AN ELEMENTARY PROBABILISTIC COMPUTATION OF THE POISSON KERNEL FOR THE $n=2$ AND 3 EUCLIDEAN BALL

BY
JACQUES VAUTHIER

Abstract

Direct and elementary derivation of the classical Poisson kernel for the ball in $n=2$ or $n=3$ dimensions starting with the usual expression $\hat{f}(x)=E_{x}\left(f\left(b_{\omega}(T)\right)\right)$ involving the brownian motion b_{ω}, the stopping time T on the boundary, and E_{x} the conditional expectation on paths starting at x.

It came out as a surprise when Peter Greiner told me that no probabilist he knew was able to give him a reference, and neither could I, of where to find the derivation of the classical Poisson kernel in $n=2$ or $n=3$ dimension starting with the usual compact formula

$$
\hat{f}(x)=E_{x}\left(f\left(b_{\omega}(T)\right)\right) .
$$

Here f is given on the boundary of the ball, b_{ω} is the usual brownian motion in $n=2$ or $n=3$ dimension; T stands for the stopping time of b_{ω} on the boundary, E_{x} is the conditional expectation for the paths starting at x.

I want, in this note, to give a direct procedure to find the Poisson kernel. Besides the fun, I hope to emphasize the use of the so called MacKean martingale which has been so accurate in the study of the Pauli's equation [1].

In order to be complete, I shall divide the paper in two: one concerning $n=2$ and the other for $n=3$.
I. The Poisson kernel in $\boldsymbol{n}=2 . D$ is the unit disc, b_{ω} the brownian motion in \mathbb{R}^{2} starting at x_{0} in $D . T_{\omega}$ is the stopping time on the boundary ∂D of D :

$$
T_{\omega}=\inf \left\{t \mid b_{\omega}(t) \in \partial D\right\} .
$$

We shall use polar coordinates which means for the brownian that instead of using the Laplacian

$$
\frac{1}{2} \Delta=\frac{1}{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)
$$

[^0]We shall split it into radial and tangential parts:

$$
\frac{1}{2} \Delta=\underbrace{\frac{1}{2} \frac{\partial^{2}}{\partial r^{2}}+\frac{1}{2 r} \frac{\partial}{\partial r}}_{\text {radial }}+\underbrace{\frac{1}{2 r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}}_{\text {tangential. }}
$$

This gives the polar decomposition of b_{ω} :

$$
b_{\omega} \equiv\left(r_{\omega}, \theta_{\bar{\omega}}\right)
$$

where r_{ω} and $\theta_{\tilde{\omega}}$ are given by the following stochastic equations:

$$
\begin{aligned}
& d r_{\omega}=d \beta_{\omega}+\frac{d s}{r_{\omega}} \\
& d \theta_{\bar{\omega}}=d \beta_{\bar{\omega}} / r_{\omega}
\end{aligned}
$$

$d \beta_{\omega}, d \beta_{\tilde{\omega}}$ are usual brownians on the line $\mathbb{R}, d \beta_{\omega}$ and $d \beta_{\tilde{\omega}}$ being independent. So:

$$
\begin{gathered}
r_{\omega}(t)=r_{0}+\beta_{\omega}(t)+\int_{0}^{t} \frac{d s}{r_{\omega}(s)} \\
\theta_{\tilde{\omega}}(t)=\theta_{0}+\int_{0}^{t} \frac{d \beta_{\tilde{\omega}}(s)}{r_{\omega}(s)}
\end{gathered}
$$

if $x_{0} \equiv\left(r_{0}, \theta_{0}\right)$.
We are now in a position to get the Poisson kernel for D. As we know [3], the so called harmonic measure is the law of the hittings of b_{ω} on ∂D and the solution to the Dirichlet problem is given by

$$
\hat{f}\left(x_{0}\right)=E_{x_{0}}\left(f\left(b_{\omega}\left(T_{\omega}\right)\right)\right)
$$

f is the data on $\partial D, \hat{f}$ the harmonic extension in $D, E_{x_{0}}$ the expectation on the paths starting at x_{0} in D.

