21

Angular derivatives of H(b) functions

In the previous chapter, we characterized the boundary points where functions
in H(b) admit an analytic continuation. In this chapter, we pursue this study
and we characterize boundary pointswherefunctionsin 7 (b) admit an angular
derivative up to a certain order.

In Section 21.1, we start by characterizing those points ¢ € T such that, for
all functions f € H(b), the nontangential limit

F(Q) = lim f(2)
<

exists. Aswewill see, thisis connected to the well-known Julia—Carathéodory
theorem. In fact, we recover thisresult using aHilbert space approach based on
H (b) spaces. We a so show how to deduce Julia'sinequality from the Cauchy—
Schwarz inequality. In Section 21.2, we study the connection between angular
derivatives and Clark measures. In Section 21.3, we give a smple sufficient
condition for a Blaschke product and its derivatives up to afixed order to admit
radial limits at a boundary point. Then, in Section 21.4, we generalize this
result to arbitrary functionsin the closed unit ball of H°°. In Section 21.5, we
study an approximation problem by Blaschke products that will be useful in
our studies on boundary derivatives of functionsin H(b).

In Section 21.6, we give some interesting formulas for the reproducing ker-
nels of derivatives of functions in #(b). In Section 21.7, we establish the
connection between the existence of boundary derivatives in 7(B), where B
is a Blaschke product, and an interpolation problem. In Section 21.8, we give
a nice characterization for the existence of boundary derivatives for functions
in H(b). This explicit characterization is expressed in terms of the zeros of b,
the singular measure associated with b and log |b|.
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21.1 Derivativein the sense of Carathéodory

In Section 3.2, we studied the angular derivative of analytic functions on the
open unit disk D. In this section we consider the smaller class of analytic
functions f : D — D, i.e. the elements of the closed unit ball of H>° (D). We
say that such afunction hasangular derivative in the sense of Carathéodory at
(o € T if it has an angular derivative at ¢, and moreover |f(¢y)| = 1. By the
maximum principle, for some z € D, f(z) € T happensonly if f isa constant
function of modulus one. Hence, from now on, we consider functions that map
DintoD.

Theorem 21.1 Letb: D — D be analytic, let € T, and put

c= liminfm.
z—C 1-— |Z|

Then the following are equivalent.
(i) The constant c is finite, i.e.
c < 0.
(ii) Thereis A € T such that
b(z) — A
z2=¢
(iii) For all functions f € H(b),
f(¢) = lim f(z)

€ H(b).

z—C
<
exists.
(iv) The function b has an angular derivative in the sense of Carathéodory
at .

Moreover, under the preceding equivalent conditions, the following results
hold.

(a) The constant c is not zero, i.e.
c>0.

(b) We have [b(¢)| =1, ¢ = |b'(¢)| and

b(o) = b(?w(m.
(c) We have
kR (z) = W € H(b).
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(d) Foreach f € #H(b),
F(C) = (. k)

(e) We have

lim [|kY — k2|lp = 0.

z—C

<
(f) We have

(O] = k¢(€) = [IREIIE = .

(g) We have

c= lim 1= )l b(z)]

z—C 1—|Z| '
<

Proof Our planisto show that
(i) = (i) = (iil) = (i)
and then
(1), (ii), (iii)) = (iv) = (i).
The properties (a)—(g) will be obtained at different steps of the proof.

(i) = (ii) If ¢ < o0, then there is a sequence (z,,),,>1 in D converging to ¢
such that

Hence, we necessarily have lim,,—, » |b(25,)| = 1. Therefore, we can write

T e U EA
Sy P

In the light of Theorem 18.11, this means that

. H b 12

c= lim [k 3.
This is the main observation, due to Sarason, that allows us to use Hilbert
space techniques. By Theorem 1.27, (kf;n )n>1 hasaweskly convergent subse-
quence in H(b). Since (b(z,))n>1 IS bounded, it also has a convergent subse-
quence in the closed unit disk. Hence, replacing (z,,),>1 by a subsequence if
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needed, we assume thereare A € D and k € H(b) such that b(z,) — X and
that k% — k. Therefore, for each z € D,

k(z) = (k, k)
= lim (k2 ,kY),

n—oQ

= lim -
n— 00 1— Zn
1= 2b(z)
1—-¢(z
Sincek € H2(D)and 1/(1 — { 2) ¢ H*(D), we must have |\| = 1 and thus
ACk(z2) = b(j)_CA e H(b).

Clearly k # 0 and, by (1.30), the condition k2 — k implies that
0 < ||k|? < liminf &2 |7 = c. (21.1)
n— o0 "

This also establishes part (a).
(if) <= (iii) By assumption, k € H(b). Hence,
b(z) = A+ (2 = Q)k(2),
which, by (4.15) and the fact that k& € H?(DD), implies that

|z = ¢l

1b(2) = Al < |z = ([ k2 [Fzl2 = ||&]l2 W

Thus, if z € Sc(¢), we have
[b(z) = Al < C [[k[l2(1 = [2*)"/2,
and the last quantity tends to zero when =z tends to ¢ from within Sc(¢).
Therefore,
lim b(z) = A.

z—C
<

Let uswrite b(¢) for \, and k{ for k, i.e.

k() = T,
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With the new notation, we have k:’g € H(b). Thisis part (c). We aso have
k(2) = (kK2 (2 €D).
Moreover, by the Cauchy—Schwarz inequality,

[kE(2)] < [Ik¢ls 1K2]o.

Since
L—-b(Qb(2)] _ L—Ib(2)[ _ (L —[=*) [Ik2]I3
I{Zb 2| = I A > _ zllb ,
KOI="12G 2 = G peNk -
the preceding two inequalitiesimply that
1+b(2)] |z — ¢
b < b )
K20 < IR 172
Hence, in each Stolz domain S¢(¢),
IK2ls < 2C kel (2 € Sc(C))- (212)

This inequality means that k2|, stays bounded as » tends nontangentially
to ¢. Thisfact is exploited below.
For each fixed w € D,

- _ o 1=b(2)b(w) 1 =b(O)b(w)
thnékg(w) —thmc 1—z2w 11— Cw = he(w).

We can rewrite thisrelation in the form

zr 7w

Hm (K2, k0,0 = (K2, kD, )b
z:{)(

Therefore,
lim (f, k%), = (f, k2)s, (21.3)
z—(

<<
where f € H(b) isany element of theform f = o k5, +- - +a, kY, . Butthe
collection of such elementsis densein #(b), and thus, by (21.2), the identity
(21.3) holdsfor al f € H(b). At the same time, (21.3) shows that

FO) = lim f(2) = (KD (F € H(b).

This is part (d). In particular, with f = k2, we obtain £2(¢) = [|k2[|7. This
is partially part (f). The relation (21.3) also impliesthat k? — &2 as = tends
nontangentially to ¢.
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(iii) = (i) Fix any Stolz domain Sc(¢). Consider k% as an element of
the dua space of H(b). Then the relation f(z) = (f, k%), aong with our
assumption imply that

sup |(f,k2)| = C(f) < o0
z€Sc(€)
Thus, by the uniform boundedness principle,
C'= sup ||kl < oo
z€S8¢(¢)

Teke z, = (1 —1/n)(, n > 1. Since z,, € Sc(¢) for sufficiently large n, we
have

1-— |b(2n)|2 b 2 2
——— =k <(C >N
1_|Zn|2 || anb = (’I’L_ )7
which impliesin particular that lim,, , |b(z,)| = 1. Moreover,
1 —|b(z,)|?
¢ < liminf 1= )P liminf ||k? ||Z < C"2.
n—oo 1— |Zn|2 n—oo "

(i), (ii), (iii) = (iv) Since k" € H(b) we have

b(z) — b k(2)b(¢) b
(;_C(Oz : ; :<kzé’,k§>b(§) (z €D).

On the other hand, we know that k2 — £ as » tends nontangentially to ¢.
Hence,

lim

b(z) — b ,b

C )
which, by Theorem 3.1, means that

(o) = kg2 (21.4)

¢
Thus, [0/ (¢)] = [[k2|»- Thisis partially part (f).
By (21.1), ¢ > ka [|2. To show the reverse inequality, we prove that

%215 — [I%2lo

as z tends nontangentially to . This fact has three consequences. Firgt, it
implies ¢ < |[k?||%, and thus we indeed have ¢ = ||k2||7. This is partially
part (f). Second, since kY — k2, as = tends nontangentially to ¢, we have
[kS — k2|l — 0. Thisis part (€). Third,

L—1|b(z)] _ . 1—[b(z)]* _

lim ——— = lim ———~— = 1i U2 = |1KL)12 = c.
M I o T Al = Nkl =<
< < <

Thisis part (g).
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To prove that ||k2[|;, — ||k¢||s, &s = tends nontangentially to ¢, let

bz) = b0

9a) == —Fr V) (zeD).
Thus
b(z) =b(Q) +V(O)(z =) + (2 = Q)g(2) (2 €D)
and, by (21.4),
(=) = 1= 2|k} R(L = C2) + h(z) (2 €D),
where

h(z) = (B O + lg(2)P) |z — P
2 a%<g<z><z N R IGICE o>).

The only important fact about & that we need is that

fim B,

z%(1—|2’| B
<

It isalso elementary to verify that
RA-Cz) 1 1]z—¢

1—22 2 21—|22’

which immediately gives
R1—-Cz) 1

lim ————2 = —,
st 1 2
<

Therefore,

1—|b(2)?

— b2
1—|Z|2 - ||kC||b

lim [|k%]|? = lim
z—C z
<
(iv) = (i) If b has an angular derivative in the sense of Carathéodory at ¢,
then the inequality

1 —[b(r¢)| S;’b(ré)—-b(é)’

1—r r¢( —(
implies that
1= b)) L |6(rG) — b(C) /
= - K —_— =
c 11g?f T2 7}1_% C—¢C [b'(¢)] < o0. O
Remark 21.2 Itistrivial to seethat, if
d = sup L OOL

r<l 1—r
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then the quantity

¢ = liminf 1= 1bG)] b(z)]
z—( 1-— |Z‘
isfinite. The converse is aso true. Indeed, if ¢ < oo, then, by Theorem 21.1,
we know that k% tends to k’g innorm as z — ¢ nontangentially. In particular,
we have that ||kl |l, — |[k]l» asr — 1. Hence, the norms ||k}, |, are
uniformly bounded with respect to r, which precisely meansthat d < oc.

Corollary 21.3  Let by, b2 : D — DD be analytic, let ¢ € T, and assume that
by and b, have angular derivatives in the sense of Carathéodory at ¢. Then
b = by by also has an angular derivative in the sense of Carathéodory at ¢ and,
moreover,

(O] = [P+ [65(C)]-

Proof In the proof, we repeatedly appeal to several parts of Theorem 21.1.
Since b, and by have unimodular nontangential limits at ¢, then so does b.

