, then we must
have

�
(
z + ζ

z − ζ
− c

b(z) + b(ζ)

b(z)− b(ζ)

)
= 0 (z ∈ D).

Therefore, we have

z + ζ

z − ζ
− c

b(z) + b(ζ)

b(z)− b(ζ)
= iγ (z ∈ D),

where γ ∈ R. This identity shows that b is a Möbius transformation. That the
equality holds for a Möbius transformation is easy to verify directly.

Julia’s inequality has a geometrical interpretation. The relation

|1− z|2
1− |z|2 ≤ r ⇐⇒

∣∣∣∣z − 1

1 + r

∣∣∣∣ ≤ (
r

1 + r

)2

reveals that the set {
z ∈ C :

|z − ζ|2
1− |z|2 ≤ r

}
is a disk of radius r/(1+r) in D whose center is on the ray [0, ζ] and is tangent
to the unit circle T at the point ζ. Julia’s inequality say that this disk is mapped
into a similar disk of radius rc/(1 + rc) that is tangent to T at the point b(ζ);
see Figure 21.1.
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Figure 21.1 The geometric interpretation of Julia’s inequality.

Exercises

Exercise 21.1.1 Let b be a function in the unit ball of H∞ that is not the
identity and not a constant. We say that a point z0 ∈ D is a fixed point of b if

lim
r→1−

b(rz0) = z0.

Furthermore, a fixed point z0 of b will be called a Denjoy–Wolff point of b
if either z0 ∈ D or z0 ∈ T and b has an angular derivative at z0 satisfying
b′(z0) ≤ 1.

(i) Show that b can have at most one fixed point in D and furthermore that
|b′(z)| ≤ 1 at such a point.
Hint: Use the fact that we have equality in the Schwarz–Pick inequality
if and only if b is a Möbius transformation.

(ii) Show that, if ‖b‖∞ < 1, then b does have a fixed point in D.
Hint: Apply Rouché’s theorem.

(iii) In this exercise, we would like to prove that b has at most one Denjoy–
Wolff point.

(a) Assume first that b has two distinct Denjoy–Wolff points z0 ∈ T and
z1 ∈ D.

(1) Show that kbz0 and kbz1 are linearly dependent.
Hint: Show that

det

(
kbz0(z0) kbz0(z1)

kbz1(z0) kbz1(z1)

)
= b′(z0)− 1.

(2) Prove that
1− z̄1b(z)

1− z̄1z
=

1− z̄0b(z)

1− z̄0z

and conclude that b is the identity function, which is a contradic-
tion with the hypothesis.
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(b) Assume now that b has two distinct Denjoy–Wolff points z0, z1 ∈ T.
Argue as before also to get a contradiction.

(c) Conclude that b has at most one Denjoy–Wolff point.

(iv) In this exercise, we would like to prove that b has a unique Denjoy–Wolff
point. Assume that b has no fixed point in D. For 0 < r < 1, let zr be the
fixed point in D of the function rb (note that ‖rb‖∞ < 1).

(a) Show that there exists a sequence zn = zrn that converges to a point
z0 ∈ T.

(b) Show that b has an angular derivative in the sense of Carathéodory at
z0 with 0 < b′(z0) ≤ 1.
Hint: Apply Theorem 21.1.

(c) Show that z0 is a Denjoy–Wolff point of b.
(d) Conclude.

Exercise 21.1.2 Let b be a function in the unit ball of H∞ that is not the
identity and not a constant. Let z0, z1, . . . , zn be distinct fixed points of b in
D. Assume that z0 is the Denjoy–Wolff point of b and assume that b has an
angular derivative at z1, . . . , zn.

(i) Justify that necessarily b′(zj) > 1, j = 1, . . . , n.
(ii) Assume that z0 = 0 and |b′(z0)| ≤ 1. Show that

n∑
j=1

1

b′(zj)− 1
≤ �

(
1 + b′(0)

1− b′(0)

)
. (21.7)

Hint: Define B(z) = b(z)/z, z ∈ D \ {0} and B(0) = b′(0). For j ≥
1, the functions kBzj are mutually orthogonal in H(B). Also verify that

‖kBzj‖2B = b′(zj)−1, ‖kBz0‖2B = 1−|b′(0)|2 and 〈kBz0 , kBzj 〉B = 1−b′(0).
Then apply Bessel’s inequality.

(iii) Assume that z0 = 1 and b′(1) < 1. Show that

n∑
j=1

1

b′(zj)− 1
≤ b′(1)

1− b′(1)
. (21.8)

Hint: Note that all the fixed points are on T and ‖kbzj‖2b = b′(zj). Also
check that, for j �= �, 〈kbzj , kbz�〉b = 1. Denote by G(kbz0 , . . . , k

b
zn) the

determinant of the Gram matrix whose (i, j) entry equals 〈kbzi , kbzj 〉b.
Then show that

G(kbz0 , . . . , k
b
zn)

= (1− b′(1))
n∏

i=1

(b′(zi)− 1)

⎛⎝ b′(1)

1− b′(1)
−

n∑
j=1

1

b′(zj)− 1

⎞⎠ .
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(iv) Assume that z0 = 1 and b′(1) = 1. Show that
n∑

j=1

|1− zj |2
b′(zj)− 1

≤ 2�
(

1

b(0)
− 1

)
. (21.9)

Hint: Note that

G(kb0, k
b
z0 , . . . , k

b
zn)

= |b(0)|2
n∏

i=1

(b′(zi)− 1)

⎛⎝2�
(

1

b(0)
− 1

)
−

n∑
j=1

|1− zj |2
b′(zj)− 1

⎞⎠ .

21.2 Angular derivatives and Clark measures

In this section, we explore the connection between the angular derivative in the
sense of Carathéodory and the Clark measures μλ, which were introduced in
Section 13.7. See also Section 20.11.

Theorem 21.5 The function b has an angular derivative in the sense of
Carathéodory at the point z0 ∈ T if and only if there is a point λ ∈ T such
that the Clark measure μλ has an atom at z0. In that case, we necessarily have
λ = b(z0) and μλ({z0}) = 1/|b′(z0)|.

Proof According to Theorem 21.1, b has an angular derivative in the sense of
Carathéodory at z0 if and only if there is λ ∈ T such that

b(z)− λ

z − ζ
∈ H(b).

Since H(b) = H(λ̄b), we can say that b has an angular derivative in the sense
of Carathéodory at z0 if and only if there is λ ∈ T such that

λ̄b(z)− 1

z − ζ
∈ H(λ̄b).

By Corollary 20.29, this happens if and only if μλ({z0}) > 0. Under the above
conditions, Theorem 21.1 also says that λ = b(z0).

It remains to show that μλ({z0}) = 1/|b′(z0)|. Put

gr = (1− r)krz0 (0 < r < 1).

For each ζ ∈ T, we have

|gr(ζ)| =
1− r

|1− rz̄0ζ|
≤ 1 (0 < r < 1).

Moreover,

gr(z0) =
1− r

1− rz̄0z0
= 1,
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while, for each ζ ∈ T \ {z0},

lim
r→1
|gr(ζ)| = lim

r→1

1− r

|1− rz̄0ζ|
= 0.

In short, we can write

lim
r→1
|gr(ζ)| = χ{z0}(ζ) (ζ ∈ T).

Hence, by the dominated convergence theorem,

lim
r→1
‖gr‖2L2(μ) = lim

r→1

∫
T

|gr(ζ)|2 dμλ(ζ) =

∫
T

χ{z0}(ζ) dμλ(ζ) = μλ(ζ).

(21.10)
But, according to Theorem 20.5, the mapping Vλ̄b is a partial isometry from

L2(μλ) ontoH(λ̄b). Moreover,

Vλ̄bgr = (1− r)Vλ̄bkrz0

= (1− r)
kλ̄brz0

1− λ̄b(rz0)

=
1− r

1− λb(rz0)

1− λb(rz0)λ̄b

1− rz̄0z

=
1− r

1− λb(rz0)
kbrz0 .

Remember thatH(λ̄b) = H(b) and that λ = b(z0). Hence,

‖Vλ̄bgr‖2λ̄b = ‖Vλ̄bgr‖2b

=
(1− r)2

|1− λb(rz0)|2
‖kbrz0‖

2
b

=

∣∣∣∣ rz0 − z0
b(rz0)− b(z0)

∣∣∣∣2 1− |b(rz0)|2
1− r2

.

Theorem 21.1 ensures that |b′(z0)| > 0 and, by (21.10), that

μλ(ζ) = lim
r→1
‖gr‖2L2(μ)

= lim
r→1
‖Vλ̄bgr‖2λ̄b

= |b′(z0)|−2 |b′(z0)| = 1/|b′(z0)|.

This completes the proof.

Assuming that b has an angular derivative in the sense of Carathéodory at the
point z0 ∈ T, then it follows immediately from Theorem 21.5 that the measure
μλ, where λ ∈ T, has an atom at z0 if and only if λ = b(z0). Now, we show
that, for other values of λ, a certain integrability condition holds.
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184 Angular derivatives ofH(b) functions

Theorem 21.6 Assume that b has an angular derivative in the sense of
Carathéodory at the point z0 ∈ T. Then, for every λ ∈ T \ {b(z0)}, we have

∫
T

|eiθ − z0|−2 dμλ(e
iθ) =

|b′(z0)|
|λ− b(z0)|2

.

Proof Put hr = rz0krz0 , where 0 < r < 1. Hence, for each fixed ζ ∈ T,

|hr(ζ)|2 =
r2

|1− rz̄0ζ|2
=

r2

1 + r2 − 2rC
,

where C = �(z̄0ζ). A simple computation shows that

d

dr
|hr(ζ)|2 =

2r(1− rC)

(1 + r2 − 2rC)2
≥ 0.

Therefore, the mapping r �−→ |hr(ζ)|2 is increasing. Knowing this fact, by the
monotone convergence theorem, we deduce that

lim
r→1
‖hr‖2L2(μλ)

= lim
r→1

∫
T

|hr(ζ)|2 dμλ(ζ)

=

∫
T

lim
r→1
|hr(ζ)|2 dμλ(ζ)

=

∫
T

1

|1− z̄0ζ|2
dμλ(ζ)

=

∫
T

1

|eiθ − z0|2
dμλ(e

iθ).

Now, we use the same techniques as in the proof of Theorem 21.5. Accord-
ing to Theorem 20.5, the mapping Vλ̄b is a partial isometry from L2(μλ) onto
H(λ̄b). Moreover,

Vλ̄bhr = rz0Vλ̄bkrz0

= rz0
kλ̄brz0

1− λ̄b(rz0)

=
rz0

1− λb(rz0)

1− λb(rz0)λ̄b

1− rz̄0z

=
rz0

1− λb(rz0)
kbrz0 . (21.11)
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Remember thatH(λ̄b) = H(b). Hence,

‖hr‖2L2(μλ)
= ‖Vλ̄bhr‖2λ̄b
= ‖Vλ̄bhr‖2b

=
r2

|1− λb(rz0)|2
‖kbrz0‖

2
b

=
r2

|λ− b(rz0)|2
‖kbrz0‖

2
b .