Expand f in Fourier series and use the polar coordinates described before for b_{ω} (observe that T_{ω} is a stopping time for r_{ω} and not for $\boldsymbol{\theta}_{\tilde{\omega}}$):

$$
\begin{aligned}
\hat{f}\left(x_{0}\right) & =E_{r_{0}} E_{\theta_{0}} \sum_{-\infty}^{+\infty} a_{n}(f) \exp \text { in } \theta_{\tilde{\omega}}\left(T_{\omega}\right) \\
& =\sum_{-\infty}^{+\infty} a_{n}(f) E_{r_{0}} E_{\theta_{0}} \exp \left\{\operatorname{in}\left(\theta_{0}+\int_{0}^{T_{\omega}} \frac{d \beta_{\tilde{\omega}}}{r_{\omega}}\right)\right\} \\
& =\sum_{-\infty}^{+\infty} a_{n}(f) \exp \text { in } \theta_{0} E_{r_{0}} E_{\theta_{0}}\left\{\exp \left(\text { in } \int_{0}^{T_{\omega}} \frac{d \beta_{\tilde{\omega}}}{r_{\omega}}\right)\right\} .
\end{aligned}
$$

Here we use the main tool in this subject: the MacKean martingale which gives

$$
E_{\theta_{0}}\left(\exp \text { in } \int_{0}^{T_{\omega}} \frac{d \beta_{\bar{\omega}}}{r_{\omega}}\right)=\exp -\frac{n^{2}}{2} \int_{0}^{T_{\omega}} \frac{d s}{r_{\omega}^{2}}
$$

because r_{ω} is independent from $\beta_{\bar{\omega}}$ and appears here as a sure function of $\tilde{\omega}([3]$ p. 22).

Then

$$
\Psi(r)=E_{r}\left(\exp -\frac{n^{2}}{2} \int_{0}^{T_{\omega}} \frac{d s}{r_{\omega}^{2}}\right)
$$

is the solution to the following differential equation:

$$
\left\{\begin{array}{l}
\frac{1}{2} \Psi^{\prime \prime}+\frac{1}{2 r} \Psi^{\prime}-\frac{n^{2}}{2 r^{2}} \Psi=0 \\
\Psi(0)=0, \quad \Psi(1)=1
\end{array}\right.
$$

It is very easy to solve it and find

$$
\Psi(r)=r^{|n|} .
$$

So

$$
\hat{f}\left(x_{0}\right)=\sum_{-\infty}^{+\infty} a_{n}(f) e^{\operatorname{in} \theta_{0}} r_{0}^{|n|}
$$

but

$$
a_{n}(f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\phi) e^{-i n \phi} d \phi
$$

therefore

$$
\begin{aligned}
& \hat{f}\left(x_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{-\infty}^{+\infty} e^{\operatorname{in}\left(\theta_{0}-\phi\right)} r_{0}^{|n|} f(\phi) d \phi \\
&=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1-r_{0}^{2}}{1-2 r_{0} \cos \left(\theta_{0}-\phi\right)+r_{0}^{2}} f(\phi) d \phi
\end{aligned}
$$

and here is the Poisson kernel.
II. The Poisson kernel in $\boldsymbol{n}=3$. In $n=3$ the method though not very different is slightly more complicated, the system $\left\{e^{i n} \theta\right\}$ being replaced by spherical harmonics. Namely, any L^{2} function on the sphere Σ is the L^{2} limit of

$$
\sum_{0}^{\infty} \tau^{n} c_{n} \int_{\Sigma} P_{n}(\vec{\xi} \cdot \vec{\eta}) f(\vec{\eta}) d \sigma_{\vec{\eta}}
$$

when $\tau \rightarrow 1^{-} . P_{n}$ is the usual Legendre polynomial, c_{n} is a constant depending only on n. If f is continuous, the convergence is uniform and one can write

$$
f(x)=\sum_{0}^{+\infty} c_{n} \int_{0}^{\pi} \int_{-\pi}^{+\pi} P_{n}(\cos \gamma) f(\alpha, \beta) \sin \alpha d \alpha d \beta
$$