Write
1-b(z)| _ 1= [b(2)] 1 — |ba(2)]
= b —_—
T e P
Upon letting z = r{ — ¢, theresult follows. O

According to Theorem 21.1, the condition

1 —
1o 1= b))

z—C 1-— |Z‘
<<

(21.5)

isequivalentto (b(z) —A)/(z — () € H(b) for some A € T. Knowing thisfact,
one may naturally wonder if the condition
b(z) — A
z=C
is still strong enough to imply (21.5). The following example provides a nega-
tive answer. Fix anumber p € (1/2,2/3) and let

€ H?

b(z) =1-2"P(1 —2)".

Itisclear that b has the nontangential limit 1 at the point ¢ = 1 and, due to the
assumption p > 1/2, that

1-0
(2) € H.
1—=z
Moreover, since
1 —b(r) - -1
—97P(1 — p)P
T (1—r)
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and thus the quotient tendsto oo asr — 1, the condition (21.5) fails for b. It
just remains to show that b isin the closed unit ball of H°°. For that, it suffices
to show that the mapping z — 2P (where we take the principal branch) sends
thedisk |z — 1/2| < 1/2intothedisk |z — 1| < 1. To verify thisfact, note that
the boundary of thedisk |z — 1/2| < 1/2 is parameterized by
[-7/2,7/2] — C
t — ecos(t).
Hence, itsimage under the mapping z — 2? isgiven by
[-7/2,7/2] — C
t —  ePlcosP(t).
Therefore, we need to verify that
[1 — cos?(t) cos(pt)]? + [cosP (t) sin(pt)]? < 1 (0<t<m/2).
This can be rewritten as
cos? (t) < 2cos(pt) (0<t<m/2),

which is an elementary inequality. The assumption p < 2/3 isexploited here.

However, despite the above example for the general case, whenever b = ©

isan inner function, then the assumption

O(z) — A

z=C

where A € T, is enough to ensure (21.5). In fact, by (4.15), we easily see that

condition (21.6) implies that O(z) tends to \ as z nontangentialy tends to (.
Hence, we can write A = ©(¢) and

O(x) = A _8(x) =) _ 8(¢)1-06(¢)8(2)

€ H?, (21.6)

z— A z—C ¢ 1—-Cz
or equivaently
1-0(0)0(2) = 60(2) = A 2
1o PO T T eH
For dmost all z € T, we adso have
1-0()0(z)  _ O(z) —©(()
1—52 _Z@(Z)< z—=C )
Therefore, the function
1-0(0)8(2)
1—-Cz

actually belongs to Ke¢ = H? N (9}73. We can now apply Theorem 21.1
(implication (ii) = (i)) to conclude that © satisfies the condition (21.5).
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A function that has an angular derivative in the sense of Carathéodory has
an interesting geometrical property, which was discovered by Julia.

Theorem 21.4 Letb : D — D be analytic, and let { € T. Suppose that b
has an angular derivative in the sense of Carathéodory at ¢. Then

[b(z) = b(O)I” |z —¢I?

e = PO

(z e D).

Moreover, the equality holds if and only if b is a Mdbius transformation.
Proof By the Cauchy—Schwarz inequality,
(kg K2)ol* < [IREIG IRZ113-

But, by Theorem 21.1, this is exactly the required inequality. To see when
equality holds, note that Julia’sinequality can be rewritten as

z+C b(z)+b(()>

R —c >0,
<Z—C b(z) =b(¢) ) —

where ¢ = |b/(¢)]. A positive harmonic function either identically vanishes or

has no zeros. Hence, if equality holds even at one point inside D, then we must
have

2+ bz) +b(0)
%(z—c b(z) — b(0)

Therefore, we have

z+ ¢ b(z) +b(C) .
g S GED

where v € R. Thisidentity shows that b is a Mbius transformation. That the
equality holds for a Mobius transformation is easy to verify directly. O

):0 (z € D).

Julia'sinequality has a geometrical interpretation. The relation

2
T

<

- <1+r>

2 — ¢
: <
{ZEC PE <r
isadisk of radiusr/(1+r) in D whose center ison theray [0, ¢] and istangent
totheunit circle T at the point ¢. Julia’sinequality say that this disk is mapped

into asimilar disk of radiusrc/(1 + rc) that is tangent to T at the point b(¢);
see Figure 21.1.

1— 22
,
1—[z* —

<~ z—

1+r
reveds that the set
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50

l,'

.

—

Figure 21.1 The geometric interpretation of Julia's inequality.

Exercises

Exercise 21.1.1 Let b be afunction in the unit ball of H°° that is not the
identity and not a constant. We say that a point z, € D isafixed point of b if

lim b(rzo) = zo.
r—1-

Furthermore, a fixed point z, of b will be called a Denjoy—Wolff point of b
if either zo € D or zg € T and b has an angular derivative at z, satisfying
bl(Zo) < 1.

(i) Show that b can have at most one fixed point in D and furthermore that

|t/ (2)| < 1 at such apoint.
Hint: Use the fact that we have equality in the Schwarz—Pick inequality
if and only if b isaMobius transformation.

(ii) Show that, if ||b]|c < 1, then b does have afixed pointin D.
Hint: Apply Rouch€'s theorem.

(i) In this exercise, we would like to prove that b has at most one Denjoy—
Wolff point.

(8 Assumefirst that b has two distinct Denjoy—Wolff points z;, € T and
z1 € D.
(1) Show that k% and k% arelinearly dependent.
Hint: Show that
k2 (20) K2, (21)\ _
det (kﬁl (20) k21(2’1) =b'(z20) — 1.

(2) Provethat
1-— Zlb(Z) - 1-— Zob(Z)

1—2z12 1—2yz
and conclude that b isthe identity function, which is a contradic-
tion with the hypothesis.
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(b) Assume now that b has two distinct Denjoy—Wolff points zg, z; € T.
Argue as before a so to get a contradiction.
(c) Concludethat b has at most one Denjoy—\Wolff point.

(iv) Inthisexercise, wewould like to prove that b has a unique Denjoy—\Wolff
point. Assume that b has no fixed pointinD. For 0 < r < 1, let z,. bethe
fixed point in D of the function rb (note that ||7b|| o < 1).

(8) Show that there exists a sequence z,, = z,., that convergesto a point
zp € T.

(b) Show that b has an angular derivative in the sense of Carathéodory at
2o With 0 < b/(Zo) <1.
Hint: Apply Theorem 21.1.

(c) Show that zq is a Denjoy—Wolff point of b.

(d) Conclude.

Exercise 21.1.2 Let b be afunction in the unit ball of H°° that is not the

identity and not a constant. Let zg, z1, ..., z, be distinct fixed points of b in
D. Assume that z, is the Denjoy—Wolff point of b and assume that b has an
angular derivative et z1, ..., z,.

(i) Justify that necessarily b'(z;) > 1,5 =1,...,n
(i) Assumethat zop = 0 and [b'(zo)| < 1. Show that

-1 145/(0)
; Vi) -1 <1—b’(0)> : (21.7)

Hint: Define B(z) = b(z)/z, z € D\ {0} and B(0) = ¥'(0). For j >
1, the functions kB are mutually orthogonal in H(B). Also verify that
156211 = b'(25) — 1, IKZ 1% = 1= [b'(0)* and (K, kZ) 5 = 1-1/(0).
Then apply Bessel’s mequahty

(iii) Assumethat zp = 1 and &’(1) < 1. Show that

b'(1)
Zb, _ _1—1_1)/() (21.8)

Hint: Note that all the fixed points are on T and Hkb Hb = b/(z]) Also

check that, for j # ¢, (k% ,k%,), = 1. Denote by G( 0 v kD) the
determinant of the Gram matrix whose (i,7) entry equals (k% ,klz’ V.
Then show that

Gk, ..., k2)

- (l—b/(l))H(b/(Zi) -1 (1_b, Z )
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(iv) Assumethat zp = 1 and &’(1) = 1. Show that

“L 1 — 22 ( 1 )
e 2R = — 1. (21.9)

b (z) 1 b(0)
Hint: Note that

G(kS Kb

P

k)

21.2 Angular derivativesand Clark measures

In this section, we explore the connection between the angular derivativein the
sense of Carathéodory and the Clark measures 1., which were introduced in
Section 13.7. See aso Section 20.11.

Theorem 21.5 The function b has an angular derivative in the sense of
Carathéodory at the point z, € T if and only if there is a point A € T such
that the Clark measure 1) has an atom at zg. In that case, we necessarily have
A= b(z0) and u({z0}) = 1/[V/(z0)|-

Proof According to Theorem 21.1, b has an angular derivative in the sense of
Carathéodory at z if and only if thereis A € T such that
b(z) — A
z=¢
Since H(b) = H(\b), we can say that b has an angular derivative in the sense
of Carathéodory at z if and only if thereis A € T such that

Ab(z) — 1 <
By Corollary 20.29, thishappensif and only if 1) ({z0}) > 0. Under the above

conditions, Theorem 21.1 also saysthat A = b(zo).
It remainsto show that uy ({z0}) = 1/]¥'(z0)|. Put

€ H(b).

gr = (1 —=7)kpz 0<r<1).

For each ¢ € T, we have

9n(0)] = ———

= — <1 0<r<l).
|1—’I’Z()C| ( )
Moreover,

1—r

9r(e0) = Tz = b
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while, foreach ¢ € T \ {20},
. . 1—r
o (O = I Tz =

In short, we can write

lim [g- (O] = X203 (O)  (C€T).