Theorem 21.1 ensures that |b′(z0)| = limr→1 ‖kbrz0‖2b . Moreover, if b has a
derivative in the sense of Carathéodory at z0, it surely has a radial limit at this
point too. Thus,

lim
r→1
|λ− b(rz0)| = |λ− b(z0)| (λ ∈ T \ {b(z0)}).

Therefore, we finally deduce that

lim
r→1
‖hr‖2L2(μλ)

=
|b′(z0)|
|λ− b(z0)|2

.

Theorem 21.7 Let z0 ∈ T. Suppose that there exists a point λ ∈ T such that∫
T

|eiθ − z0|−2 dμλ(e
iθ) <∞.

Then b has an angular derivative in the sense of Carathéodory at z0.

Proof As in the proof of Theorem 21.6, put hr = rz0krz0 . Then, by (21.11),

rz0k
b
rz0 = (1− λb(rz0))

2Vλ̄bhr.

Hence,

r2‖kbrz0‖
2
b = |1− λb(rz0)|2 ‖Vλ̄bhr‖2b
= |λ− b(rz0)|2 ‖hr‖2L2(μλ)

= |λ− b(rz0)|2
∫
T

r2

|1− rz̄0ζ|2
dμλ(ζ). (21.12)

In the proof of Theorem 21.6, we also saw that the mapping r �−→ |hr(ζ)|2 is
increasing. Therefore, since, by assumption,∫

T

dμλ(ζ)

|ζ − z0|2
<∞,
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by the monotone convergence theorem, we deduce that

sup
0≤r<1

∫
T

r2

|1− rz̄0ζ|2
dμλ(ζ) <∞.

Since |b(rz0) − λ| ≤ 2, by (21.12), the above growth restriction actually
implies that

sup
0≤r<1

‖kbrz0‖
2
b <∞.

In particular,

lim inf
z→z0

‖kbz‖2b sup
0≤r<1

‖kbrz0‖
2
b <∞.

But a simple computation shows that

‖kbz‖2b =
1− |b(z)|2
1− |z|2 ≥ 1

2

1− |b(z)|
1− |z| .

Hence, we can say

lim inf
z→z0

1− |b(z)|
1− |z| <∞.

Therefore, by Theorem 21.1, b has an angular derivative in the sense of
Carathéodory at z0.

21.3 Derivatives of Blaschke products

Let (an)n≥1 be a Blaschke sequence in D, and let B be the corresponding
Blaschke product. Fix a point ζ on the boundary T. If ζ is not an accumulation
point of the sequence (an)n≥1, then B is actually analytic at this point, and
hence, in particular, for any value of j ≥ 0, both limits

lim
r→1−

B(j)(rζ) and lim
R→1+

B(j)(Rζ)

exist and are equal. What is more interesting is that ζ might be an accumulation
point of the sequence (an)n≥1 and yet some of the above properties still hold.

Theorem 21.8 Let (an)n≥1 be a Blaschke sequence in D, and let B be the
corresponding Blaschke product. Assume that, for an integer N ≥ 0 and a
point ζ ∈ T, we have

∞∑
n=1

1− |an|
|ζ − an|N+1

≤ A. (21.13)

Then the following hold.
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(i) For each 0 ≤ j ≤ N , both limits

B(j)(ζ) := lim
r→1−

B(j)(rζ) and lim
R→1+

B(j)(Rζ)

exist and are equal.
(ii) There is a constant C = C(N,A) such that the estimation

|B(j)(rζ)| ≤ C

uniformly holds for r ∈ [0, 1] and 0 ≤ j ≤ N .

Proof The essential case is N = 0. The rest follows by induction.

Case N = 0. Our strategy is to show that, under the proposed condition,
|B(rζ)| and argB(rζ) have both finite limits as r tends to 1−. For the sim-
plicity of notation, without loss of generality, assume that ζ = 1.

In the course of the proof, we repeatedly use the inequalities

|1− ānr| > 1− r and |1− ānr| > 1
2 |1− an|,

for r ∈ (0, 1), which are elementary to establish. As the first application, note
that

(1− r2)(1− |an|2)
|1− ānr|2

≤ 2
(1− r2)(1− |an|2)
(1− r)|1− an|

≤ 8
1− |an|
|1− an|

.

Therefore, the Weierstrass M -test shows that the series∑
n≥1

(1− r2)(1− |an|2)
|1− ānr|2

converges uniformly in r ∈ [0, 1], and thus

lim
r→1−

∑
n≥1

(1− r2)(1− |an|2)
|1− ānr|2

= 0.

But we have

|B(r)|2 =
∏
n≥1

|an − r|2
|1− ānr|2

=
∏
n≥1

(
1− (1− r2)(1− |an|2)

|1− ānr|2
)

≥ 1−
∑
n≥1

(1− r2)(1− |an|2)
|1− ānr|2

,

and this estimation enables us to deduce that

lim inf
r→1−

|B(r)|2 ≥ 1− lim
r→1−

∑
n≥1

(1− r2)(1− |an|2)
|1− ānr|2

= 1.
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Since |B(z)| < 1, we conclude that

lim
r→1−

|B(r)| = 1.

To deal with the argument, write

ān
|an|

an − r

1− ānr
=

1

|an|
|an|2 − 1 + 1− rān

1− ānr
=

1

|an|

(
1− 1− |an|2

1− ānr

)
.

Thus

arg

(
ān
|an|

an − r

1− ānr

)
= arg

(
1− 1− |an|2

1− ānr

)
,

and, for large enough n for which the combination (1 − |an|)/(|1 − an|) is
small, we have∣∣∣∣arg(1− 1− |an|2

1− ānr

)∣∣∣∣ ≤M
1− |an|2
|1− ānr|

≤ 4M
1− |an|
|1− an|

,

where M is a positive constant. Thus the series

argB(r) =
∑
n≥1

arg

(
1− 1− |an|2

1− ānr

)
converges absolutely and uniformly on [0, 1], which proves that limr→1−

argB(r) exists.
The preceding two discussions together show that L = limr→1− B(r) exists

and has modulus one, i.e |L| = 1. The estimation in part (ii) trivially holds with
C = 1. Finally, the Blaschke product satisfies the functional equation

B(z)B(1/z̄) = 1.

Therefore,

lim
R→1+

B(R) =
1

limR→1+ B(1/R)
=

1

limr→1− B(r)
=

1

L̄
= L.

This argument also shows that, if ε > 0 is such that [1− ε, 1) is free from the
zeros of B, then B is actually continuous on [1− ε, 1 + ε].

Case N ≥ 1. Fix 1 ≤ j ≤ N , and suppose that the result holds for 0, 1, . . . ,
j − 1. Using the formula for B and taking the logarithmic derivative of both
sides gives us

B′(z)

B(z)
=

∑
n≥1

(1− |an|2)
(z − an)(1− ānz)

. (21.14)

Thus,

B′(z) =
∑
n≥1

Bn(z)
(1− |an|2)
(1− ānz)2

, (21.15)
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where

Bn(z) =
B(z)(1− ānz)

(z − an)
(n ≥ 1) (21.16)

is the subproduct formed with all zeros except an. Now, we use the formula for
B′ and take the derivative of both sides j − 1 times. Then Leibniz’s formula
tells us that

B(j)(z) =

j−1∑
k=0

(
j − 1

k

)∑
n≥1

B(j−1−k)
n (z)

(k + 1)! ākn(1− |an|2)
(1− ānz)k+2

.

Note that, on the right-hand side, we have B
(
)
n , where � runs between 0 and

j − 1. Hence, the induction hypothesis applies. To deal with the other term, we
consider r < 1 and R > 1 separately.

If r < 1, then∣∣∣∣ (k + 1)! ākn(1− |an|2)
(1− ānr)k+2

∣∣∣∣ ≤ (k + 1)! (1− |an|2)
|(1− an)/2|k+2

≤ 2(k + 1)! (1− |an|)
|(1− an)/2|N+1

= 2N+2(k + 1)!
(1− |an|)
|1− an|N+1

.

But, for R > 1, we have∣∣∣∣ (k + 1)! ākn(1− |an|2)
(1− ānR)k+2

∣∣∣∣ ≤ (k + 1)! (1− |an|2)
|R−1 − an|k+2

≤M
(1− |an|)
|1− an|N+1

,

where M is a constant. This is because the condition (21.13) ensures that any
Stolz domain anchored at ζ can only contain a finite number of zeros an. Take
any of these domains anchored at ζ = 1, e.g. the one with opening π/2 or
more explicitly the domain |� z| ≤ 1 − � z. Then, for an that are not in this
domain but are close to ζ = 1, say at a distance at most 1, we have

|R−1 − an| ≤ |1− an|/
√
2.

Thus,

(k + 1)! (1− |an|2)
|R−1 − an|k+2

≤ 2(k+2)/2(k + 1)! (1− |an|2)
|1− an|k+2

≤ 2(N+1)/2N ! (1− |an|2)
|1− an|N+1

.

The other points rest at a uniform positive distance from ζ = 1.
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Based on the above discussion and the induction hypothesis, if δ > 0 is such
that [1− δ, 1) is free from the zeros of B, then all the series

∑
n≥1

B(j−1−k)
n (z)

(k + 1)! ākn(1− |an|2)
(1− ānz)k+2

(0 ≤ k ≤ j − 1)

are uniformly and absolutely convergent for z ∈ [1− δ, 1+ δ]. Hence, B(j)(z)

is also a continuous function on this interval, which can be equally stated as in
the theorem based on the right and left limits at ζ = 1.

Appealing to the induction hypothesis, assume that the estimation in part (ii)
holds for derivatives up to order j − 1. Then the above calculation for r < 1

shows that

|B(j)(r)| ≤
j−1∑
k=0

(
j − 1

k

)∑
n≥1

|B(j−1−k)
n (r)| 2

N+2(k + 1)! (1− |an|)
|1− an|N+1

≤
( j−1∑

k=0

(
j − 1

k

)
2N+2(k + 1)!

)
CA.

Hence, with a bigger constant, the result holds for the derivative of order j. We
choose the largest constant corresponding to the derivative of order N as the
constant C. This completes the proof of Theorem 21.8.

The mere usefulness of the estimation in Theorem 21.8(ii) is that the
constant C does not depend on the distribution of zeros. It just depends on
the upper bound A and the integer N . Hence, it is equally valid for all the
subproducts of B.

Theorem 21.8 is also valid if ζ ∈ D. In fact, the proof is simpler in this case,
since part (i) is trivial. Hence, we can say that, if ζ ∈ D̄ and

∞∑
n=1

1− |an|
|1− ānζ|N+1

≤ A,

then there is a constant C = C(N,A) such that the estimation

|B(j)(rζ)| ≤ C

uniformly holds for r ∈ [0, 1] and 0 ≤ j ≤ N .

Corollary 21.9 Let (an)n≥1 be a Blaschke sequence in D, and let B be the
corresponding Blaschke product. Let ζ ∈ T be such that

∞∑
n=1

1− |an|
|ζ − an|2

<∞.
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Then B has a derivative in the sense of Carathéodory at ζ and

|B′(ζ)| =
∞∑

n=1

1− |an|2
|ζ − an|2

.