α is the colatitude, β the longitude and $\cos \gamma$ is computed according to the rule with $x \equiv(\theta, \phi)$,

$$
\cos \gamma=\cos \theta \cos \alpha+\sin \theta \sin \alpha \cos (\beta-\phi) .
$$

The Legendre's polynomial has a remarkable addition property if one introduces the $A_{n, j}(t)$, associated Legendre functions, which are up to a coefficient

$$
\left.\left[\sqrt{\left(\frac{(n-j)!}{n!}\right.} \frac{\Gamma(n+1)}{\Gamma(n+j+3)} c_{n}\right)\right]:\left(1-t^{2}\right)^{i / 2} \frac{d^{j}}{d t^{j}} P_{n}(t)
$$

Namely, one has:

$$
c_{n} P_{n}(\cos \gamma)=\frac{1}{2 \pi} \sum_{0}^{n} A_{n, j}(\cos \alpha) A_{n, j}(\cos \theta) \cos j(\beta-\phi)
$$

I shall proceed now to the probabilistic frame: We introduce radial (r), colatitude (θ) and longitude (ϕ) coordinates for x in the unit ball B. T_{ω} is the hitting time for the brownian traveller starting at $x_{0} \equiv\left(r_{0}, \theta_{0}, \phi_{0}\right)$ on the sphere Σ. The splitting of the Laplacian in spherical coordinates

$$
\frac{1}{2} \Delta=\left[\frac{1}{2} \frac{\partial^{2}}{\partial r^{2}}+\frac{2}{2 r} \frac{\partial}{\partial r}\right]+\left[\frac{1}{2 r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{\operatorname{cotan} \theta}{2 r^{2}} \frac{\partial}{\partial \theta}\right]+\left[\frac{1}{2 r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right]
$$

gives the following

$$
\begin{aligned}
& d \phi_{\omega_{1}}=\frac{d \beta_{\omega_{1}}}{r \sin \theta} \\
& d \theta_{\omega_{2}}=\frac{d \beta_{\omega_{2}}}{r}+\frac{\operatorname{cotan} \theta_{\omega_{2}}}{2 r^{2}} d s \\
& d r_{\omega_{3}}=d \beta_{\omega_{3}}+\frac{d s}{2 r_{\omega_{3}}}
\end{aligned}
$$

with $\beta_{\omega_{1}}, \beta_{\omega_{2}}, \beta_{\omega_{3}}$ three independent browian motions on the line.
For the sake of better clarity, I shall divide the subsequent computations into three lemmas which consist in the computation of $E_{\phi}, E_{\theta}, E_{r}$ respectively in the following formula

$$
\hat{f}\left(x_{0}\right)=\hat{f}\left(r_{0}, \theta_{0}, \phi_{0}\right)=E_{r_{0}} E_{\theta_{0}} E_{\phi_{0}}\left[f\left(b_{\omega}\left(T_{\omega}\right)\right)\right]
$$

expressing the solution of the Dirichlet kernel given f on the boundary Σ.
Lemma 1.

$$
E_{\phi_{0}}\left[\cos j\left(\beta-\phi_{\omega_{1}}\left(T_{\omega}\right)\right)\right]=\exp \left(-\frac{j^{2}}{2} \int_{0}^{T_{\omega}} \frac{d s}{r_{\omega_{3}}^{2} \sin ^{2} \theta_{\omega_{2}}}\right) \cos j\left(\beta-\phi_{0}\right)
$$

Proof.