Hence, by the dominated convergence theorem,

tmn g 2 =l | 1o QP dia(©) = [ (@ dial€) = ma(c)
(21.10)
But, according to Theorem 20.5, the mapping V5, isapartia isometry from
L%(uy) onto H(Ab). Moreover,

Vipgr = (1 = r)Vikrsz,
=(1- r)ik,i\zbo
1— Ab(rzo)
1—r 1= Xb(rzo)\b
1—-M(rz) 1-rZz
1—r b
L= Moo

Remember that 7(\b) = H(b) and that A = b(z). Hence,

IV xe9r 135 = IVogrll;

1—1)2
S el VN
|1 — A\b(rz0)|?
B rZ0 — 20 21— |b(rzo)|?
| b(rzo) — b(20) 1—r2

Theorem 21.1 ensures that |b'(zo)| > 0 and, by (21.10), that
pa(Q) = lim 19rl172 ()
= lim [ V3,013,
= |/ (20) |72 V' (20)| = 1/[V' (20)].
This completes the proof. O

Assuming that b has an angular derivative in the sense of Carathéodory at the
point zo € T, then it followsimmediately from Theorem 21.5 that the measure
Ly, where A € T, has an atom at z if and only if A = b(zp). Now, we show
that, for other values of \, acertain integrability condition holds.
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Theorem 21.6 Assume that b has an angular derivative in the sense of
Carathéodory at the point z, € T. Then, for every A € T \ {b(z)}, we have

) oy |1V'(20)]
Jee = o2 ey =

Proof Put h, = rzpk,.,, where0 < r < 1. Hence, for each fixed ¢ € T,

7"2 ,',,2

2 _ _
(R () = 1—rz¢]2 1+72-2rC’

where C' = R(Zp¢). A simple computation shows that

d

—h(Q)1* =

2r(1 —rC) >0
dr

(1+r2—2rC)2 =~

Therefore, the mapping r — |h,.(¢)|? isincreasing. Knowing thisfact, by the
monotone convergence theorem, we deduce that

: 2 T 9
tn el =l [ ()P a0

_ / lim |1, (0)]? djax(C)
TT“)

1
A EELE
_ 1 i0
_/T|€i9_zo|2 d,U’)\(e )

Now, we use the same techniques as in the proof of Theorem 21.5. Accord-
ing to Theorem 20.5, the mapping V', isapartia isometry from L?(p,) onto
H(\b). Moreover,

Vj\th’ = TZOVS\ka‘Z()

b
TZ0o

1-— j\b(T'Z())
r20 1 — Ab(rzo) b

1—Mb(rzg) 1—rZoz

- g (21.11)
1 — Ab(rzo)

=Tz

https://doi.org/10.1017/CB0O9781139226769.008 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9781139226769.008

21.2 Angular derivatives and Clark measures 185

Remember that 7 (\b) = H(b). Hence,

1hellZ2 ey = 1V ashe 15

= ||behrH§
2
r
= [k, II}
|1 — Ab(rzg)|?
2
r
= ——|Ik2., II3-
|)\ _ b(?"Zo)|2 H rz()”b

Theorem 21.1 ensures that |0 (20)| = lim, 1 ||k5, ||?. Moreover, if b has a

20
derivative in the sense of Carathéodory at zy, it surely has aradia limit at this
point too. Thus,

lim |\ —b(rzo)| = A= b(z0)] (A€ T\ {b(z0)})-
Therefore, we finally deduce that

[b'(20)]

= L 0
) = N = b(z0)P

. 2
tim A3
Theorem 21.7 Let 2y € T. Suppose that there exists a point A € T such that

/ le? — 20|72 dux(e?) < oo.

T

Then b has an angular derivative in the sense of Carathéodory at z.

Proof Asin the proof of Theorem 21.6, put h,. = rzok,.,. Then, by (21.11),

r2okl, = (1= \b(r20))*Viphe-

Hence,
r2(Ik7zy 1 = 11— Ab(rzo)[* | Vaphe I3
= (A = b(rz0)[* |l T 2y
2 r 21.12
=[A=0b ——d . .
ptra)? [ e dn©. @)
In the proof of Theorem 21.6, we also saw that the mapping » — |h,.(¢)|? is
increasing. Therefore, since, by assumption,

dpx(C) <o

T |C— Zo|2
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by the monotone convergence theorem, we deduce that

r
sup /7_@1)\( < 00
0<r<1JT 11— rzo¢? ( )

Since |b(rzg) — A < 2, by (21.12), the above growth restriction actually
implies that

sup 15 < 00.

0<r<

rzo||b

In particular,

l1m1nf||/<;b||b bup ||k < 00.

fZ[]Hb

But a simple computation shows that

1—1]b(2)]* _ 11— [b(2)|
]Cb 2 _ > )
H z”b 1—|Z‘2 =9 1—|Z|
Hence, we can say
liminfi(z)‘ < 0.
Z—r20 — |Z‘

Therefore, by Theorem 21.1, b has an angular derivative in the sense of
Carathéodory at zg. O

21.3 Derivatives of Blaschke products

Let (an)n>1 be a Blaschke sequence in D, and let B be the corresponding
Blaschke product. Fix apoint ¢ on the boundary T. If ¢ isnot an accumulation
point of the sequence (ay,),>1, then B is actualy analytic at this point, and
hence, in particular, for any value of j > 0, both limits
lim B lim B
Jim BY(r¢) and  lim BY(RC)
exist and are equal. What ismore interesting isthat ¢ might be an accumulation
point of the sequence (a,,),>1 and yet some of the above properties still hold.

Theorem 21.8 Let (ay,),>1 be a Blaschke sequence in D, and let B be the
corresponding Blaschke product. Assume that, for an integer N > 0 and a
point ¢ € T, we have

Z T QTJ’Q'H < A, (21.13)

Then the following hold.
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(i) Foreach 0 < j < N, both limits
BU(¢) := lim BY(r¢) and lim BY(R()
r—1- R—1+
exist and are equal.
(ii) Thereisa constant C' = C(N, A) such that the estimation
1BY(r¢)| < ©
uniformly holds for » € [0,1] and 0 < j < N.
Proof Theessential caseis N = 0. Therest follows by induction.

Case N = 0. Our strategy is to show that, under the proposed condition,
|B(r¢)| and arg B(r¢) have both finite limits as r tends to 1~. For the sim-
plicity of notation, without loss of generality, assumethat ( = 1.

In the course of the proof, we repeatedly use the inequalities

1—Gnr|>1—7 and [1—a,r|> 31— a,l,

for r € (0,1), which are elementary to establish. As the first application, note
that
2 _ 2 .2 _ 2 _
A=A —lan*) (A=) ~anl*) 11— lan|
[1 —a,r? - I=m1=an ~ |1—ay]
Therefore, the Weierstrass M -test shows that the series

3 (1 —r*)(A —lan|?)
|1 —a,r?
n>1

converges uniformly inr € [0, 1], and thus

L L 10 B

— e
ol |1 — a,r|
But we have
B 2 _ ‘an B T|
‘ (7”)| H |1—dnT‘2
n>1
7 (o (=0 )
et |1 — ap,r|?
(1=r*)(1 —an]?)
>1-—
- 7%:1 1 — Gy,r|? ’

and this estimation enables us to deduce that

1—r?)(1 — |an[?)

=1.
|1 —an,r?

liminf|B(r)]> > 1 — lim Z(
>1

r—1- r—1-
n_
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Since | B(z)| < 1, we conclude that

lim [B(r) =

r—1-

To deal with the argument, write

an ap—r 1 |ap*—1+1-ra, 1 (1 1—|an|2>

1—a,r

lan] 1= anr ~ |an] 1—ay,r  an]

Thus
G Ay —T 1 — |a,|?
arg — =arg |l — ——++— |,
|an| 1 —ay,r 1—a,r

and, for large enough n for which the combination (1 — |a,|)/(|]1 — ax]) is
small, we have

2 12 _
arg (1—1|‘_L”|)‘ gM|1|‘f’”| < apri=lonl

1—ay,r 1—a,r| — |1 — a,|

where M is a positive constant. Thus the series

arg B(r) = Z arg (1 - 1_(17"2)
et 1—a,r
converges absolutely and uniformly on [0, 1], which proves that lim,._,;-
arg B(r) exists.
The preceding two discussionstogether show that L = lim,._, ;- B(r) exists
and hasmodulusone, i.e|L| = 1. Theestimationin part (ii) trivially holdswith
C = 1. Findly, the Blaschke product satisfies the functional equation

B(2)B(1/7) = 1.

Therefore,
1 1 1

lim B(R) = Lty
R—1+ limp 1+ B(l/R) lim,_,,- B(r) L

This argument also shows that, if ¢ > 0 issuchthat [1 — ¢, 1) isfree from the
zerosof B, then B isactually continuouson [1 — e, 1 + ¢].

Case N > 1. Fix 1 < j < N, and suppose that the result holds for 0, 1, . . .,
j — 1. Using the formula for B and taking the logarithmic derivative of both

sides gives us
B'(z) (1 — |an|?)
B) ; (z—an)(1—anz2)’ (21.14)
Thus,
=2 b 1 a2 aanz)g ’ (21.15)
n>1
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where

B(z)(1 —ayz)
(z —ay)

isthe subproduct formed with all zeros except a.,. Now, we use the formulafor

B’ and take the derivative of both sides ;7 — 1 times. Then Leibniz's formula
tells us that

BY(z) = Z( )Zgo 1-k) k+(1)'_aai);+gn ’)

k=0 n>1

Bn(2) = (n>1) (21.16)

Note that, on the right-hand side, we have B, where ¢ runs between 0 and
j — 1. Hence, the induction hypothesis applies. To deal with the other term, we
consider r < 1 and R > 1 separately.

If r < 1, then

’(k:+1)'a 1 —anl?)
(1 —a@,r)k+2

(k+ D1 — |an|?)
T (L= an) 2R

20k +1)! (1 — |a,))
T (= an)/2PN

1 —las])
— oV ay (Lo lmD)
B+l TR

But, for R > 1, we have
(k+1Dlap(1 - [an]?) o DV~ Janf?)

(1—a,R)k+2 R —a,lFt?
(1 —lanl)
<M-—-—
=M

where M isaconstant. Thisis because the condition (21.13) ensures that any
Stolz domain anchored at ¢ can only contain afinite number of zeros a,,. Take
any of these domains anchored at ( = 1, e.g. the one with opening 7/2 or
more explicitly the domain |Sz| < 1 — R z. Then, for a,, that are not in this
domain but are closeto ¢ = 1, say at adistance at most 1, we have

|R*1 —an| <|1 fan|/\/§.

Thus,
(k+ DV —fanl?) _ 20220k + D11 |an]?)
|IR—1 —ap|k+2  — |1 — a,|F+2
2INHD/2 NI (1 — |a,]?)
= 11— a, [N+

The other pointsrest at a uniform positive distance from ¢ = 1.
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Based on the above discussion and the induction hypothesis, if § > 0 issuch
that [1 — ¢, 1) isfree from the zeros of B, then all the series

—1—k)y (k+Dlag (1 — |an|?) ,
;Bg )(2) =g, 0<k<j-1)
are uniformly and absol utely convergent for z € [1 — 4,1+ 6]. Hence, BY)(z)
is aso acontinuous function on thisinterval, which can be equally stated asin
the theorem based on theright and left limitsat = 1.

Appealing to the induction hypothesis, assume that the estimation in part (ii)
holds for derivatives up to order j — 1. Then the above calculation for r < 1
shows that

, izt , N+2 ' —a,
|B(J)(T)| < Z (.7 . 1) Z |BT(LJ—1—/€)(T)‘ 2 (|]1ct61l7)1|](\]1+1 |an|)

k=0 n>1

j—1

< (jz (j ; 1> N2k + 1)!> CA.

k=0

Hence, with abigger constant, the result holds for the derivative of order ;. We
choose the largest constant corresponding to the derivative of order N as the
constant C. This completes the proof of Theorem 21.8. O

The mere usefulness of the estimation in Theorem 21.8(ii) is that the
constant C' does not depend on the distribution of zeros. It just depends on
the upper bound A and the integer N. Hence, it is equally valid for al the
subproducts of B.

Theorem 21.8 isalsovalid if ¢ € D. Infact, the proof issimpler in this case,
since part (i) istrivial. Hence, we can say that, if ¢ € D and

Z e <
then thereisaconstant C' = C'(NV, A) such that the estimation
1B (r¢)| < C
uniformly holdsfor r € [0,1] and 0 < j < N.