Proof That B has a derivative in the sense of Carathéodory at ζ is a direct
consequence of Theorems 21.1 and 21.8. To obtain the formula for |B′(ζ)|,
we use (21.15). Note that our condition implies that the subproducts Bn have
radial limits at ζ. Hence, we can let r −→ 1 in

B′(rζ) =
∞∑

n=1

Bn(rζ)
(1− |an|2)
(1− ānrζ)2

to obtain

B′(ζ) =
∞∑

n=1

Bn(ζ)
(1− |an|2)
(1− ānζ)2

.

The upper bound∣∣∣∣ (1− |an|2)(1− ānrζ)2

∣∣∣∣ ≤ 4(1− |an|)
|ζ − a|2 (0 < r < 1)

allows one to pass to the limit inside the sum. But, according to (21.16), we
have

Bn(ζ) =
B(ζ)(1− ānζ)

(ζ − an)
(n ≥ 1).

Plugging this back in to the formula for B′(ζ) gives

B′(ζ) = ζ̄B(ζ)

∞∑
n=1

1− |an|2
|an − ζ|2 .

By taking the absolute values of both sides, the result follows.

21.4 Higher derivatives of b

According to the canonical factorization theorem, b can be decomposed as

b(z) = B(z)S(z)O(z) (z ∈ D), (21.17)

where

B(z) = γ
∏
n

(
|an|
an

an − z

1− ānz

)
,

S(z) = exp

(
−

∫
T

ζ + z

ζ − z
dσ(ζ)

)
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and

O(z) = exp

(∫
T

ζ + z

ζ − z
log |b(ζ)| dm(ζ)

)
.

We can also extend the function b outside the unit disk by the identity (21.17)
and the formulas provided for B, S and O. The extended function is analytic
for |z| > 1, z �= 1/ān. At 1/ān it has a pole of the same order as an, as a zero
of B. We denote this function also by b, and it is easily verified that it satisfies
the functional identity

b(z) b(1/z) = 1. (21.18)

One should be careful in dealing with function b inside and outside the unit
disk. For example, if

b(z) = 1
2z

n (|z| < 1),

it is natural to use the same nice formula for |z| > 1. However, the functional
equation (21.18) says that

b(z) = 2zn (|z| > 1).

Hence, b and its derivatives up to order n show a different behavior if we
approach a point ζ0 ∈ T from within D or from outside. In Theorem 21.10
below, we show that, under certain circumstances, this can be avoided.

For our application in this section, we can merge S(z) and O(z) and write

b(z) = B(z)f(z), (21.19)

where

f(z) = exp

(
−

∫
T

ζ + z

ζ − z
dμ(ζ)

)
(21.20)

and μ is the positive measure dμ(ζ) = − log |b(ζ)| dm(ζ) + dσ(ζ). Now,
Leibniz’s formula says that

b(j)(z) =

j∑
k=0

B(k)(z)f (j−k)(z).

For the derivatives of B on a ray, we have already established Theorem 21.8.
However, a similar result holds for function f , and thus similar statements
actually hold for b, i.e. for any function in the closed unit ball of H∞.

Theorem 21.10 Let b be in the closed unit ball of H∞ with the decomposition
(21.17). Assume that, for an integer N ≥ 0 and a point ζ0 ∈ T, we have

∞∑
n=1

1− |an|
|ζ0 − an|N+1

+

∫
T

dσ(ζ)

|ζ0 − ζ|N+1
+

∫ 2π

0

∣∣ log |b(ζ)|∣∣
|ζ0 − ζ|N+1

dm(ζ) ≤ A.

(21.21)
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Then the following hold.

(i) For each 0 ≤ j ≤ N , both limits

b(j)(ζ0) := lim
r→1−

b(j)(rζ0) and lim
R→1+

b(j)(Rζ)

exist and are equal.
(ii) There is a constant C = C(N,A) such that the estimation

|b(j)(rζ0)| ≤ C

uniformly holds for r ∈ [0, 1] and 0 ≤ j ≤ N .

Proof As discussed before the statement of the theorem, it is enough to estab-
lish the result just for the function f = SO given by (21.20). The proof has the
same flavor as the proof of Theorem 21.8. We first consider the case N = 0,
and then the rest follows by induction.

Case N = 0. We show that, under the condition (21.21), which now translates
as ∫

T

dμ(ζ)

|ζ0 − ζ| ≤ A, (21.22)

|f(rζ0)| and arg f(rζ0) have both finite limits as r tends to 1−. For simplicity
of notation, without loss of generality, assume that ζ0 = 1.

A simple computation shows that

f(r) = exp

(
−

∫
T

1− r2

|ζ − r|2 dμ(ζ)
)
exp

(
−i

∫
T

r�(ζ)
|ζ − r|2 dμ(ζ)

)
.

Therefore, we have explicit formulas for |f(r)| and arg f(r).
The assumption (21.22) implies that there is no Dirac mass at ζ0 = 1, i.e.

μ({1}) = 0. Therefore,

lim
r→1−

1− r2

|ζ − r|2 = 0

for μ-almost every ζ ∈ T. Moreover, we have the upper bound estimation

1− r2

|ζ − r|2 ≤
2

|1− ζ| (ζ ∈ T),

which holds uniformly for all values of the parameter r ∈ (0, 1). The condi-
tion (21.22) means that the function on the right-hand side belongs to L1(μ).
Hence, by the dominated convergence theorem, we get

lim
r→1−

∫
T

1− r2

|ζ − r|2 dμ(ζ) = 0.

In return, this observation implies that

lim
r→1−

|f(r)| = 1.
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194 Angular derivatives ofH(b) functions

In a similar manner,

lim
r→1−

r�(ζ)
|ζ − r|2 =

�(ζ)
|1− ζ|2

for μ-almost all ζ ∈ T. We also have the upper bound estimation

r|�(ζ)|
|ζ − r|2 ≤

2

|1− ζ| (ζ ∈ T),

which holds uniformly for all values of the parameter r ∈ (0, 1). Finally, again
by the dominated convergence theorem, we see that the limit

lim
r→1−

∫
T

r�(ζ)
|ζ − r|2 dμ(ζ) =

∫
T

�(ζ)
|ζ − 1|2 dμ(ζ)

exists and is a finite real number. In return, this implies that

lim
r→1−

arg f(r)

also exists and is a finite real number. Therefore, L := limr→1− f(r) exists
and, moreover, |L| = 1.

Put L = limr→1− f(r). By (21.18), the function f satisfies the functional
equation

f(z)f(1/z̄) = 1.

Therefore,

lim
R→1+

f(R) =
1

limR→1+ f(1/R)
=

1

limr→1− f(r)
=

1

L̄
= L.

This argument also shows that f is actually bounded on [0,+∞). The estima-
tion in part (ii) trivially holds with C = 1.

Case N ≥ 1. Fix 1 ≤ j ≤ N , and suppose that the result holds for 0, 1, . . . ,
j − 1. The condition (21.21) is rewritten as∫

T

dμ(ζ)

|1− ζ|N+1
≤ A. (21.23)

Using the formula for f and taking the derivative of both sides gives us

f ′(z) =

(∫
T

−2ζ
(ζ − z)2

dμ(ζ)

)
f(z). (21.24)

Now, take the derivative of both sides j−1 times. Then Leibniz’s formula tells
us that

f (j)(z) =

j−1∑
k=0

(∫
T

−2(k + 1)! ζ

(ζ − z)k+2
dμ(ζ)

)
f (j−1−k)(z). (21.25)
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On the right-hand side, we have f (
), where � runs between 0 and j−1. Hence,
the induction hypothesis applies. To deal with the other term, note that, for
z = r < 1 and also z = R > 1, we have

1

|ζ − z| ≤
2

|ζ − 1| (ζ ∈ T).

Thus, for all z ∈ (0,∞) \ {1} and all k with 0 ≤ k ≤ j − 1 ≤ N − 1,∣∣∣∣−2(k + 1)! ζ

(ζ − z)k+2

∣∣∣∣ ≤ 2(k + 1)!

|(ζ − 1)/2|k+2

≤ 2N !

|(ζ − 1)/2|N+1

=
2N+2N !

|ζ − 1|N+1
(ζ ∈ T). (21.26)

Therefore, by (21.23), (21.26) and the dominated convergence theorem,

lim
r→1±

∫
T

−2(k + 1)! ζ

(ζ − z)k+2
dμ(ζ) =

∫
T

−2(k + 1)! ζ

(ζ − 1)k+2
dμ(ζ).

Note that again we have implicitly used the fact that μ({1}) = 0. Thus,
by the induction hypothesis and (21.25), part (i) follows. Moreover, again
by the induction hypothesis, assume that the estimation in part (ii) holds for
derivatives up to order j − 1. Then, by (21.25) and (21.26),

|f (j)(r)| ≤
j−1∑
k=0

(∫
T

∣∣∣∣−2(k + 1)! ζ

(ζ − r)k+2

∣∣∣∣ dμ(ζ)) |f (j−1−k)(r)|

≤
(∫

T

2N+2N !

|ζ − 1|N+1
dμ(ζ)

) j−1∑
k=0

|f (j−1−k)(r)| ≤ j2N+2N !AC.

Hence, with a bigger constant, the result holds for the derivative of order j. We
choose the largest constant corresponding to the derivative of order N as the
constant C. This completes the proof of Theorem 21.10.

We highlight one property that was explicitly mentioned in the proof of
Theorem 21.8 for Blaschke products, but also holds for an arbitrary b. Under
the hypothesis of Theorem 21.10, there is a δ > 0 (which depends on b) such
that b(j)(z), for 0 ≤ j ≤ N , is a continuous function on the ray [(1 − δ)ζ0,

(1 + δ)ζ0].

Corollary 21.11 Let b be in the closed unit ball of H∞ with the decomposi-
tion (21.17). Let ζ0 ∈ T be such that

∞∑
n=1

1− |an|
|ζ0 − an|2

+

∫
T

dσ(ζ)

|ζ0 − ζ|2 +

∫ 2π

0

∣∣ log |b(ζ)|∣∣
|ζ0 − ζ|2 dm(ζ) <∞.
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Then b has a derivative in the sense of Carathéodory at ζ0 and

|b′(ζ0)| =
∞∑

n=1

1− |an|2
|ζ0 − an|2

+

∫
T

2 dσ(ζ)

|ζ0 − ζ|2 +

∫ 2π

0

2
∣∣ log |b(ζ)|∣∣
|ζ0 − ζ|2 dm(ζ).

Proof As we did in (21.19), write b = Bf . Corollary 21.9 treats the Blaschke
product B and gives a formula (the first term appearing in |b′(ζ0)| above).
Hence, in the light of Corollary 21.3, we just need to study f and prove that
|f ′(ζ0)| is precisely the remaining two terms in the formula for |b′(ζ0)|.

That f has a derivative in the sense of Carathéodory at ζ0 is a direct conse-
quence of Theorems 21.1 and 21.10. To obtain the formula for |f ′(ζ0)|, we use
(21.24), i.e.

f ′(rζ0) =

(∫
T

−2ζ
(ζ − rζ0)2

dμ(ζ)

)
f(rζ0).

Now, let r −→ 1 to obtain

f ′(ζ0) =

(∫
T

−2ζ
(ζ − ζ0)2

dμ(ζ)

)
f(ζ0).

The upper bound

1

|ζ − rζ0|
≤ 2

|ζ − ζ0|
(ζ ∈ T, 0 < r < 1)

allows one to pass to the limit inside the integral. Now, note that

−2ζ
(ζ − ζ0)2

=
2ζ

(ζ − ζ0)(ζ̄ − ζ̄0)ζζ0
=

2ζ̄0
|ζ − ζ0|2

.

Hence, we rewrite the formula for f ′(ζ0) as

f ′(ζ0) =

(∫
T

2

|ζ − ζ0|2
dμ(ζ)

)
ζ̄0f(ζ0).

By taking the absolute values of both sides, the result follows.

21.5 Approximating by Blaschke products

According to (21.19), an arbitrary element of the closed unit ball of H∞

may be decomposed as b = Bf , where B is a Blaschke product and f is a
nonvanishing function given by (21.20). Generally speaking, since B is given
by a product of some simple fraction of the form (az + b)/(cz + d), it is easy
to handle and study its properties. That is why in this section we explore the
possibility of approximating f by some Blaschke products. This will enable
us to establish certain properties for the family of Blaschke products first, and
then extend them to the whole closed unit ball of H∞.
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Given a Blaschke product B with zeros (an)n≥1, we define the measure σB

on D̄ by

σB =

∞∑
n=1

(1− |an|) δ{an},

where δ{z} is the Dirac measure anchored at the point z. We consider σB as an
element ofM(D̄), the space of finite complex Borel measures on D̄. This space
is the dual of C(D̄). Hence, we equip it with the weak-star topology. Since
C(D̄) is separable, this topology is first countable onM(D̄). More specifically,
this means that each measure has a countable local basis. Naively speaking,
this implies that we just need to consider sequences of measures to study the
properties of this topology.

In the following, we assume that the Blaschke products are normalized so
that B(0) > 0.

Theorem 21.12 Let f be given by (21.20), and let (Bn)n≥1 be a sequence of
Blaschke products. Then Bn converges uniformly to f on compact subsets of
D if and only if σBn

−→ μ in the weak-star topology ofM(D̄).

Proof Assume that σBn
−→ μ in the weak-star topology of M(D̄), and

denote the zeros of Bn by (anm)m≥1. Since μ is supported on T, the zeros of
Bn must tend to T. In fact, fix any r < 1 and consider a continuous positive
function ϕ that is identically 1 on |z| ≤ r, and identically 0 on |z| > (1+r)/2.
In between, it has a continuous transition from 1 to 0. Since σBn

−→ μ in the
weak-star topology, we have∫

D̄

ϕdσBn
−→

∫
D̄

ϕdμ = 0.

But we also have∫
D̄

ϕdσBn
≥

∫
|z|≤r

ϕdσBn

=
∑

|anm|≤r

(1− |anm|)

≥ (1− r)× Card{m : |anm| ≤ r}.

Therefore, for each r < 1, there is an N = N(r) such that

|anm| > r (n ≥ N, m ≥ 1). (21.27)

We now further explore our assumption to show that

Bn(0) −→ f(0). (21.28)
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Since σBn
−→ μ in the weak-star topology, we have∫

D̄

dσBn
−→

∫
D̄

dμ.

By (21.20), f(0) is a positive real number and∫
D̄

dμ = −log f(0).

But the left-hand side is ∫
D̄

dσBn
=

∞∑
m=1

(1− |anm|),

which is not precisely −logBn(0). The actual formula is

−logBn(0) = −
∞∑

m=1

log |anm|.

However, thanks to (21.27), this difference can be handled. It is elementary to
verify that

0 ≤ t− 1− log t ≤ (1− t)2 (1/2 ≤ t ≤ 1).

Hence, for n ≥ N(r),

(1− |anm|) ≤ −log |anm| ≤ (1 + r)(1− |anm|) (m ≥ 1).

Summing over m gives∫
D̄

dσBn
≤ −logBn(0) ≤ (1 + r)

∫
D̄

dσBn
(n ≥ N(r)). (21.29)

Let n −→∞ to deduce that

−log f(0) ≤ lim inf
n→∞

−logBn(0)

≤ lim sup
n→∞

−logBn(0) ≤ −(1 + r) log f(0).

Now, let r −→ 1 to conclude that

lim
n→∞

logBn(0) = log f(0).

The next step is to show that Bn actually uniformly converges to f on
any compact subset of D. In the language of σBn

, formula (21.14) can be
rewritten as

B′
n(z)

Bn(z)
=

∫
D̄

(1 + |ζ|)
(z − ζ)(1− ζ̄z)

dσBn
(ζ).

At first glance, it seems that the function

ζ �−→ (1 + |ζ|)
(z − ζ)(1− ζ̄z)
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is not continuous on D̄ and thus we cannot appeal to the weak-star convergence.
However, we fix a compact set |z| ≤ r and, as we saw above, after a finite
number of indices, the support of σBn

is in |z| > (1 + r)/2. Hence, we can
multiply the above function by a transient function that is 1 on |z| ≥ (1+ r)/2

and 0 on |z| ≤ 1. This operation, on the one hand, will not change the value of
the integrals and, on the other, will create a genuine continuous function on D̄.
Therefore, we can surely say∫

D̄

(1 + |ζ|)
(z − ζ)(1− ζ̄z)

dσBn
(ζ) −→

∫
D̄

(1 + |ζ|)
(z − ζ)(1− ζ̄z)

dμ(ζ)

=

∫
T

−2ζ
(ζ − z)2

dμ(ζ),

which translates as

B′
n(z)

Bn(z)
−→ f ′(z)

f(z)
(21.30)

as n −→∞.
Since (Bn)n≥1 is uniformly bounded by 1 on D, it is a normal family. Let

g be any pointwise limit of a subsequence of (Bn)n≥1. Then, by (21.28) and
(21.30), we must have

g(0) = f(0) and
f ′(z)

f(z)
=

f ′(z)

f(z)
(z ∈ D).

Thus, g = f , which means that the whole sequence converges uniformly to f

on compact sets.
To prove the other way around, assume that Bn converges uniformly to f on

compact sets. Thus, Bn(0) −→ f(0) and, since f has no zeros on D, for each
r, (21.27) must hold. Hence, if we let n −→∞ in (21.29), we obtain

lim sup
n→∞

∫
D̄

dσBn
≤ −log f(0) ≤ (1 + r) lim inf

n→∞

∫
D̄

dσBn
.

Let r −→ 1 to deduce that∫
D̄

dσBn
−→ −log f(0).

Hence, (σBn
)n≥1 is a bounded sequence inM(D̄), and any weak-star limit of

this sequence must be a positive measure supported on T. But the sequence has
just one weak-star limit, i.e. μ. This is because, if ν is any weak-star limit of the
sequence, the first part of the proof shows that a subsequence of Bn converges
to fν , where fν is given by (21.20) (with μ replaced by ν). Therefore, fν = f

on D and, using the uniqueness theorem for Fourier coefficients of measures,
we conclude that ν = μ.
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To establish our next approximation theorem, we need a result of Frostman,
which by itself is interesting and has numerous other applications. Let Θ be an
inner function and, for each w ∈ D, define

Θw(z) =
w −Θ(z)

1− w̄Θ(z)
.

The function Θw is called a Frostman shift of Θ. It is easy to verify that Θw

is an inner function for each w ∈ D. However, a lot more is true. Define the
exceptional set of Θ to be

E(Θ) = {w ∈ D : Θw is not a Blaschke product}.

Frostman showed that E(u) is a very small set.

Lemma 21.13 Let Θ be a nonconstant inner function, and let 0 < ρ < 1.
Define

Eρ(Θ) = {ζ ∈ T : Θρζ is not a Blaschke product}.

Then Eρ(Θ) has one-dimensional Lebesgue measure zero.

Proof For each α ∈ D, we have∫
T

log

∣∣∣∣ ρξ − α

1− ρξα

∣∣∣∣ dm(ξ) = max(log ρ, log |α|). (21.31)

This is an easy consequence of the mean value property of harmonic functions.
In (21.31) replace α by Θ(rζ) and then integrate with respect to ζ to get∫

T

(∫
T

log |Θρξ(rζ)| dm(ξ)

)
dm(ζ) =

∫
T

max(log ρ, log |Θ(rζ)|) dm(ζ).

The collection

fr(ζ) = max(log ρ, log |Θ(rζ)|), r ∈ [0, 1),

satisfies log ρ ≤ fr(ζ) ≤ 0 and, moreover,

lim
r→1

fr(ζ) = max

(
log ρ, lim

r→1
log |Θ(rζ)|

)
= max(log ρ, 0) = 0

for almost every ζ ∈ T. Therefore, by the dominated convergence theorem,

lim
r→1

∫
T

fr(ζ) dm(ζ) = 0.

We rewrite this identity as

lim
r→1

∫
T

(∫
T

−log |Θρξ(rζ)| dm(ξ)

)
dm(ζ) = 0.
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Since the integrand −log |Θρξ| is positive, Fubini’s theorem can be applied.
The outcome is

lim
r→1

∫
T

(∫
T

−log |Θρξ(rζ)| dm(ζ)

)
dm(ξ) = 0.

Now, Fatou’s lemma implies that∫
T

(
lim inf
r→1

∫
T

−log |Θρξ(rζ)| dm(ζ)

)
dm(ξ) = 0.

Hence, we must have

lim inf
r→1

∫
T

log |Θρξ(rζ)| dm(ζ) = 0 (21.32)

for almost all ξ ∈ T, and this precisely means that, for such values of ξ, the
Frostman shift Θρξ is a Blaschke product. Indeed, if we consider the canonical
factorization Θρξ = BS, where B is a Blaschke product and S is the singular
measure

S(z) = exp

(
−

∫
T

w + z

w − z
dσ(w)

)
,

then ∫
T

log |Θρξ(rζ)| dm(ζ) ≤
∫
T

log |S(rζ)| dm(ζ) = −σ(T).

which, by (21.32), implies that σ ≡ 0.

Among numerous applications of Lemma 21.13, we single out the one which
states that Blaschke products are uniformly dense in the family of inner func-
tions. A variation of the technique used in the proof of the following result will
be exploited in establishing Theorem 21.15.

Corollary 21.14 Let Θ be an inner function, and let ε > 0. Then there is a
Blaschke product B such that

‖Θ−B‖∞ < ε.

Proof We have

Θ(z) + Θw(z) = Θ(z) +
w −Θ(z)

1− w̄Θ(z)
=

w − w̄Θ2(z)

1− w̄Θ(z)
,

and thus

|Θ(z) + Θw(z)| ≤
2|w|

1− |w| .

On the one hand, this shows that −Θw −→ Θ in the H∞ norm as w −→ 0

and, on the other, Lemma 21.13 ensures that there are numerous choices of w
for which −Θw is a Blaschke product.
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In the following result, we again use M(D̄), equipped with the weak-star
topology. We recall that it is first countable, i.e. each point has a countable
local basis of open neighborhood.