Corollary 21.9 Let (ay,),>1 be a Blaschke sequence in D, and let B be the
corresponding Blaschke product. Let ¢ € T be such that

oo
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Then B has a derivative in the sense of Carathéodory at ¢ and
B/ |a’n|
| Z T anl

Proof That B has a derivative in the sense of Carathéodory at ¢ is a direct
consequence of Theorems 21.1 and 21.8. To obtain the formula for | B’(¢)|,
we use (21.15). Note that our condition implies that the subproducts B,, have
radial limitsat (. Hence, wecanletr — 1in

Ianl2)
BTL 7T = A\
Z WL
to obtain
S 1—an|?)
B'(¢) = By, (7
©) 2231 O Ta.ce
The upper bound
(1 —lan|?) | _ 4(1 — |an|)
<
= a0 | = T [C=a] (0<r<1)
allows one to pass to the limit inside the sum. But, according to (21.16), we
have
B(O)(1 — a,
B(¢) = 2@ 5 )

Plugging this back in to the formulafor B’(¢) gives
Z 1- |an|
< Jan — ¢

By taking the absolute values of both sides, the result follows. 0

21.4 Higher derivativesof b
According to the canonical factorization theorem, b can be decomposed as
b(z) = B(2)S(2)0(2) (z € D), (21.17)

where

‘an‘ an — 2
ﬁyH(an 1—anz/)’
C+z
T(—%

S(z) = exp <— da(())
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and

“ 108 (0 dm) ).

O(Z)ZGXp(/Tgi_Z

We can also extend the function b outside the unit disk by theidentity (21.17)
and the formulas provided for B, S and O. The extended function is analytic
for|z| > 1, z # 1/a,. At 1/a, it hasapole of the same order as a,,, as azero
of B. We denote this function also by b, and it is easily verified that it satisfies
the functional identity

b(2)b(1/z) = 1. (21.18)

One should be careful in dealing with function b inside and outside the unit
disk. For example, if

bz)=3=" (A <),

it is natural to use the same nice formulafor |z| > 1. However, the functional
equation (21.18) saysthat

b(z) = 22" (|z] > 1).

Hence, b and its derivatives up to order n show a different behavior if we
approach a point ¢, € T from within D or from outside. In Theorem 21.10
below, we show that, under certain circumstances, this can be avoided.

For our application in this section, we can merge S(z) and O(z) and write

b(z) = B(2)f(2), (21.19)
where
1o =ew (- [ S au(o) (2120
T
and p is the positive measure du(¢) = —log |b(¢)] dm(¢) + do(¢). Now,

Leibniz's formula says that

b9 (2 ZB(k) )FUR)(2).

For the derivatives of B on aray, we have aready established Theorem 21.8.
However, a similar result holds for function f, and thus similar statements
actualy hold for b, i.e. for any function in the closed unit ball of H°.

Theorem 21.10 Let b be in the closed unit ball of H > with the decomposition
(21.17). Assume that, for an integer N > 0 and a point {, € T, we have

0] do(() > [logbQ)]|
cho—wv“* T\<O—<|N+1+/o G — vt dmle) < 4
(21.21)
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Then the following hold.
(i) Foreach 0 < j < N, both limits
©)) — 1 () i ©)
b7 (Co) : r1_1>r{17 b’ (r¢p) and RIE% b (RQ)

exist and are equal.
(ii) Thereisa constant C' = C'(N, A) such that the estimation

b9 (rgo)| < C
uniformly holds for » € [0,1] and 0 < j < N.

Proof Asdiscussed beforethe statement of the theorem, it is enough to estab-
lish theresult just for the function f = SO given by (21.20). The proof hasthe
same flavor as the proof of Theorem 21.8. We first consider the case N = 0,
and then the rest follows by induction.

Case N = 0. We show that, under the condition (21.21), which now translates
as
dp(<)
<A
116 — ¢l ~

| f(rp)| and arg f(r{y) have both finite limits as  tendsto 1~. For simplicity
of notation, without loss of generality, assumethat {, = 1.
A simple computation shows that

F e (= [ Fdu©) ) exw (<1 [ 229 auic)).

Therefore, we have explicit formulasfor | f(r)| and arg f(r).
The assumption (21.22) implies that there is no Dirac mass at {, = 1, i.e.
wn({1}) = 0. Therefore,

(21.22)

1—72
1 —_— =
A

for u-amost every ¢ € T. Moreover, we have the upper bound estimation

1—1r2 - 2

= 7 1=
which holds uniformly for all values of the parameter r € (0, 1). The condi-
tion (21.22) means that the function on the right-hand side belongs to L (y).
Hence, by the dominated convergence theorem, we get

i — 0.
rir?/|<—r|2 <

In return, this observation implies that

lim [f(r)| =

r—1—

(Cem),
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In asimilar manner,
- rS(Q) 3(¢)
1 =
e [ N Tk
for p-almost al ¢ € T. We a'so have the upper bound estimation
e
3] 2
I¢—=r[*> 7 1=

which holds uniformly for all values of the parameter r € (0, 1). Finally, again
by the dominated convergence theorem, we see that the limit

i [ 2 o) = [

o1 Jp 1C— P2

(Cem),

)

exists and is afinite real number. In return, thisimplies that

lim arg f(r)

r—1-

also exists and is a finite real number. Therefore, L := lim,_,,- f(r) exists
and, moreover, |L| = 1.

Put L = lim,_,,- f(r). By (21.18), the function f satisfies the functional
equation

f(2)f(1/z) =1.
Therefore,
lim f(R)= 17 = ! -
R—1+ limp 1+ f(1/R)  lim,_,- f(r)

This argument also shows that f isactually bounded on [0, +00). The estima-
tion in part (ii) trivialy holdswith C' = 1.

Case N > 1. Fix1 < j < N, and suppose that the result holds for 0, 1,. . .,
j — 1. The condition (21.21) is rewritten as

au€) 4

Using the formulafor f and taking the derivative of both sides gives us

16 = ([ (@) 162 (21.24)

Now, take the derivative of both sides j — 1 times. Then Leibniz’'sformulatells
us that

[ =3 < /T “2k+ Dl du(C)) FORG) (2125)

P (( = 2)kt2
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On theright-hand side, we have f(©), where ¢ runs between 0 and j — 1. Hence,
the induction hypothesis applies. To deal with the other term, note that, for
z=r<landasoz= R > 1, wehave

1 2
—aSk-n CET
Thus, foral z € (0,00) \ {1} andal kwith0 <k <j—-1< N —1,
—2(k+1)!¢ 2(k+1)!
‘ (€ =22 | 7 (¢ —=1)/2[F+2
- 2N!
T ¢ =1 2N
N+2 Ny
‘f T (¢ €T). (21.26)

Therefore, by (21.23), (21.26) and the dominated convergence theorem,
. —2(k+1)!¢ [ 2R+ 1)IC
i, f e 0= | T O

r—1%
Note that again we have implicitly used the fact that 1 ({1}) = 0. Thus,
by the induction hypothesis and (21.25), part (i) follows. Moreover, again
by the induction hypothesis, assume that the estimation in part (ii) holds for
derivatives up to order j — 1. Then, by (21.25) and (21.26),

o< 5 (S ) oo

2N+2 |
<T|C—1N+1 )Z|f® R ()] < j2N NI AC

Hence, with abigger constant, the result holds for the derivative of order 5. We
choose the largest constant corresponding to the derivative of order N as the
constant C'. This completes the proof of Theorem 21.10. O

We highlight one property that was explicitly mentioned in the proof of
Theorem 21.8 for Blaschke products, but also holds for an arbitrary b. Under
the hypothesis of Theorem 21.10, thereisad > 0 (which depends on b) such
that () (z), for 0 < j < N, is a continuous function on the ray [(1 — ),

(1+6)Col-

Corollary 21.11 Let b be in the closed unit ball of H°° with the decomposi-
tion (21.17). Let ¢, € T be such that

oo

L—lan| [ do(C) ™ Jlog [b(O)I]
Z |C07an‘ |<07<|2 +/(; |C07<|2 (C) < 0.
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Then b has a derivative in the sense of Carathéodory at ¢, and
2 2do(¢) 27 2| log [b(Q)I| H
b/ |a"’7«| + / m C .
i) Z TGo—anl i —cP TSy Tlo-cp MM

Proof Aswedidin (21.19), writeb = Bf. Corollary 21.9 treatsthe Blaschke
product B and gives a formula (the first term appearing in [b'(¢y)| above).
Hence, in the light of Corollary 21.3, we just need to study f and prove that
|7'(Co)| is precisely the remaining two termsin the formulafor |0/ (¢o)|.

That f has aderivative in the sense of Carathéodory at ¢, is adirect conse-
quence of Theorems 21.1 and 21.10. To obtain the formulafor | f/(¢o)|, we use

(21.24), i.e.
/ o _2C r
fw@»-(é“_nwgm@0f<@»

Now, let r — 1 to obtain

f@0=(4@_§ydMO)ﬂ@)

The upper bound

1 2
< (eT,0<r<1
=l ST=al :
allows one to pass to the limit inside the integral. Now, note that
—2¢ 2¢ 2¢o

(C=¢)?  (C(—=¢)([C—C)CG 1¢—Gl?

Hence, we rewrite the formula for f’(go) as

f'(Go) = </1r TAE du(¢ )) Cof(Co)-
By taking the absolute values of both sides, the result follows. O

21.5 Approximating by Blaschke products

According to (21.19), an arbitrary element of the closed unit ball of H*
may be decomposed as b = Bf, where B is a Blaschke product and f is a
nonvanishing function given by (21.20). Generally speaking, since B is given
by a product of some simple fraction of the form (az + b)/(cz + d), it iseasy
to handle and study its properties. That is why in this section we explore the
possibility of approximating f by some Blaschke products. This will enable
us to establish certain properties for the family of Blaschke products first, and
then extend them to the whole closed unit ball of H°.
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Given aBlaschke product B with zeros (a,, ), >1, we define the measure o 5

onD by
op =Y (1= lan|)da,},
n=1

where .y isthe Dirac measure anchored at the point ». We consider o5 asan
element of M (D), the space of finite complex Borel measureson D. This space
is the dua of C(ID). Hence, we equip it with the weak-star topology. Since
C(DD) is separable, thistopology isfirst countable on M (D). More specifically,
this means that each measure has a countable local basis. Naively speaking,
this implies that we just need to consider sequences of measures to study the
properties of this topology.

In the following, we assume that the Blaschke products are normalized so
that B(0) > 0.

Theorem 21.12  Let f be given by (21.20), and let (B,,),,>1 be a sequence of
Blaschke products. Then B,, converges uniformly to f on compact subsets of
D if and only if 63, — p in the weak-star topology of M (D).