Theorem 21.15 Let λ ∈ D̄, let N ≥ 1, and let μ be a positive measure on T
such that ∫

T

dμ(ζ)

|1− λ̄ζ|N <∞.

Then there is a sequence of Blaschke products (Bn)n≥1 such that σBn
−→ μ

in the weak-star topology ofM(D̄) and, moreover,
∞∑

m=1

1− |anm|2
|1− λ̄anm|N

−→
∫
T

2 dμ(ζ)

|1− λ̄ζ|N

as n −→∞.

Proof First, note that the growth restriction on μ implies that μ cannot have a
Dirac mass at 1/λ̄. Our strategy is to prove the theorem for discrete measures
with finitely many Dirac masses and then appeal to a limiting argument to
extend it for the general case.

Assume that σ = αδ{1}, where α > 0. Construct f according to the recipe
(21.20), i.e.

f(z) = exp

(
−α 1 + z

1− z

)
.

By Lemma 21.13, the function

Bc(z) = γc
f(z)− c

1− c̄f(z)

is a Blaschke product for values of c through a sequence that tends to zero and
avoids the exceptional set of f . The unimodular constant

γc =
f(0)− c̄

|f(0)− c|
|1− c̄f(0)|
1− cf(0)

is added to ensure that Bc(0) > 0. The precise value of γc is not used below.
We just need to know that γc −→ 1 as c −→ 0. The formula for Bc implies
that

|f(z)−Bc(z)| ≤ |1− γc|+
2|c|

1− |c| (z ∈ D).

Thus, Bc converges uniformly to f on D (even uniform convergence on com-
pact sets is enough for us). Therefore, by Theorem 21.12, σBc

tends to μ in the
weak-star topology. The zeros of Bc are

{z : f(z) = c} =
{
acm =

α+ log c+ i2πmα

−α+ log c+ i2πmα
: m ∈ Z

}
,
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which clearly cluster at 1 as c −→ 0. In this case, λ �= 1, and thus the function

ζ �−→ 1 + |ζ|
|1− λ̄ζ|N

can be considered as a continuous function on D̄ when we deal with measures
μ and σBc

(at least for small values of c). Hence,∫
D̄

1 + |ζ|
|1− λ̄ζ|N dσBc

(ζ) −→
∫
D̄

1 + |ζ|
|1− λ̄ζ|N dμ(ζ),

but ∫
D̄

1 + |ζ|
|1− λ̄ζ|N dσBc

(ζ) =

∞∑
m=1

1− |acm|2
|1− λ̄acm|N

and ∫
D̄

1 + |ζ|
|1− λ̄ζ|N dμ(ζ) =

∫
T

2

|1− λ̄ζ|N dμ(ζ).

Therefore, the result follows.
If μ consists of a finite sum of Dirac masses, the result still holds by

induction. Now, we turn to the general situation. Assume that μ is an
arbitrary positive Borel measure on T, fulfilling the above-mentioned growth
restriction. Put

dτ(z) =
dμ(z)

|1− λ̄z|N .

Again, note that μ cannot have a Dirac mass at 1/λ̄, and this property persists
for all measures considered below. The family of discrete measures with finite
number of Dirac masses is dense inM(D̄). Hence, there is a sequence τn of
such measures so that τn −→ τ in the weak-star topology ofM(D̄). Therefore,
for each f ∈ C(D̄),∫

D̄

f(z)|1− λ̄z|N dτn(z) −→
∫
D̄

f(z)|1− λ̄z|N dτ(z) =

∫
D̄

f(z) dμ(z).

This means that σn −→ μ in the weak-star topology ofM(D̄), where σn is
the discrete measure

dσn(z) = |1− λ̄z|N dτn(z) (n ≥ 1).

We appeal to the first part and find a Blaschke product Bn such that σBn
is

close enough to σn in the weak-star topology and also∣∣∣∣∫
D̄

1 + |z|
|1− λ̄z|N dσBn

(z)−
∫
T

2

|1− λ̄ζ|N dσn(ζ)

∣∣∣∣ < 1

n
.

The result thus follows. Our choice of Bn also implies that σBn
−→ μ in the

weak-star topology ofM(D̄).
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21.6 Reproducing kernels for derivatives

Let H be a reproducing kernel of functions that are analytic on the domain
Ω. The kernels of evaluation at point z ∈ Ω form a two-parameter family of
functions kHz (w), where z and w run through Ω and kHz (w) is analytic with
respect to w and conjugate analytic with respect to z. The essential property of
kHz (z) is

f(z) = 〈f, kHz 〉H (f ∈ H, z ∈ Ω). (21.33)

For further information, see Chapter 9.
If we successively take the derivative of f with respect to z, we see that the

evaluation functional f �−→ f (n)(z) is given by

f (n)(z) = 〈f, ∂nkHz /∂z̄n〉H (f ∈ H). (21.34)

But we need to show that ∂nkHz /∂z̄n ∈ H and also that taking the derivative
operator inside the inner product is legitimate. We verify this for n = 1. For
higher derivatives, a similar argument works.

For simplicity, write kz for kHz . Put δ = (1− |z|)/2. Then, for each f ∈ H
and each Δ with 0 < |Δ| < δ, we have∣∣∣∣〈f,

kz+Δ − kz
Δ̄

〉
H

∣∣∣∣ = ∣∣∣∣f(z +Δ)− f(z)

Δ

∣∣∣∣ =
∣∣∣∣∣ 1Δ

∫ z+Δ

z

f ′(ζ) dζ

∣∣∣∣∣ ≤ Cf ,

where Cf is the maximum of f ′ on the disk with center z and radius δ. There-
fore, by the uniform boundedness principle (Theorem 1.19), there is a constant
C such that ∥∥∥∥kz+Δ − kz

Δ̄

∥∥∥∥ ≤ C (0 < |Δ| < δ).

Let g ∈ H be a weak limit of this fraction as Δ −→ 0. Then, on the one hand,
for each f ∈ H we have

〈f, g〉 = lim
Δ→0

〈
f,

kz+Δ − kz
Δ̄

〉
= lim

Δ→0

f(z +Δ)− f(z)

Δ
= f ′(z).

On the other hand,

g(ζ) = 〈g, kζ〉 = lim
Δ→0

〈
kz+Δ − kz

Δ̄
, kζ

〉
= lim

Δ→0

kz+Δ(ζ)− kz(ζ)

Δ̄
=

∂kz
∂z̄

(ζ).

In short, g = ∂kz/∂z̄.
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In the light of relation (21.34), we define the notation

kHz,n = ∂nkHz /∂z̄n, (21.35)

i.e. the kernel of the evaluation functional of the nth derivative at z ∈ Ω. The
relation (21.34) can be rewritten as

f (n)(z) = 〈f, kHz,n〉H (f ∈ H). (21.36)

In the above formula, if we replace f by kHz,n, we obtain

(kHz,n)
(n)(z) = ‖kHz,n‖2H. (21.37)

There are some other formulas for kHz,n and each has its merits and uses in
applications. We treat some of them below.

For the space H(b), instead of kH(b)
z,n we will write kbz,n. Our first formula

for kbz,n is based on the operator Xb (see Section 18.7).

Lemma 21.16 We have

kbz,n = n!(I − z̄X∗
b )

−(n+1)X∗
b
nkb0.

Proof According to Theorem 18.21,

kbz = (I − z̄X∗
b )

−1kb0.

Hence, using the definition (21.35), we get

kbz,n =
∂nkbz
∂z̄n

=
∂n

∂z̄n
((I − z̄X∗

b )
−1kb0)

= n!(I − z̄X∗
b )

−(n+1)X∗
b
nkb0.

This completes the proof.

According to Theorem 18.11, the formula for kbz = kbz,0 is

kbz(w) =
1− b(z)b(w)

1− z̄w
(z, w ∈ D).

Using Leibniz’s rule, by straightforward computations, we obtain

kbz,n(w) =
∂nkbz(w)

∂zn
=

hb
z,n(w)

(1− zw)n+1
, (21.38)

where hb
z,n is the function

hb
z,n(w) = n!wn − b(w)

n∑
j=0

(
n

j

)
b(j)(z)(n− j)!wn−j(1− zw)j . (21.39)
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Lemma 21.17 Let z0 ∈ D with b(z0) �= 0. Then

hb
z0,n(1/z̄0) = (hb

z0,n)
′(1/z̄0) = · · · = (hb

z0,n)
(n)(1/z̄0) = 0.

Proof The functional 21.18 shows that b is analytic in a neighborhood of the
point 1/z̄0. (If b(z0) = 0, then b has pole at 1/z̄0 of the same order as the
order of b at z0.) Therefore, the formula for kbz0(w) shows that this kernel is a
meromorphic function on |w| > 1 with poles as described above and a possible
pole at 1/z̄0. However, again by (21.18), we have b(z0)b(1/z̄0) = 1 and thus
the pole is removable. In short, w �−→ kbz0(w) is analytic at 1/z̄0. Therefore,
the same is true for the application w �−→ kbz0(w). Respecting this property,
the representation (21.38) implies that hb

z0,n must have a zero of order n + 1

at 1/z̄0.

We finish this section by studying kBz,n, where B is a Blaschke product
formed with zeros (an)n≥1. We recall that, by Theorem 14.7,

hj(z) =

(
j−1∏
k=1

ak − z

1− ākz

)
(1− |aj |2)1/2

1− ājz
(j ≥ 1) (21.40)

is an orthonormal basis for KB = H(B). Sometimes, we will write

hj(z) = (1− |aj |2)1/2
Bj−1(z)

1− ājz
(j ≥ 1), (21.41)

where Bj is the finite product formed with the first j zeros.

Lemma 21.18 Let B be a Blaschke product with zeros (an)n≥1. Let z ∈ D.
Then

kBz,n =

∞∑
j=1

h
(n)
j (z)hj .

The series converges in H2 norm.

Proof Since (hj)j≥1 forms an orthonormal basis for KB , there are coeffi-
cients cj , j ≥ 1, such that

kBz,n =

∞∑
j=1

cjhj ,

where the series converges in H2 norm. Moreover, thanks to orthonormality,
cj is given by

cj = 〈kBz,n, hj〉2.

But the formula 21.34 immediately implies that c̄j = h
(n)
j (z).
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For a Blaschke product, XB = S∗|KB and kB0 = PB1. Thus, X∗
B =

PBS = MB is the compressed shift on KB . Therefore, by Lemma 21.16,
we have

kBz,n = n!(I − z̄MB)
−(n+1)Mn

BPB1. (21.42)

Lemma 21.19 Let z0 ∈ D and N ≥ 0. Let B be a Blaschke product with
zeros (an)n≥1. Assume that there are functions f, g ∈ H2 such that

zN = (1− z̄0z)
N+1f(z) +B(z)g(z) (z ∈ D).

Then we have PBf = kBz0,N/N !.

Proof We write the above equation for f and g as

SN1 = (1− z̄0S)
N+1f +Bg.

Since MB is the compression of S, if we apply PB to both sides, we obtain

MN
B PB1 = (1− z̄0MB)

N+1PBf,

and thus

PBf = (1− z̄0MB)
−N−1MN

B PB1,

and the result follows from (21.42).

21.7 An interpolation problem

There is a close relation between the existence of derivatives of elements of
H(b) at the boundary and the containment of X∗N

b kb0 to the range of (I −
ζ0X

∗
b )

N+1. This is fully explored in Theorem 21.26. But, to reach that general
result, we need to pave the road by studying some special cases. We start doing
this by considering Blaschke products. First, a technical lemma.

Lemma 21.20 Let S, (Sn)n≥1 ∈ L(H) with the following properties.

(i) Each Sn is invertible.
(ii) S is injective.
(iii) Sn −→ S in the norm topology.
(iv) There is a constant M such that

‖S−1
n S‖ ≤M (n ≥ 1).

Let y ∈ H. Then (S−1
n y)n≥1 is a bounded sequence in H if and only if y ∈

R(S). Moreover, if this holds, we actually have S−1
n y −→ S−1y in the weak

topology.
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Proof Assume that (S−1
n y)n≥1 is a bounded sequence in H. Hence, it has

at least one weak limit point in H. Let x ∈ H be a weak limit point of the
sequence. Since Sn −→ S in the norm topology, we surely have (at least for a
subsequence) SnS

−1
n y −→ Sx. Therefore, y = Sx, i.e. y ∈ R(S). But, since

S is injective, the above argument shows that the sequence has precisely one
weak point (if x′ is another weak limit point, we would have y = Sx = Sx′).
In other words, the whole sequence tends weakly to x.

To prove the other (easy) direction, assume that y ∈ R(S), i.e. y = Sx for
some x ∈ H. Then

‖S−1
n y‖ ≤ ‖S−1

n Sx‖ ≤ ‖S−1
n S‖ ‖x‖ ≤M‖x‖ (n ≥ 1).

The following corollary is a realization of the preceding lemma. The
assumptions are adjusted to fit our application in the study of derivatives
ofH(b) functions.

Corollary 21.21 Let Tk ∈ L(H), ζk ∈ T and λk,n ∈ D, for n ≥ 1 and
1 ≤ k ≤ p, with the following properties.

(i) Each Tk is a contraction.

(ii) Each I − ζkTk is one-to-one.

(iii) TkTk′ = Tk′Tk for k, k′ ∈ {1, . . . , p}.
(iv) For each k, λk,n tends nontangentially to ζk as n −→∞.

Let y ∈ H. Then the sequence

((I − λ1,nT1)
−1 · · · (I − λp,nTp)

−1y)n≥1

is uniformly bounded if and only if y belongs to the range of the operator
(I − ζ1T1) · · · (I − ζpTp), in which case,

(I − λ1,nT1)
−1 · · · (I − λp,nTp)

−1y −→ (I − ζ1T1)
−1 · · · (I − ζpTp)

−1y

in the weak topology.

Proof We apply Lemma 21.20 with

Sn = (I − λ1,nT1) · · · (I − λp,nTp)

and

S = (I − ζ1T1) · · · (I − ζpTp).

The only nontrivial property is the boundedness of S−1
n S. Since Tk are

commuting, it is enough to verify that the sequence

((I − λk,nTk)
−1(I − ζkTk))n≥1
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is bounded. But we have

‖(I − λk,nTk)
−1(I − ζkTk)‖ = ‖I + (λk,n − ζk)(I − λk,nTk)

−1Tk‖

≤ 1 + |λk,n − ζk| ‖(I − λk,nTk)
−1‖

≤ 1 + |λk,n − ζk| (1− |λk,n|)−1

≤ 1 +Mk.

The last estimation holds since λk,n tends nontangentially to ζk. The result
thus follows.

In fact, we even need a special case of Corollary 21.21 in which
T1 = · · · =Tp.

Corollary 21.22 Let T ∈ L(H) be a contraction, ζ ∈ T and (λn)n≥1 ⊂ D,
with the following properties.

(i) I − ζT is one-to-one.
(ii) λn tends nontangentially to ζ as n −→∞.

Let y ∈ H. Then the sequence

((I − λnT )
−py)n≥1

is uniformly bounded if and only if y belongs to the range of the operator
(I − ζT )p, in which case

(I − λnT )
−py −→ (I − ζT )−py

in the weak topology.

Now we are ready to establish the connection between the existence of
boundary derivatives in KB and an interpolation problem.

Theorem 21.23 Let ζ ∈ T, and let N ≥ 0. Let B be a Blaschke product with
zeros (an)n≥1 such that

∞∑
n=1

1− |an|
|ζ − an|2N+2

≤ A.

Then there are functions f, g ∈ H2 such that

zN = (1− ζ̄z)N+1f(z) +B(z)g(z) (z ∈ D)

with

‖f‖2 ≤ C,

where C = C(N,A) is a constant.
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Proof According to Lemma 21.18,

kBz,N =

∞∑
j=1

h
(N)
j (z)hj ,

and hence

‖kBz,n‖2 =

∞∑
j=1

|h(n)
j (z)|2. (21.43)

We rewrite the formula in (21.40) for hj as

hj(z) = (1− |aj |2)1/2
Bj−1(z)

1− āj z
.

Hence, by Leibniz’s formula,

h
(N)
j (z) = (1− |aj |2)1/2

N∑
k=1

(
N

k

)
B

(N−k)
j−1 (z)

k!(−āj)k
(1− ājz)k+1

.

Therefore, by Theorem 21.8 and denoting the constant C(N,A) of this theo-
rem by C,

|h(N)
j (rζ)| ≤ (1− |aj |2)1/2

N∑
k=1

(
N

k

)
C

k!

|1− ājrζ|k+1

≤ C(1− |aj |2)1/2
N∑

k=1

(
N

k

)
2k+1k!

|1− ājζ|k+1

≤ C(1− |aj |2)1/2
N∑

k=1

(
N

k

)
2N+1k!

|1− ājζ|N+1

=

(
2N+1C

N∑
k=1

k!

(
N

k

))
(1− |aj |2)1/2
|ζ − aj |N+1

= C ′ (1− |aj |2)1/2
|ζ − aj |N+1

.

Considering (21.43), we conclude that

‖kBrζ,N‖2 ≤ 2AC
′2 (0 < r < 1). (21.44)

The next step is to appeal to the formula (21.42) and Corollary 21.22.
Theorem 14.28 ensures that σp(MB) ⊂ D, and thus the operator I − ζMB is
injective. Hence, with T = MB , p = N + 1 and y = MN

B PB1, we see that
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MN
B PB1 belongs to the range of (I − ζMB)

N+1. This means that there is a
function f ∈ H2 such that

MN
B PB1 = (I − ζMB)

N+1f.

Since MB is the compressed shift, we can rewrite the preceding identity as

PB(z
N ) = PB((1− ζz)N+1f).

Hence, zN−(1−ζz)N+1f ⊥ KB , or equivalently zN−(1−ζz)N+1f ∈ BH2.
Therefore, there is g ∈ H2 such that

zN − (1− ζz)N+1f = Bg.

Finally, Corollary 21.22 also says that

f = (I − ζMB)
−N−1MN

B PB1 = lim
r→1

(I − rζMB)
−N−1MN

B PB1.

Hence, by (21.42)

f = (I − ζMB)
−N−1MN

B PB1 =
1

N !
lim
r→1

kBrζ,N ,

and, by (21.44), the latter is uniformly bounded by a constant.

The above result can be referred to as an interpolation problem since the
equation

zn = (1− ζ̄z)f(z) +B(z)g(z)

has a solution if and only if there is a function f ∈ H2 such that

f(an) =
an

(1− ζ̄an)N+1
(n ≥ 1).

Since
∞∑

n=1

∣∣∣∣ an
(1− ζ̄an)N+1

∣∣∣∣2 (1− |an|2) <∞,

if (an)n≥1 was an interpolation sequence, then the function f trivially exists
(see Section 15.6). The surprising feature of Theorem 21.23 is that it ensures
that a solution, even with an additional growth restriction, always exists.

Theorem 21.23, in a sense, is reversible. Indeed, this is the version that we
need in the proof of Theorem 21.26.

Theorem 21.24 Let N ≥ 0. Let B be a Blaschke product with zeros (an)n≥1.
Assume that there are functions f, g ∈ H2 such that

zN = (1− z̄0z)
N+1f(z) +B(z)g(z) (z ∈ D),

with

‖f‖2 ≤ C and

(
1− 1

2C2

)1/2

≤ |z0| < 1,
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where C > 1 is a constant. Then there is a constant A = A(N,C) such that

∞∑
n=1

1− |an|
|1− ānz0|2N+2

≤ A.

Proof Since we appeal to induction, the functions f and g that appear in the
N th step will be denoted by fN and gN . Note that, by Lemma 21.19,

PBfN =
kBz0,N
N !

. (21.45)

Case N = 0. By Lemma 21.18,

kBz0 =

∞∑
j=1

hj(z0)hj .

Hence, by (21.45), our condition ‖f0‖2 ≤ C translates as

∞∑
j=1

|hj(z0)|2 ≤ C2.

We use (21.41) to rewrite this estimation as

∞∑
j=1

|Bj−1(z0)|2
1− |aj |2
|1− ājz0|2

≤ C2. (21.46)

We just need to get rid of |Bj−1(z0)|2 to establish the result. To do so, just note
that, since Bj is a subproduct of B, we have

PBj
kBz0(z) = kBj

z0 (z) =
1−Bj(z0)Bj(z)

1− z̄0z
.

Hence,

1− |Bj(z0)|2
1− |z0|2

= kBj
z0 (z0) = ‖k

Bj
z0 ‖

2 ≤ ‖kBj
z ‖2 ≤ C2.

The restriction 1 − 1/(2C2) ≤ |z0|2 < 1 now implies that |Bj(z0)|2 ≥ 1/2.
Therefore, from (21.46), we conclude that

∞∑
j=1

1− |aj |2
|1− ājz0|2

≤ 2C2.

This settles the case N = 0.

Case N ≥ 1. Assume that the result holds for N − 1. Our assumption is that
there are functions fN , gN ∈ H2 such that

zN = (1− z̄0z)
N+1fN (z) +B(z)gN (z) (z ∈ D) (21.47)
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with ‖fN‖2 ≤ C. Write

1− (1− z̄0z)
N = −

N∑
k=1

(
N

k

)
(−z̄0)kzk.

Multiply by zN−1 to get

zN−1 = (1− z̄0z)
NzN−1 −

( N∑
k=1

(
N

k

)
(−z̄0)kzk−1

)
zN .

Comparing this to (21.47) written for N − 1 rather than N gives

zN−1 = (1− z̄0z)
NfN−1(z) +B(z)gN−1(z) (z ∈ D),

where

fN−1(z) = zN−1 −
( N∑

k=1

(
N

k

)
(−z̄0)kzk−1

)
(1− z̄0z)fN (z).

Hence,

‖fN−1‖2 ≤ 1 + 2N+1C.