Proof Assume that o, — u in the weak-star topology of M (D), and
denote the zeros of B,, by (anm)m>1. Since v is supported on T, the zeros of
B, must tend to T. In fact, fix any » < 1 and consider a continuous positive
function ¢ that isidentically 1 on|z| < r, andidentically Oon |z| > (1+7)/2.
In between, it has a continuous transition from 1to 0. Since o, — w inthe
weak-star topology, we have

/(pdan H/gpdu:O.
D D
But we also have

/tpdaBn 2/ pdop,
D |z|<r

= Z (1 = |anml)

‘anWL‘ST‘

> (1—r) x Cad{m : |apm| < r}.
Therefore, for each r < 1, thereisan N = N(r) such that
|G | > (n>N,m>1). (21.27)
We now further explore our assumption to show that
Bn(0) — £(0). (21.28)

https://doi.org/10.1017/CB0O9781139226769.008 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9781139226769.008

198 Angular derivatives of #(b) functions

Since o3, — 1 in the weak-star topology, we have

/dO‘Bn —>/du.
D D

By (21.20), f(0) isapositive real number and

/_ dp = —log f(0).
)

But the left-hand side is

oo

/}DdUBn = Z(l = lanml),

m=1

which is not precisely —log B,,(0). The actua formulais

—log B, (0) = — i log [anm|-
m=1
However, thanks to (21.27), this difference can be handled. It is elementary to
verify that
0<t—1-logt<(1—-1)* (1/2<t<1).
Hence, for n > N(r),
(1 = lanm|) < —loglanm| < (1 +7)(1 = lanm|)  (m=1).

Summing over m gives

/dJBn < —log B, (0) < (1+7) / dop, (n>N(r)). (2129
D D

Let n — oo to deduce that
—log f(0) < linnigf —log B,,(0)
< lirr;sup —log B,,(0) < —(1 4 r)log f(0).
Now, let » — 1 to conclude that
nhHH;O log B,,(0) = log f(0).

The next step is to show that B,, actualy uniformly converges to f on
any compact subset of D. In the language of op _, formula (21.14) can be

n?

rewritten as
By(z) _ [ __(+lc)
56~ heonc O
At first glance, it seems that the function
(1+1¢)
T E-o0-)
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isnot continuous on D and thus we cannot appeal to the weak-star convergence.
However, we fix a compact set |z| < r and, as we saw above, after a finite
number of indices, the support of o isin|z| > (1 + r)/2. Hence, we can
multiply the above function by atransient functionthatis1lon|z| > (1+7)/2
and 0 on |z| < 1. This operation, on the one hand, will not change the value of
the integrals and, on the other, will create a genuine continuous function on .
Therefore, we can surely say

1+ 1) 1+|<|
/®<z—<><1—<z dop. _>/ G-o0 - O

which trandates as

n(2) | f'(2) (21.30)

asn —» oQ.

Since (B,,),>1 is uniformly bounded by 1 on D, it isanormal family. Let
g be any pointwise limit of a subsequence of (B,,),,>1. Then, by (21.28) and
(21.30), we must have

I e
i)~ fG)

Thus, g = f, which means that the whole sequence converges uniformly to f
on compact sets.

To prove the other way around, assumethat B,, convergesuniformly to f on
compact sets. Thus, B,,(0) — f(0) and, since f has no zeros on D, for each
7, (21.27) must hold. Hence, if welet n — oo in (21.29), we obtain

(z € D).

limsup/ dop, < —log f(0) < (1+r)liminf | dop, .
D

n—00 n—oo Jp

Let » — 1 to deduce that
[ dop, — —log f(0).
D

Hence, (o3, )n>1 isabounded sequencein M (D), and any weak-star limit of
this sequence must be a positive measure supported on T. But the sequence has
just one weak-star limit, i.e. u. Thisisbecause, if v isany weak-star limit of the
sequence, thefirst part of the proof shows that a subsegquence of B,, converges
to f,, where f,, isgiven by (21.20) (with u replaced by v). Therefore, f, = f
on D and, using the uniqueness theorem for Fourier coefficients of measures,
we concludethat v = p. O
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To establish our next approximation theorem, we need a result of Frostman,
which by itself isinteresting and has numerous other applications. Let © bean
inner function and, for each w € D, define

_w—0(2)
o) =106y

The function ©,, is called a Frostman shift of ©. It is easy to verify that ©,,
is an inner function for each w € D. However, alot more is true. Define the
exceptional set of © to be

£(©) ={weD: 0, isnot aBlaschke product}.
Frostman showed that £(u) isavery small set.

Lemma 21.13 Let © be a nonconstant inner function, and let 0 < p < 1.
Define

E,(0) = {¢ € T : ©, is not a Blaschke product}.
Then £,(©) has one-dimensional Lebesgue measure zero.

Proof For each o € D, we have

/ log
T

Thisisan easy consequence of the mean value property of harmonic functions.
In (21.31) replace o by ©(r¢) and then integrate with respect to ¢ to get

pE — o

1—péa

dm(&) = max(log p, log|a|). (21.31)

([ os16,6001am() ) din(c) = | maxtion .1og 000 o).
The collection
/1(¢) = max(log plog IO(Q)), 7 € [0,1),

satisfieslog p < f,-(¢) < 0 and, moreover,

lim f,(¢) = max (log 05 lim1 log |®(r()|) = max(log p,0) =0
r—

r—1

for amost every ¢ € T. Therefore, by the dominated convergence theorem,

lim /T £2() dm(¢) = o.

r—1

We rewrite this identity as

r—1

iy [ ([ 100,60 dm(&) ) am(c) =
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Since the integrand —log |© .¢| is positive, Fubini’s theorem can be applied.
The outcomeis

iny [ ([ 10210460 dm(©)) i) =

r—1

Now, Fatou’s lemmaimplies that

/T <limi{1f /T 1og|@p5(rg)|dm(<)) dm(€) = 0.

r—

Hence, we must have
lim inf/ log |©,¢(r¢)| dm(¢) =0 (21.32)
r—1 T

for amost al ¢ € T, and this precisely means that, for such values of &, the
Frostman shift © ,¢ isaBlaschke product. Indeed, if we consider the canonical
factorization ©,,c = BS, where B is a Blaschke product and S is the singular

measure
s) = e (- [ 22 dow)).

/ log |8, (rC)| dm(¢) < / log [S(r¢)| dm(¢) = —o(T).
T T

which, by (21.32), impliesthat o = 0. O

then

Among numerous applications of Lemma21.13, we single out the onewhich
states that Blaschke products are uniformly dense in the family of inner func-
tions. A variation of the technique used in the proof of the following result will
be exploited in establishing Theorem 21.15.

Corollary 21.14 Let © be an inner function, and let ¢ > 0. Then there is a
Blaschke product B such that

|O — Bl|e < e.
Proof We have

O(2) + O (2) = O(2) + L= O _ w=16°(2)

and thus

On the one hand, this shows that —©,, — © inthe H>* normasw — 0
and, on the other, Lemma 21.13 ensures that there are numerous choices of w
for which —©,, isaBlaschke product. O
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In the following result, we again use M (D), equipped with the weak-star
topology. We recall that it is first countable, i.e. each point has a countable
local basis of open neighborhood.

Theorem 21.15 Let A € D, let N > 1, and let ;2 be a positive measure on T
such that
dp (<)
T [1 =AY
Then there is a sequence of Blaschke products (B,,),>1 such that o, — p
in the weak-star topology of M (ID) and, moreover,

< 0

i 1_|anm|2 N ZdM_(o
11— Aanm|Y 1|1 = XN

m=1

asn — oQ.

Proof First, note that the growth restriction on . impliesthat ;. cannot have a
Dirac mass at 1/). Our strategy is to prove the theorem for discrete measures
with finitely many Dirac masses and then appeal to a limiting argument to
extend it for the general case.

Assumethat o = ady;y, where oo > 0. Construct f according to the recipe

(21.20), i.e.
f(z) =exp (—a LT Z) .

1—=2

By Lemma 21.13, the function

flz) —c
Bc = Ye 7T —i7 N
(2) =71 e
is aBlaschke product for values of ¢ through a sequence that tends to zero and
avoids the exceptional set of f. The unimodular constant

SO (Ut e (0]

©f(0) =] 1-cf(0)
is added to ensure that B.(0) > 0. The precise value of ~,. is not used below.
We just need to know that v. — 1 asc¢ — 0. The formulafor B, implies
that

2|c|
1—|c
Thus, B, converges uniformly to f on ID (even uniform convergence on com-

pact setsis enough for us). Therefore, by Theorem 21.12, o5, tendsto p inthe
weak-star topology. The zeros of B, are

1£(2) = Be(2)] <1 = + (z € D).

vﬁ@=d:%m=

a + log ¢+ 2mma
- m ey,
—a + logc + i2mma
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which clearly cluster at 1 asc¢ — 0. Inthiscase, A # 1, and thus the function

1+ [¢]

ST AN

can be considered as a continuous function on D when we deal with measures
wandop, (atleast for small values of ¢). Hence,

14 14 ¢l
S = agv 47m(¢ _>/1—A<|N (©):
but
14 1 a2
/|1—)\(:N Z |1—)\acm|N
and
1yl
[ e 0 = [ g O

Therefore, the result follows.

If 1 consists of a finite sum of Dirac masses, the result still holds by
induction. Now, we turn to the genera situation. Assume that u is an
arbitrary positive Borel measure on T, fulfilling the above-mentioned growth
restriction. Put

dp(z)
dr(z) = TS vrE
Again, note that 1 cannot have a Dirac mass at 1/, and this property persists
for all measures considered below. The family of discrete measures with finite
number of Dirac masses is dense in M (D). Hence, there is a sequence 7,, of
such measures so that 7,, — 7 inthe weak-star topology of M (ID). Therefore,
for each f € C(D),

/f 1= Az|N dr,(2) —>/f 1= Az|N dr(2) /f )du(z

This means that o,, — p in the weak-star topology of M (D), where o, is
the discrete measure
do(2) = 1= AN dru(z)  (n> 1),

We appeal to the first part and find a Blaschke product B,, such that op, is
close enough to o, in the weak-star topology and also

1+ |2 / 1
— " _dop doy, <
ST En g donl©
The result thus follows. Our choice of B,, also impliesthat o5, — p inthe
weak-star topology of M (D). O
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21.6 Reproducing kernelsfor derivatives

Let H be areproducing kernel of functions that are analytic on the domain
Q. The kernels of evaluation at point z € ) form a two-parameter family of
functions k7t (w), where z and w run through  and k7 (w) is anaytic with
respect to w and conjugate analytic with respect to z. The essential property of
kM (z)is

f(z) = (f, k") (feH, z€ Q). (21.33)

For further information, see Chapter 9.
If we successively take the derivative of f with respect to z, we see that the
evaluation functional f — f(™)(z) isgiven by

f(2) = (f,0"kM[0z")5  (fE€H). (21.34)

But we need to show that 0"k /9z" € H and also that taking the derivative
operator inside the inner product is legitimate. We verify thisfor n = 1. For
higher derivatives, a similar argument works.