This means that all the required conditions are fulfilled and we can apply the
induction for N − 1. Thus, there is a constant A such that

∞∑
n=1

1− |an|
|1− ānz0|2N

≤ A. (21.48)

Theorem 21.8 now ensures that B(k)
j (z0), 0 ≤ k ≤ 2N − 1, exist and are

uniformly bounded by a constant A′, where Bj is any subproduct of B.
If we take N times the derivative of both sides in (21.41), we obtain

h
(N)
j (z) = (1− |aj |2)1/2

N∑
k=0

(
N

k

)
B

(k)
j−1(z)

(N − k)!(−āj)N−k

(1− ājz)N−k+1
(j ≥ 1).

We rewrite this as

(1− |aj |2)1/2Bj−1(z)
N !(−āj)N

(1− ājz)N+1

= h
(N)
j (z)− (1− |aj |2)1/2

N∑
k=1

(
N

k

)
B

(k)
j−1(z)

(N − k)!(−āj)N−k

(1− ājz)N−k+1
.

(21.49)
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As we saw above, for 1 ≤ k ≤ N ,∣∣∣∣(Nk
)
B

(k)
j−1(z0)

(N − k)!(−āj)N−k

(1− ājz)N−k+1

∣∣∣∣ ≤ A′N !

|1− ājz0|N−k+1

≤ A′N ! 2N

|1− ājz0|N
.

Thus, the right-hand side of (21.49) is bounded above by

|h(N)
j (z)|+A′NN ! 2N

(1− |aj |2)1/2
|1− ājz0|N

.

The left-hand side of (21.49) is bounded below by

N !

2N+1

(1− |aj |2)1/2
|1− ājz0|N+1

for zeros |aj | ≥ 1/2. Hence, for such j, we have

(1− |aj |2)1/2
|1− ājz0|N+1

≤ 2N+1|h(N)
j (z0)|+A′N22N+1 (1− |aj |2)1/2

|1− ājz0|N
.

Hence, by Minkowski’s inequality, Lemmas 21.18 and 21.19, and (21.48), we
find( ∑

|aj |≥1/2

1− |aj |2
|1− ājz0|2N+2

)1/2

≤ 2N+1

( ∞∑
j=1

|h(N)
j (z0)|2

)1/2

+A′N22N+1

( ∞∑
j=1

1− |aj |2
|1− ājz0|2N

)1/2

≤ 2N+1‖kBz0,N‖+A′AN22N+1

≤ 2N+1N ! ‖PBfN‖+A′AN22N+1

≤ 2N+1N !C +A′AN22N+1.

For zeros with |aj | < 1/2, we have∑
|aj |<1/2

1− |aj |2
|1− ājz0|2N+2

≤ 4
∑

|aj |<1/2

1− |aj |2
|1− ājz0|2N

≤ 4A.

Hence, the result follows.

21.8 Derivatives of H(b) functions

In Theorem 20.13, we saw the connection between the analytic continuation
of b across a subarc of T, on the one hand, and the analytic continuation of all
functions of H(b) across the same subarc, on the other hand. In this section,
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we treat a similar result. While we are studying the derivative of elements in
H(b), we are content with the existence of nontangential boundary values.

We begin with a simple lemma, which is a simple exercise from calculus
and is interesting in its own right. We do not prove it in such a generality since
in our application even the derivative of order n + m + 1 exists at all points.
However, the proof for the general case is essentially the same.

Lemma 21.25 Let I be an open interval, and let a, b ∈ I . Suppose that the
function h : I −→ C satisfies the following properties:

(i) h has n+m continuous derivatives on I;

(ii) h(n+m+1) is continuous and bounded on I \ {a};
(iii) h(b) = h′(b) = · · · = h(n−1)(b) = 0.

Put

k(x) =
h(x)

(x− b)n
(x ∈ I).

Then k is m+ 1 times differentiable on I and, moreover,

k(m+1)(x) =

∫ 1

0

· · ·
∫ 1

0

h(m+n+1)(b+ t1 · · · tn(x− b))v(t) dt1 · · · dtn,

where v(t) = tp1

1 · · · tpn
n is some monomial.

Proof Since h(b) = 0, the fundamental theorem of calculus says

h(x) =

∫ 1

0

d

dt1
[h(b+ t1(x− b))] dt1

= (x− b)

∫ 1

0

h′(b+ t1(x− b)) dt1.

Applying the same result to the function x �−→ h′(b+ t1(x− b)) gives

h′(b+ t1(x− b)) = t1(x− b)

∫ 1

0

h′′(b+ t1t2(x− b)) dt2.

Therefore,

h(x) = (x− b)2
∫ 1

0

∫ 1

0

t1h
′′(b+ t1t2(x− b)) dt1 dt2.

Continuing this process n times gives

k(x) =

∫ 1

0

· · ·
∫ 1

0

tn−1
1 tn−2

2 · · · tn−1h
(n)(b+ t1 · · · tn(x− b)) dt1 · · · dtn.

Write m(t) = tn−1
1 tn−2

2 · · · tn−1.
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Since h has n+m continuous derivatives on I , and h(n+m+1) is continuous
and bounded on I \ {a}, the function k has m+ 1 continuous derivatives on I

and

k(m+1)(x) =

∫ 1

0

· · ·
∫ 1

0

m(t)
∂m+1

∂xm+1
h(n)(b+ t1 · · · tn(x− b)) dt1 · · · dtn

=

∫ 1

0

· · ·
∫ 1

0

v(t)h(m+n+1)(b+ t1 · · · tn(x− b)) dt1 · · · dtn,

where v(t) = tm+n
1 tm+n−1

2 · · · tm+2
n−1 t

m+1
n .

The following result gives a criterion for the existence of the derivatives for
functions ofH(b).

Theorem 21.26 Let b be a point in the closed unit ball of H∞(D) with the
canonical factorization (21.17), let ζ0 ∈ T and let N be a nonnegative integer.
Then the following are equivalent.

(i) For every f ∈ H(b), the functions f(z), f ′(z), . . . , f (N)(z) have finite
limits as z tends radially to ζ0.

(ii) For every f ∈ H(b), the function |f (N)(z)| remains bounded as z tends
radially to ζ0.

(iii) ‖kbz,N‖b is bounded on the ray z ∈ [0, ζ0].

(iv) X∗N
b kb0 belongs to the range of (I − ζ0X

∗
b )

N+1.
(v) We have∑

n

1− |an|2
|ζ0 − an|2N+2

+

∫
T

dμ(ζ)

|ζ0 − ζ|2N+2
+

∫
T

∣∣ log |b(ζ)|∣∣
|ζ0 − ζ|2N+2

dm(ζ) <∞.

Moreover, we have

(I − ζ0X
∗
b )

N+1kbζ0,N = N !X∗
b
Nkb0, (21.50)

where kbζ0,N ∈ H(b) and satisfies

f (N)(ζ0) = 〈f, kbζ0,N 〉b (f ∈ H(b)).

Proof (i) =⇒ (ii) This is trivial.
(ii) =⇒ (iii) In the light of representation (21.36), this implication follows

from the principle of uniform boundedness (Theorem 1.19).
(iii) =⇒ (iv) By Lemma 21.16,

kbz,N = N !(I − z̄X∗
b )

−(N+1)X∗N
b kb0. (21.51)

Theorem 18.26 ensures that σp(X
∗
b ) ⊂ D, and thus the operator I − ζ0X

∗
b is

injective. By assumption, (I−znX
∗
b )

−(N+1)X∗N
b kb0 is uniformly bounded for

any sequence zn ∈ D tending radially to ζ0. Now, we apply Corollary 21.22
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with T = X∗
b , p = N + 1 and y = X∗N

b kb0 to conclude that X∗N
b kb0 belongs

to the range of (I − ζ0X
∗
b )

N+1.
(iv) =⇒ (i) Using once more Corollary 21.22, we see that

(I − znX
∗
b )

−(N+1)X∗N
b kb0 −→ (I − ζ0X

∗
b )

−(N+1)X∗
b
Nkb0

in the weak topology, for any sequence zn ∈ D tending radially to ζ. But
(21.51) says that the left-hand side is precisely (1/N !)kbzn,N . Hence, in the
light of (21.36), for every function f in H(b), the N th derivative f (N)(z) has
a finite limit as z tends radially to ζ0. Moreover, the linear functional f �−→
f (N)(ζ0) is continuous on H(b) and thus it is induced by a kernel function
kbζ0,N , which should satisfy

(I − ζ0X
∗
b )

−(N+1)X∗
b
Nkb0 =

1

N !
kbζ0,N .

That proves (21.50).
The rest is by induction. We have

I − (I − ζ0X
∗
b )

N = −
N∑

=1

(
N

�

)
(−ζ0)
X∗


b .

Applying to both sides the function X
∗(N−1)
b kb0 we get

X
∗(N−1)
b kb0 = (I − ζ0X

∗
b )

NX
∗(N−1)
b kb0

−
N∑

=1

(
N

�

)
(−ζ0)
X∗(
−1)

b X∗N
b kb0.

Hence, X∗(N−1)
b kb0 belongs to the range of (I− ζ0X

∗
b )

N . The above argument
applies with N replaced by N − 1. We continue this process N times. There-
fore, for every function f in H(b), f (j)(z), 0 ≤ j ≤ N , has a finite limit as z
tends radially to ζ0.

(v) =⇒ (iii) Without loss of generality, we assume that ζ0 = 1. By Theorem
21.10, the condition (v) implies that

lim
r→1−

b(j)(r) and lim
R→1+

b(j)(R)

exist and are equal for 0 ≤ j ≤ 2N + 1. Moreover, since b can have only a
finite number of real zeros, we can take δ > 0 such that the interval [1 − δ, 1)

is free of zeros of b. Therefore, b has 2N + 1 continuous bounded derivatives
on [1− δ, 1 + δ]. Now, fix r in the interval (1− δ, 1).

We recall that, by (21.38) and (21.39), kbr,N (x) = hb
r,N (x)/(1 − rx)N+1,

where

hb
r,N (x) = N !xN − b(x)

N∑
j=0

(
N

j

)
b(j)(r)(N − j)!xN−j(1− rx)j .
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Hence, hb
r,N has 2N + 1 continuous bounded derivatives on (1 − δ, 1 + δ).

Moreover, by Lemma 21.17, we have

hb
r,N (1/r) = (hb

r,N )′(1/r) = · · · = (hb
r,n)

(N)(1/r) = 0.

We now apply Lemma 21.25 with I = (1 − δ, 1 + δ), a = 1, b = 1/r,
n = N + 1, m = N and h = hb

r,N . Note that

h(x)

(x− b)n
=

hb
r,N (x)

(x− 1/r)N+1
= (−r)N+1kbN,r(x).

Thus, the lemma says that (−r)N+1(kbN,r)
(N)(x) is equal to∫ 1

0

· · ·
∫ 1

0

(hb
r,N )(2N+1)

(
1

r
+ t1 · · · tN+1

(
x− 1

r

))
v(t) dt1 · · · dtN+1.

Since there is an M such that

|(hb
r,N )(2N+1)(s)| ≤M (1− δ < s < 1 + δ),

we deduce that

|(kbr,N )(N)(x)| ≤Mδ−N−1 (1− δ < x < 1).