For simplicity, write k. for k7. Put 6 = (1 — |z|)/2. Then, for each f € H
and each A with 0 < |A| < §, we have

‘<ﬁkﬁA—@> %{f@+A%—ﬂ@
H

— <
A A <G

z+A
o BRAGL

where Cy isthe maximum of f” on the disk with center » and radius ¢. There-
fore, by the uniform boundedness principle (Theorem 1.19), thereis a constant
C such that

Let g € H beawesak limit of thisfraction as A — 0. Then, on the one hand,
for each f € H we have

(f,g) = iiino <f’ ICZ‘FAA_IQ> — iigow = f'(2).

kz+A - kz

<C  (0<|Al<d).
x < (0 <|A[<9)

On the other hand,

moz@hwﬂm<“”‘hm§

A0 A
T kz+A(o — k. (O ok,
N ilglo A 0z (©-

Inshort, g = 0k, /0Z.
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In the light of relation (21.34), we define the notation
Kk, = 0"kl joz", (21.35)

i.e. the kernel of the evaluation functional of the nth derivative at z € Q. The
relation (21.34) can be rewritten as

FG) = (L) (feH). (21.36)
In the above formula, if we replace f by k%, , we obtain

(k2™ (2) = k213, (21.37)

There are some other formulas for k%, and each has its merits and uses in
applications. We treat some of them bel ow.

For the space 7(b), instead of k?f,(f’) we will write k% . Our first formula
for kl;’n is based on the operator X, (see Section 18.7).

Lemma?21.16 We have
kD, =nl(I — 2X;) "X D
Proof According to Theorem 18.21,
kb= (I —z2X7) 7 kg,

Hence, using the definition (21.35), we get

. _ Ok
z,n azn
8%

= @((I — 2X;)7'k)

=nl(I —zX;) "X,
This compl etes the proof. O

According to Theorem 18.11, the formulafor k% = k!  is

_ 1—b(2)b(w)

b
Fa(w) 1—zw

(z,w € D).

Using Leibniz'srule, by straightforward computations, we obtain

0"k (w) e, (w)
= = (21.39)

K2 (w)

where h? ,, isthe function

n

hY ,(w) =nlw™ —b(w) Y (;‘) b (2)(n — w7 (1 — zw)’. (21.39)

Jj=0
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Lemma21.17 Letzy € D with b(zp) # 0. Then
hgo,n(l/zo) = (hgo,n)/(l/zo) == (hl;o,n)(n)(l/zo) =0.

Proof The functional 21.18 shows that b is analytic in a neighborhood of the
point 1/zy. (If b(z9) = 0, then b has pole at 1/z, of the same order as the
order of b at zy.) Therefore, the formulafor k% (w) shows that thiskernel isa
meromorphic function on |w| > 1 with poles as described above and apossible
pole at 1/z,. However, again by (21.18), we have b(z)b(1/zy) = 1 and thus
the pole is removable. In short, w — k2 (w) is analytic at 1/z,. Therefore,
the same is true for the application w — k2 (w). Respecting this property,
the representation (21.38) implies that % must have a zero of order n + 1

Zo,m

a1/z. O

We finish this section by studying k2, , where B is a Blaschke product

zZ,n?

formed with zeros (a,,),>1. Werecal that, by Theorem 14.7,

1—apz 1—a;z
k=1 k J

J—1 _ 1 12)1/2
hy(2) = (H - ) B oy (g
isan orthonormal basisfor Kz = H(B). Sometimes, we will write

R e = S CER N

where B; isthefinite product formed with thefirst j zeros.

Lemma?21.18 Let B be a Blaschke product with zeros (a,, ), >1. Let z € D.
Then

K2, =S n (2)h.
j=1

The series converges in H2 norm.

Proof Since (h;);>1 forms an orthonormal basis for K, there are coeffi-
cientsc;, j > 1, such that

(oo}

kfn = chhja

j=1

where the series converges in H2 norm. Moreover, thanks to orthonormality,
c; isgiven by

Cj = <kfn7hj>2'
But the formula 21.34 immediately impliesthat ¢; = h{")(2). O
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For a Blaschke product, Xz = S*|Kp and kég = Ppl. Thus, Xj =
PpS = Mgp is the compressed shift on K. Therefore, by Lemma 21.16,

we have
B =nl(I —zMp)~ "D MEPg1. (21.42)

zZmn

Lemma 21.19 Letz, € D and N > 0. Let B be a Blaschke product with
zeros (a,, )n>1. Assume that there are functions f, g € H? such that

N = (1= Z2)V T f(2) + B(2)g(2) (z e D).
Then we have Ppf = kZ /N

0

Proof We write the above equation for f and ¢ as
SN1=(1- 285" f + Bg.
Since Mg isthe compression of .S, if we apply Pg to both sides, we obtain
MY Ppl = (1—zMp)N TPy,
and thus
Ppf=(1-zMp) N"'My Pgl,

and the result follows from (21.42). O

21.7 Aninterpolation problem

There is a close relation between the existence of derivatives of elements of
H(b) at the boundary and the containment of X; "Nk} to the range of (I —
CoX; )N F1. Thisisfully explored in Theorem 21.26. But, to reach that general
result, we need to pave the road by studying some special cases. We start doing
this by considering Blaschke products. First, atechnical lemma.

Lemma21.20 LetS,(S,),>1 € L(H) with the following properties.

(i) Each S, is invertible.

(if) S is injective.
(iii) S, — S in the norm topology.
(iv) There is a constant M such that

IS1S| <M (n>1).

Let y € H. Then (S, 'y),>1 is a bounded sequence in  if and only if y €
R(S). Moreover, if this holds, we actually have S, 'y — S~1y in the weak
topology.
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Proof Assume that (S, 'y),>1 is abounded sequence in . Hence, it has
at least one weak limit point in ‘H. Let x € H be aweak limit point of the
sequence. Since S,, — S in the norm topology, we surely have (at least for a
subsequence) S,,S; 'y — Sx. Therefore, y = Sz, i.e.y € R(S). But, since
S isinjective, the above argument shows that the sequence has precisely one
weak point (if 2 is another weak limit point, we would have y = Sz = Sx’).
In other words, the whole sequence tends weakly to .

To prove the other (easy) direction, assumethat y € R(S),i.e.y = Sz for
somezx € H. Then

1S yll < 1185 Sall < IS5 ST lall < Mlll - (0> 1) 0

The following corollary is a realization of the preceding lemma. The
assumptions are adjusted to fit our application in the study of derivatives
of H(b) functions.

Corollary 21.21 Let Ty, € L(H), (x € Tand A\;,, € D, forn > 1 and
1 < k < p, with the following properties.

(i) Each T} is a contraction.
(ii) Each I — (T}, is one-to-one.
(iii) TpTy = T Ty for k, K € {1,...,p}.
(iv) Foreach k, A, tends nontangentially to ¢ as n — oc.

Let y € H. Then the sequence
(I =T (= A Tp) ™ Y)nz

is uniformly bounded if and only if y belongs to the range of the operator
(I —¢GT)--- (I —¢pTp), inwhich case,

(I =MnT) ™ (=20 Tp) y — (L= GT) - (T = GT) 7y
in the weak topology.
Proof We apply Lemma 21.20 with
Sp=T = pTh) (L= XpnTp)
and
S=—-qT1) (I —GTy).

The only nontrivial property is the boundedness of S, !S. Since T}, are
commuting, it is enough to verify that the sequence

(I = NeonTh) (I = e T%)) 1
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is bounded. But we have
(I = Mo Ti) ™M = G Tl = 1+ Mepn = G )T = A Ti) ™ T
<1+ An = Gl I = A T3) |
<1+ Ao — Gl (1= Apal) ™
<1+ M.

The last estimation holds since A ,, tends nontangentially to (. The result
thus follows. O

In fact, we even need a specia case of Corollary 21.21 in which
Ti=-- =T,

Corollary 21.22 LetT € L£(H) be a contraction, ¢ € Tand (\,,),>1 C D,
with the following properties.

(i) I — (T is one-to-one.
(ii) A, tends nontangentially to ¢ as n — oo.

Let y € H. Then the sequence
(L = AT)PY)n>1

is uniformly bounded if and only if y belongs to the range of the operator
(I —¢T)?, in which case

I =XT)Py — (I =CT)7"
in the weak topology.

Now we are ready to establish the connection between the existence of
boundary derivativesin K5 and an interpolation problem.

Theorem 21.23 Let{ € T, and let N > 0. Let B be a Blaschke product with
zeros (ay)n>1 such that

|an‘
Z a4
Then there are functions f, g € H? such that
N =1V () + B(2)g(2)  (2€D)
with
Ifl2 < C,

where C' = C'(N, A) is a constant.
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Proof According to Lemma 21.18,

K2y =3 ni(2)hy,
j=1
and hence
12,12 =" 5 ()] (21.43)
=1

We rewrite the formulain (21.40) for h; as

h(z) = (1 = fay 2 2D,

1—a;z

Hence, by Leibniz's formula,

—a;)k
h§N)( )= (1= Jay|? 1/22( )B(N B )(11411(%;))“1.

Therefore, by Theorem 21.8 and denoting the constant C'(N, A) of this theo-
remby C,

R Q)] < (1= lag )/ i (N)Ck!
J = J k)7 —ar¢FHT

k=1

N
N
1_|aj| 1/2Z<k>
k=1
N
N
17|aj| 1/2Z<]€>
k=1

N 1—|a| 1/2
_ 2N+1 k!
( C; <k)> = /31

(1~ lay )/
C—ay Ve

2k+1k|
|1 —a;¢|k+!

2N+1k'
[1—a;¢V+t

=

Considering (21.43), we conclude that
k5 yI? <24C?  (0<r<1). (21.44)

The next step is to appea to the formula (21.42) and Corollary 21.22.
Theorem 14.28 ensures that ¢, (Mp) C D, and thus the operator I — (Mg is
injective. Hence, with T = Mp,p = N + 1 and y = M5 Pg1, we see that

https://doi.org/10.1017/CB0O9781139226769.008 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9781139226769.008

21.7 Aninterpolation problem 211

MY Pp1 belongs to the range of (I — (Mp)~N*1. This means that there is a
function f € H? such that

ME Pgl = (I —CMp)NtLy.
Since M isthe compressed shift, we can rewrite the preceding identity as

Pp(z") = Pp((1 = C2)V ).
Hence, 2V —(1-(2)N+1f | Kp,orequivaently 2V —(1—C2)VN 1 f € BH?.
Therefore, thereis g € H? such that

AN — (1 -2V f = Bg.
Finally, Corollary 21.22 also says that
f=-C(Mp) N MY Pl = lim (1 — r(Mp) N1 ME Ppi.
Hence, by (21.42)
f=(—CMp) N MY Pl = % lim &%

and, by (21.44), the latter is uniformly bounded by a constant. O

The above result can be referred to as an interpolation problem since the
equation

2" = (1= C2)f(2) + B(2)g(2)

has asolution if and only if thereisafunction f € H? such that

flan) = ——n

T=Gagr 2D

Since
[e%¢) 2

> (1 - lanl?) < oo,

n=1

if (an)n>1 Was an interpolation sequence, then the function f trivialy exists

(see Section 15.6). The surprising feature of Theorem 21.23 is that it ensures

that a solution, even with an additional growth restriction, always exists.
Theorem 21.23, in asense, is reversible. Indeed, this is the version that we

need in the proof of Theorem 21.26.

f”’”
(1- Ca7L)N+1

Theorem 21.24 Let N > 0. Let B be a Blaschke product with zeros (a,, ), >1.
Assume that there are functions f, g € H? such that

N =(1-22)"*f(2) + B(z)g(z) (2 €D),
with

1\ /2
flescoamd (1-55) <l <L
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where C' > 1 is a constant. Then there is a constant A = A(N, C') such that

Proof Since we appeal to induction, the functions f and g that appear in the
Nth step will be denoted by fx and g . Note that, by Lemma 21.19,

B

. kZ(),N
Ppfy = =2 (21.45)

Case N = 0. By Lemma 21.18,

= Z h;(z0)h
j=1

Hence, by (21.45), our condition || fo||2 < C translates as
> Ihyzo)* < C2.
j=1

We use (21.41) to rewrite this estimation as

a
Z|Bj 1(z0) \2 (L ;LIQ < 2. (21.46)

Wejust need to get rid of | B;_1(zo)|* to establish the result. To do so, just note
that, since BB; is a subproduct of B, we have

Pg. k‘B( )_ kZ7(z) _ 1 _Bj(zO)Bj(Z).

Iz 1 -2z
Hence,
1-— |B(Zo)|2 .
ol =R o) = IR < KPP < O

The restriction 1 — 1/(2C?) < |z|*> < 1 now impliesthat |B;(z0)* > 1/2.
Therefore, from (21.46), we conclude that

|a]\ 2
E < 2C~%.
|1—a 20|12 ~

This settlesthe case N = 0.

Case N > 1. Assume that the result holds for NV — 1. Our assumption is that
there are functions fx, gv € H? such that

= (1= 22) " n(z) + B(z)gn(2) (2 €D) (21.47)
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21.7 Aninterpolation problem 213

with || fx|l2 < C. Write
N
N
1-(1-%2)" == <k)(—20)kzk.
k=1
Multiply by zV—! to get
Y (N
2V = (1 = Zp2) NN - <Z <k)(2 )kzk1>zN.
k=1

Comparing thisto (21.47) written for N — 1 rather than IV gives
AN = (1= Z02)N fv_1(2) + B(2)gn-1(2) (z €D),
where

fra =7 (5 (Vrarr)o - wase

k=1
Hence,

[fn—alls < 1+2VF1C

This means that al the required conditions are fulfilled and we can apply the
induction for N — 1. Thus, thereisaconstant A such that

3 |11__|“”| <A (21.48)

Theorem 21.8 now ensures that B (z9), 0 < k < 2N — 1, exist and are
uniformly bounded by a constant A’, where B, isany subproduct of B.
If wetake NV times the derivative of both sidesin (21.41), we obtain

N IV (—a )Nk
B ) = (= )2 30 (J,D B, (2) (](Vl _?;Nilﬂ (> 1).
k=0 J

We rewrite this as
Nl(=a;)"
(1 —az)N+

N = \N—k
_ (V) 2y1/2 NN\ L) (N = k)(—ay)
=)~ 0 laf) 3 () B ) g e

(21.49)

(1= |a;[*)'/?B;_1(2)
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214 Angular derivatives of #(b) functions

Aswe saw above, for1 < k£ < N,
N N — i\(—a;,)N—F A'N!
‘ <k>B('k)1(Zo)( M(=a)V |

(1—a;z)N At | = |1 —a;z|N k11
A'N12N
=1 —azzolN

Thus, the right-hand side of (21.49) is bounded above by
—la.s]2)1/2
(V) / | N (1 |aj|2)1
|h; ()] + AANN!2 T a0
The left-hand side of (21.49) is bounded below by
N (1L~ ay?)!?
oN+1 |1 — @jZo|N+1

for zeros |a;| > 1/2. Hence, for such j, we have

(L=1a5)? _ w0 ro2n1 (L= a2
~— <2 h AN T
|1 — de()|N+1 - | J (ZO)| + |]. — de()|N
Hence, by Minkowski’s inequality, Lemmas 21.18 and 21.19, and (21.48), we
find
1/2
( y ol > /
jagizya 11 @702

< 9N+1 <i |h(N)(ZO)2)1/2 N A’NZQNH(i 1 —|a |? >1/2
= = j = |1 _ EL]’ZO|2N

< 2NHYED o + A/AN2?NH

< 2NTINT || Ppfn|| + A/ AN22N+L

< NTINIC + A/AN22NTL,

For zeros with |a;| < 1/2,Wehave

Z |aj|2 <4 Z |a‘J| < AA
_ |1—a 2oPN+2 — —ajzo|2N -
laj|<1/2 laj|<1/2
Hence, the result follows. O

21.8 Derivatives of #(b) functions

In Theorem 20.13, we saw the connection between the analytic continuation
of b across a subarc of T, on the one hand, and the analytic continuation of all
functions of 7 (b) across the same subarc, on the other hand. In this section,
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21.8 Derivatives of H(b) functions 215

we treat a similar result. While we are studying the derivative of elementsin
H(b), we are content with the existence of nontangential boundary values.

We begin with a simple lemma, which is a simple exercise from calculus
and isinteresting in its own right. We do not prove it in such agenerality since
in our application even the derivative of order n + m + 1 exists at al points.
However, the proof for the general case is essentially the same.

Lemma 21.25 Let I be an open interval, and let a,b € I. Suppose that the
function h : I — C satisfies the following properties:

(i) hhasn + m continuous derivatives on I;
(ii) A(»*+m+1) is continuous and bounded on I \ {a};

(iii) h(b) = R'(b) =--- = K"~ (b) = 0.
Put
_ h(=) -
k(x) = EOD (xel).

Then k is m + 1 times differentiable on I and, moreover,

1 1
EHD () = / / RPN (b oty ety (2 — D)) u(t) diy - - - diy,
0 0
where v(t) = t}* - - - tE» is some monomial.

Proof Since h(b) = 0, the fundamental theorem of calculus says
' d
h(z) = / L hb + ta(x — )] dty
0 dtl
1
_ (xfb)/ Wb+t (x — b)) di.
0
Applying the same result to the function x — /(b + t1(xz — b)) gives

Wb+t (z — b)) = b ( — b)/O W' (b+ trta(z — b)) dts.

Therefore,
1 1
h(z) = (x—b)z/ / t1h" (b + tita(x — b)) dty dts.
0 0
Continuing this process n times gives
1 1
k(x):/ / N2t A (bt -ty (@ — D)) dty - - dEy,.
0 0

Writem(t) =t} 1572 t, 1.
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216 Angular derivatives of #(b) functions

Since h hasn + m continuous derivatives on T, and A" +™+1) s continuous
and bounded on I \ {a}, thefunction k£ hasm + 1 continuous derivatives on I

and
kD (g / / m(t axm+1 RO (b 4ty -ty (z— b)) dty - - - dby
/ / ORI (b 4ty -t (v — b)) dty - dy,
where v(t) = ¢ttt 2pmdd O

The following result gives a criterion for the existence of the derivatives for
functions of H(b).

Theorem 21.26 Let b be a point in the closed unit ball of H°°(ID) with the
canonical factorization (21.17), let {, € T and let N be a nonnegative integer.
Then the following are equivalent.

(i) Forevery f € H(b), the functions f(2), f'(2), ..., f™N)(2) have finite
limits as = tends radially to (.
(ii) For every f € H(b), the function |f(™)(z)| remains bounded as z tends
radially to (.
(iii) [|k% n |l is bounded on the ray z € [0, (o).
(iv) X;N kb belongs to the range of (I — (o X; )V +1.
(v) We have

1 - Jan? (¢ [ log b(Q)I|
Z|Co—an|2N+2 /KO <‘2N+2 |C0 CPN“ m(C)<oo

Moreover, we have

(I - CoX)V kS, v = NIX;VED, (21.50)
where k2, € #(b) and satisfies

FN(Co) = (f. k2 b (f € HD)).

Proof (i) = (ii) Thisistrivial.

(it) = (iii) In the light of representation (21.36), this implication follows
from the principle of uniform boundedness (Theorem 1.19).

(iii) = (iv) By Lemma 21.16,

Ky = NI —2X5) " N XN g, (21.51)

Theorem 18.26 ensures that o,,(X;7) C D, and thus the operator I — (o X; is
injective. By assumption, (I — 7, X; ) ~(V+D XN kb isuniformly bounded for
any sequence z, € D tending radially to ¢,. Now, we apply Corollary 21.22
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21.8 Derivatives of H(b) functions 217

withT = X, p = N + 1 andy = X; Nk} to conclude that X; ™V k§ belongs
to therange of (1 — (o X; )V 1.
(iv) = (i) Using once more Corollary 21.22, we see that
(I = 2X5) " NVHVXENES — (1 - Gx3) D X Vi

in the weak topology, for any sequence z, € D tending radially to ¢. But
(21.51) says that the left-hand side is precisely (1/N!)k’;mN. Hence, in the
light of (21.36), for every function f in H(b), the Nth derivative V) (z) has
afinite limit as z tends radially to ¢,. Moreover, the linear functional f ——

FMN)(¢) is continuous on H(b) and thus it is induced by a kernel function
k2, n»which should satisfy

0,N

oy — * N 1
(I —CoXy) (NH)Xb kg = NI kl{j

That proves (21.50).
Therest is by induction. We have

_ N /N
r--axp =3 () et
=1
Applying to both sides the function XZ(N_l)kg we get

XD = (1 GV
Z( ) ZX*(K 1)X;Nk0

Hence, X, Y15 belongsto the range of (I — o X;"). The above argument
apph&wnh N replaced by N — 1. We continue this process N times. There-
fore, for every function f in H(b), f¥)(z), 0 < j < N, hasafinite limit as z
tends radially to (.

(v) = (iii) Without loss of generality, we assumethat (, = 1. By Theorem
21.10, the condition (v) implies that

lim 59 (r) and  lim b9 (R)
r—1- R—1t

#(N—

exist and are equal for 0 < j < 2N + 1. Moreover, since b can have only a
finite number of real zeros, we can take 6 > 0 such that theinterval [1 — §,1)
isfree of zeros of b. Therefore, b has 2NV + 1 continuous bounded derivatives
on [l — 4,1+ d]. Now, fix r intheinterval (1 — 0, 1).