In particular, (kbr,N )(N)(r) is bounded as r −→ 1−. But, according to (21.37),

‖kbz,N‖2b = (kbz,N )(N)(z).

Thus, ‖kbr,N‖b remains bounded as r −→ 1−.
(iii) =⇒ (v) Again, without loss of generality, assume that ζ0 = 1. Fix

r ∈ (0, 1). Considering the canonical factorization of b, since b is in the closed
unit ball of H∞, we have∑

n

1− |an|2
|1− anr|2N+2

+

∫
T

dμ(ζ)

|r − ζ|2N+2
+

∫
T

∣∣ log |b(ζ)|∣∣
|r − ζ|2N+2

dm(ζ) <∞.

For simplicity of formulas, denote the left-hand side by Δr. According to
Theorem 21.15, there is a sequence (Bj)j≥1 of Blaschke products, with zeros
(ajk)k≥1, converging uniformly to b on compact subsets of D and such that

∞∑
k=1

1− |ajk|2
|1− rajk|2N+2

−→ Δr

as j −→∞. Hence, the formulas (21.38) and (21.39) show that kBj

w,N tends to
kbw,N uniformly on compact subsets of D. In particular, we must have

lim
j→∞

(k
Bj

w,N )(N)(w) = (kbw,N )(N)(w).
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In the light of (21.37), we can rewrite this identity as

lim
j→∞

‖kBj

w,N‖2 = ‖kbw,N‖b.

The assumption (iii) implies that there is a C > 0 such that

‖kbr,N‖b ≤ C (0 < r < 1).

Therefore, there is an index jr such that

‖kBj

r,N‖2 ≤ C + 1 (j ≥ jr).

The formulas (21.38) and (21.39) also show that

(1− rz)N+1k
Bj

r,N (z) = N ! zN −Bj(z)gj(z),

where gj ∈ H2. Hence, it follows from Theorem 21.24 that there is a constant
A = A(C,N) (independent of r) such that∑

k

1− |ajk|2
|1− rajk|2N+2

≤ A (j ≥ jr).

Letting j −→ ∞, we obtain Δr ≤ A for all r ∈ (0, 1). Finally, we let r −→
1− to get the desired condition (v). This completes the proof of Theorem 21.26.

The identity (21.38) provides an explicit formula for the kernel of the func-
tional for a derivative at the point z ∈ D. Using Theorem 21.26, it is easy
to see that this formula can be extended for the kernel of the functional for a
derivative at the point ζ0 ∈ T that satisfies one of the equivalent conditions
(i)–(v); see Lemma 22.4.

Theorem 21.26 implies also a sufficient condition for the existence of the
derivatives for functions in the range of a Toeplitz operator with co-analytic
symbol.

Corollary 21.27 Let a be a nonextreme point of the closed unit ball of H∞,
let ζ0 ∈ T, and assume that there is a neighborhood Iζ0 of ζ0 on T, a constant
c > 0 and an integer N ≥ 0 such that

|a(ζ)| ≤ c |ζ − ζ0|N (ζ ∈ Iζ0).

Then every function f ∈ M(ā), as well as its derivatives up to order N − 1,
have finite radial limits at ζ0.

Proof Thanks to Lemma 17.3, we can assume that a is an outer function with
a(0) > 0. Consider the outer function b such that |a|2 + |b|2 = 1 a.e. on T.
Then (a, b) is a pair and we haveM(ā) ⊂ H(b). Thus it is sufficient to prove
that every function f ∈ H(b), as well as its derivatives up to order N−1, has a
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finite radial limit at ζ0. For this purpose, we may check the sufficient condition
(v) of Theorem 21.26. Since b is outer, this condition is simply∫

T

∣∣ log |b(ζ)|∣∣
|ζ − ζ0|2N

dm(ζ) <∞. (21.52)

Pick ζ ∈ Iζ0 . Then,∣∣ log |b(ζ)|∣∣ � ∣∣ log |b(ζ)|2∣∣ = ∣∣ log(1− |a(ζ)|2)∣∣ � |a(ζ)|2 ≤ c2|ζ − ζ0|2N .

Hence, ∫
Iζ0

∣∣ log |b(ζ)|∣∣
|ζ − ζ0|2N

dm(ζ) ≤ c2m(Iζ0) <∞.

On the other hand, since b is nonextreme, we have∫
T\Iζ0

∣∣ log |b(ζ)|∣∣
|ζ − ζ0|2N

dm(ζ) �
∫
T

∣∣ log |b(ζ)|∣∣ dm(ζ) <∞,

which proves (21.52).

If we combine Theorems 21.1 and 21.26 and Remark 21.2, we get immedi-
ately the following result, which will be useful in Chapter 31.

Corollary 21.28 Let ζ0 ∈ T. Then the following assertions are equivalent:

(i) b has an angular derivative in the sense of Carathéodory at ζ0;
(ii) kb0 belongs to the range of I − ζ0X

∗
b .

Moreover, in this case, we have (I − ζ0X
∗
b )k

b
ζ0

= kb0.

Notes on Chapter 21

Section 21.1

Theorems 21.1 and 21.4 can be found under different names in the literature,
e.g. the Julia–Carathéodory theorem, the Julia–Wolff–Carathéodory theorem
and even the Julia–Wolff theorem. These results combine some celebrated
results of Julia [111], Carathéodory [40–42] and also Wolff’s boundary version
of the Schwarz lemma [191]. The proof here is due to Sarason [161], who
applied Hilbert space techniques to prove the existence of angular derivatives.
Using the hyperbolic Poincaré metric, P. R. Mercer [132] gave a strengthened
version of Julia’s result. Potapov [145] extended Julia’s result to matrix-valued
holomorphic mappings of a complex variable. His results were generalized by
Fan and Ando [20, 71–73] to operator-valued holomorphic mappings, and to
holomorphic mappings of proper contractions on the unit Hilbert ball acting in
the sense of functional calculus. Different generalizations of Theorem 21.1 for
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bounded domains in Cn are known, e.g. for the unit ball [103, 148, 156], for the
polydisk [3, 110], and for strongly convex and strongly pseudoconvex domains
[1, 2]. Abate and Tauraso [5] used the Kobayashi metric on a bounded domain
in Cn to obtain a generalized version. There are various versions and proofs
of this concept – see for example [40, 59, 95, 115, 132, 161, 173, 175, 192].
For a survey of work in higher dimensions, see [4, 5, 94, 131, 147, 156]. The
proof of the existence and uniqueness of a Denjoy–Wolff point for a function
b in the unit ball of H∞ which is not the identity is known as the Denjoy–
Wolff theorem. The proof of this fact presented in Exercise 21.1.1 is taken from
[166]. Exercise 21.1.2 is taken from Li [118]. The inequalities (21.7), (21.8)
and (21.9) are due to Cowen and Pommerenke [60], who established many
inequalities for fixed points of holomorphic functions. For the proof of these
inequalities, Cowen and Pommerenke used deep complex analysis and some
Grunsky-type inequalities. In his paper, Li employed a new method (which is
presented in Exercise 21.1.2) based onH(b) spaces. This new method not only
provides simpler proofs but also leads to some improvements.

Section 21.2

The connection between angular derivatives and mass points on the boundary
has a long history. It can be traced back to Nevanlinna [135]. The connection
between angular derivatives and square summability is due to M. Riesz [153].

Section 21.3

The cases N = 0 and N = 1 of Theorem 21.8(i) are due to Frostman [83].
Frostman’s results were generalized by Cargo [43]. The version presented
here was obtained by Ahern and Clark [10, 11]. In fact, Ahern and Clark
systematically studied the boundary behavior of analytic functions in a series
of papers [7–13]. Some of their results are addressed in this chapter; see also
[44, 45]. The monograph [129] treats a systematic study of this subject.

Section 21.4

A special case of Theorem 21.10 for N = 0 is given in [44] without proof. The
general version was mentioned in [10, 11], again without proof.

Section 21.5

The approximation Theorems 21.12 and 21.15 are taken from [10]. Frostman
shifts, exceptional sets, Lemma 21.13 and Corollary 21.14 were introduced
in [84]. This result has several applications, in particular in Carleson’s proof of
the corona conjecture; see also [108, 109, 130, 133].
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Section 21.6

The results presented in this section are very general and considered as com-
mon knowledge. For example, Lemmas 21.18 and 21.19 are implicitly used
in [10].

Section 21.7

Lemma 21.20 can be found in [10, 81]. Theorems 21.23 and 21.24 are due to
Ahern and Clark [10].

Section 21.8

In the case where b is an inner function, Helson [100] studied the problem
of analytic continuation across the boundary for functions in the model space
Kb. Then, still when b is an inner function, Ahern and Clark [8] characterized
those points x0 of R where every function f of Kb and all its derivatives up
to order n have a radial limit. These results were generalized in the form of
Theorem 21.26 for an arbitrary element of the closed unit ball by Fricain and
Mashreghi [81]. We also mention that Sarason has obtained another criterion
in terms of the Clark measure μλ associated with b; see following theorem.

Theorem 21.29 (Sarason [166]) Let ζ0 be a point of T and let � be a non-
negative integer. The following conditions are equivalent.

(i) Each function in H(b) and all its derivatives up to order � have non-
tangential limits at ζ0.

(ii) There is a point λ ∈ T such that∫
T

|eiθ − ζ0|−2
−2 dμλ(e
iθ) <∞. (21.53)

(iii) The last inequality holds for all λ ∈ T \ {b(ζ0)}.
(iv) There is a point λ ∈ T such that μλ has a point mass at ζ0 and∫

T\{z0}
|eiθ − ζ0|−2
 dμλ(e

iθ) <∞.

Recently, Bolotnikov and Kheifets [36] gave a third criterion (in some sense
more algebraic) in terms of the Schwarz–Pick matrix. Recall that, if b is a
function in the closed unit ball of H∞, then the matrix Pω


 (z), which will be
referred to as to a Schwarz–Pick matrix and defined by

Pb

(z) :=

[
1

i!j!

∂i+j

∂zi∂z̄j
1− |b(z)|2
1− |z|2

]

i,j=0

,
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is positive semidefinite for every � ≥ 0 and z ∈ D. One can extend this notion
to boundary points as follows: given a point ζ0 ∈ T, the boundary Schwarz–
Pick matrix is

Pb

(ζ0) = lim

z→ζ0�
Pb


(z) (� ≥ 0),

provided this nontangential limit exists; see following theorem.

Theorem 21.30 Let b be a point in the closed unit ball of H∞, let ζ0 ∈ T and
let � be a nonnegative integer. Assume that the boundary Schwarz–Pick matrix
Pb


(ζ0) exists. Then each function in H(b) and all its derivatives up to order �
have nontangential limits at ζ0.

Further it is shown in [36] that the boundary Schwarz–Pick matrix Pb

(ζ0)

exists if and only if

lim
z→ζ0�

db,
(z) <∞, (21.54)

where

db,
(z) :=
1

(�!)2
∂2


∂z
∂z̄

1− |b(z)|2
1− |z|2 .

We should mention that, to date, there is no clear direct connection between
conditions (21.53), (21.54) and condition (v) of Theorem 21.26.
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