We recall that, by (21.38) and (21.39), k0 y(z) = hﬁ’,yN(:r)/(l —rz)Nt,
where ’

N N\ —
hf,N(a:) = Nz —b(x) Z (j )b(j)(r)(N — NN —ra),

=0
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Hence, hf,7 ~ has 2N + 1 continuous bounded derivatives on (1 — 6,1 + §).
Moreover, by Lemma 21.17, we have

N(A/r) = (0 ) (Lfr) == (0,) ™ (1/r) = 0.

We now apply Lemma 21.25 with I = (1 — 6,1+ 46),a = 1,b = 1/r,
n=N+1m=Nandh= hf,,N. Note that

ha) _ hn(@)
(x=b)"  (x—1/r)N+L

= (=) (2).

Thus, the lemma says that (—r)V " (k%)) () isequal to

1 1
/ / (2N+1) (+t1tN+1<x>)’U(t)dt1dtN+1
r T

Since thereisan M such that
(W) () <M (1-6<s<140),
we deduce that
(Ko ) M (@) < M (1-d<a<).
In particular, (k2 )™ (r) isbounded as r —» 1~. But, according to (21.37),
%2 n 1l = (K2 )™ (2).

Thus, ||k2 v ||» remains bounded as - — 1~
(iif) = (v) Again, without loss of generality, assume that (;, = 1. Fix
€ (0,1). Considering the canonical factorization of b, since b isin the closed
unit ball of H>°, we have

1 —la,[? du (<) |10g |b(¢ H
Z |1 — a,r|?N+2 +/1r |r — C|2N+2 o |r— CPN+2 dm(¢) < o0

For simplicity of formulas, denote the left-hand side by A,.. According to
Theorem 21.15, there is a sequence (B, ) ;1 of Blaschke products, with zeros
(ajx)k>1, converging uniformly to b on compact subsets of D and such that

1_|ajk|
Z 11— raj;|>N+2 — 4

asj —» oo. Hence, the formulas (21.38) and (21.39) show that kw v tendsto
kb, n uniformly on compact subsets of . In particular, we must have

lim (k5 )V (w) = (kY 5) N (w).

j—o0
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In the light of (21.37), we can rewrite this identity as
: B;j —
]E}H;O ||kw,NH2 - HkZJ,N”b

The assumption (iii) implies that thereisa C > 0 such that

Ikt nle<C (0<r<1).
Therefore, thereisan index j,. such that

K2l <C+1 (> )
The formulas (21.38) and (21.39) also show that

(1 —r2)V k7 (2) = NN — Bi(2)g5(2),

where g; € H?. Hence, it follows from Theorem 21.24 that there is a constant
A = A(C, N) (independent of r) such that

1— |aj;€\2 . .
> 11— ra,[2NT2 <4 Gz
k

Letting j — oo, we obtain A,. < A for al r € (0,1). Findly, welet r —
1~ toget thedesired condition (v). This completesthe proof of Theorem 21.26.
O

The identity (21.38) provides an explicit formulafor the kernel of the func-
tional for a derivative at the point z € D. Using Theorem 21.26, it is easy
to see that this formula can be extended for the kernel of the functional for a
derivative at the point {, € T that satisfies one of the equivalent conditions
()—(v); see Lemma 22.4.

Theorem 21.26 implies also a sufficient condition for the existence of the
derivatives for functions in the range of a Toeplitz operator with co-analytic
symbol.

Corollary 21.27 Let a be a nonextreme point of the closed unit ball of H°°,
let (o € T, and assume that there is a neighborhood I, of ¢, on T, a constant
¢ > 0and an integer N > 0 such that

a(Ol < el¢ =G (¢ € Iy)

Then every function f € M(a), as well as its derivatives up to order N — 1,
have finite radial limits at (o.

Proof Thanksto Lemma17.3, we can assumethat « isan outer function with
a(0) > 0. Consider the outer function b such that |a|? + |b|> = 1 ae. on T.
Then (a,b) isapair and we have M(a) C H(b). Thusit is sufficient to prove
that every function f € H(b), aswell asitsderivativesup to order N — 1, hasa
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finiteradial limit at (. For this purpose, we may check the sufficient condition
(v) of Theorem 21.26. Since b is outer, this condition is simply

log [b(¢
/ ’| <°g|<02N| m(C) < oo. (21.52)
Pick ¢ € I¢,. Then,
| log [b(¢)|| = [log [b(¢)I?| = | log(1 — [a(O)*)] S 1a(O)F* < 2[¢ — Gol*.

Hence,

log |b |

On the other hand, since b is nonextreme, we have

[og bl .\ -
/nr\zco C= Gy MmO % A\log\b@)\ldm(c) < o0,
which proves (21.52). O

If we combine Theorems 21.1 and 21.26 and Remark 21.2, we get immedi-
ately the following result, which will be useful in Chapter 31.

Corollary 21.28 Let (y € T. Then the following assertions are equivalent:

(i) bhas an angular derivative in the sense of Carathéodory at (o;
(ii) k% belongs to the range of I — (p X

Moreover, in this case, we have (I — (o X;)k? = k.

Notes on Chapter 21
Section 21.1

Theorems 21.1 and 21.4 can be found under different names in the literature,
e.g. the Julia—Carathéodory theorem, the Julia-Wolff—Carathéodory theorem
and even the Julia-Wolff theorem. These results combine some celebrated
results of Julia[111], Carathéodory [40-42] and also Wolff’sboundary version
of the Schwarz lemma [191]. The proof here is due to Sarason [161], who
applied Hilbert space techniques to prove the existence of angular derivatives.
Using the hyperbolic Poincaré metric, P. R. Mercer [132] gave a strengthened
version of Julia’sresult. Potapov [145] extended Julia’s result to matrix-valued
holomorphic mappings of a complex variable. His results were generalized by
Fan and Ando [20, 71-73] to operator-valued holomorphic mappings, and to
holomorphic mappings of proper contractions on the unit Hilbert ball actingin
the sense of functional calculus. Different generalizations of Theorem 21.1 for
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bounded domainsin C™ areknown, e.g. for the unit ball [103, 148, 156], for the
polydisk [3, 110], and for strongly convex and strongly pseudoconvex domains
[1, 2]. Abate and Tauraso [5] used the Kobayashi metric on a bounded domain
in C™ to obtain a generalized version. There are various versions and proofs
of this concept — see for example [40, 59, 95, 115, 132, 161, 173, 175, 192].
For a survey of work in higher dimensions, see [4, 5, 94, 131, 147, 156]. The
proof of the existence and uniqueness of a Denjoy—Wolff point for a function
b in the unit ball of H>° which is not the identity is known as the Denjoy—
Wolff theorem. The proof of thisfact presented in Exercise 21.1.1 istaken from
[166]. Exercise 21.1.2 is taken from Li [118]. The inequalities (21.7), (21.8)
and (21.9) are due to Cowen and Pommerenke [60], who established many
inequalities for fixed points of holomorphic functions. For the proof of these
inequalities, Cowen and Pommerenke used deep complex analysis and some
Grunsky-type inequalities. In his paper, Li employed a new method (which is
presented in Exercise 21.1.2) based on () spaces. This new method not only
provides simpler proofs but also leads to some improvements.

Section 21.2

The connection between angular derivatives and mass points on the boundary
has along history. It can be traced back to Nevanlinna [135]. The connection
between angular derivatives and square summability is due to M. Riesz [153].

Section 21.3

Thecases N = 0 and N = 1 of Theorem 21.8(i) are due to Frostman [83].
Frostman's results were generalized by Cargo [43]. The version presented
here was obtained by Ahern and Clark [10, 11]. In fact, Ahern and Clark
systematically studied the boundary behavior of analytic functions in a series
of papers [7-13]. Some of their results are addressed in this chapter; see also
[44, 45]. The monograph [129] treats a systematic study of this subject.

Section 21.4

A specia case of Theorem 21.10 for N = 0 isgiven in [44] without proof. The
general version was mentioned in [10, 11], again without proof.

Section 21.5

The approximation Theorems 21.12 and 21.15 are taken from [10]. Frostman
shifts, exceptional sets, Lemma 21.13 and Corollary 21.14 were introduced
in[84]. Thisresult has several applications, in particular in Carleson’s proof of
the corona conjecture; see also [108, 109, 130, 133].

https://doi.org/10.1017/CB0O9781139226769.008 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9781139226769.008

222 Angular derivatives of #(b) functions

Section 21.6

The results presented in this section are very general and considered as com-
mon knowledge. For example, Lemmas 21.18 and 21.19 are implicitly used

in[10].

Section 21.7
Lemma 21.20 can be found in [10, 81]. Theorems 21.23 and 21.24 are due to
Ahern and Clark [10].

Section 21.8

In the case where b is an inner function, Helson [100] studied the problem
of analytic continuation across the boundary for functions in the model space
K. Then, still when b is an inner function, Ahern and Clark [8] characterized
those points 2y of R where every function f of K, and all its derivatives up
to order n have aradial limit. These results were generalized in the form of
Theorem 21.26 for an arbitrary element of the closed unit ball by Fricain and
Mashreghi [81]. We also mention that Sarason has obtained another criterion
in terms of the Clark measure 1., associated with b; see following theorem.

Theorem 21.29 (Sarason [166]) Let (y be a point of T and let £ be a non-
negative integer. The following conditions are equivalent.

(i) Each function in #(b) and all its derivatives up to order ¢ have non-
tangential limits at (.
(ii) There is a point A € T such that

/ e — Co| 7272 dpa(e'?) < oo. (21.53)
T

(iii) The last inequality holds for all A € T\ {b(¢o)}-
(iv) Thereisa point A € T such that ) has a point mass at ¢, and

[ e = ol du(e”) < o
T\{z0}

Recently, Bolotnikov and Kheifets [36] gave athird criterion (in some sense
more algebraic) in terms of the Schwarz—Pick matrix. Recall that, if b is a
function in the closed unit ball of H*°, then the matrix P¢'(z), which will be
referred to as to a Schwarz—Pick matrix and defined by

1 07 1—|b(2)2]"

102002 1—1[2> |,

PY(2) :=
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is positive semidefinite for every ¢ > 0 and z € D. One can extend this notion
to boundary points as follows: given apoint ¢, € T, the boundary Schwarz—
Pick matrix is
Pj(¢) = lim Pj(z)  (£>0),
ZZCO

provided this nontangential limit exists; see following theorem.

Theorem 21.30 Let b be a point in the closed unit ball of H°°, let {, € T and
let ¢ be a nonnegative integer. Assume that the boundary Schwarz—Pick matrix
PY((o) exists. Then each function in #(b) and all its derivatives up to order ¢
have nontangential limits at (o.

Further it is shown in [36] that the boundary Schwarz—Pick matrix P (()
existsif and only if
lim dp¢(2) < o0, (21.54)

z—Co
<

where
L 9% 1—1b(2)?
(2 9209z 1 — 2|2~
We should mention that, to date, there is no clear direct connection between
conditions (21.53), (21.54) and condition (v) of Theorem 21.26.

db_’g(z) =
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