$$
\begin{aligned}
\cos j\left(\beta-\phi_{\omega_{1}}\left(T_{\omega}\right)\right)= & \frac{1}{2}\left[\exp (i j \beta) \exp \left(-i j \phi_{\omega_{1}}\right)\right. \\
& \left.+\exp (-i j \beta) \exp \left(+i j \phi_{\omega_{1}}\right)\right] .
\end{aligned}
$$

By MacKean's martingale, one has

$$
E_{\phi_{0}}\left(\exp \pm i j \phi_{\omega_{1}}\left(T_{\omega}\right)\right)=\exp \left(-\frac{j^{2}}{2} \int_{0}^{T_{\omega}} \frac{d s}{r^{2} \sin ^{2} \theta}\right) \times \exp \left(\pm i j \phi_{0}\right)
$$

and this gives Lemma 1.
Lemma 2.

$$
\begin{aligned}
E_{\theta_{0}}\left[A_{n_{1 j}}\left(\cos \theta_{\omega_{2}}\right) \exp -\frac{j^{2}}{2} \int_{0}^{T_{\omega}}\right. & \left.\frac{d s}{r^{2} \sin ^{2} \theta}\right] \\
& =(2 n+1) A_{n_{1 j}}\left(\cos \theta_{0}\right) \exp \left(-\frac{n(n+1)}{2} \int_{0}^{T_{\omega}} \frac{d s}{r_{\omega}^{2}}\right) .
\end{aligned}
$$

Proof. Recall that T_{ω} depends only on r_{ω}, so in the preceding equality T_{ω} is fixed.

The fundamental solution for

$$
\frac{\partial \psi}{\partial t}=\frac{1}{2 r_{\omega}^{2}} \frac{\partial^{2} \psi}{\partial \theta^{2}}+\frac{\operatorname{cotan}^{2} \theta}{2 r_{\omega}^{2}} \frac{\partial \psi}{\partial \theta}-\frac{j^{2}}{2 r_{\omega}^{2} \sin ^{2} \theta} \Psi
$$

is given by Paul Levy in his famous book on brownian motion [2]:

$$
\Psi(t, \theta)=\sum_{p=0}^{+\infty}(2 p+1) \exp \left(-p(p+1) \int_{0}^{t} \frac{d s}{2 r_{\omega}^{2}}\right) A_{p, j}(\cos \theta)
$$

So the left hand side to the above equality is given by

$$
\begin{aligned}
A_{n, j}\left(\cos \theta_{0}\right) \int_{0}^{\pi} \sum_{p=0}^{+\infty}(2 p+1) \exp \left(-p(p+1) \int_{0}^{T_{\omega}}\right. & \left.\frac{d s}{2 r_{\omega}^{2}}\right) \times \cdots \\
& \times A_{p, j}(\cos \alpha) A_{n, j}(\cos \alpha) \sin \alpha d \alpha
\end{aligned}
$$

But the $A_{p, j}$ are orthogonal so $\int_{0}^{\pi} A_{p, j} A_{n, j} \sin \alpha d \alpha$ is null unless $n=p$ for which it equals 1 . This gives Lemma 2.

Lemma 3.

$$
E_{r_{0}}\left(\exp -\frac{n(n+1)}{2} \int_{0}^{T} \frac{d s}{r_{\omega}^{2}}\right)=r_{0}^{n}, \quad n \geq 0
$$

Proof. Same as in dimension 2, now with the equation

$$
\left\{\begin{array}{l}
\frac{1}{2} y^{\prime \prime}+\frac{1}{r} y^{\prime}-\frac{n(n+1)}{2 r^{2}} y=0 \\
y(0)=0, \quad y(1)=1 .
\end{array}\right.
$$

Summing up Lemmas 1 to 3 :
Proposition:

$$
\begin{aligned}
E_{r_{0}} E_{\theta_{0}} E_{\phi_{0}} A_{n, j}\left(\cos \theta_{\omega_{2}}\left(T_{\omega}\right)\right) \cos j\left(\beta-\phi_{\omega_{1}}\right. & \left.\left(T_{\omega}\right)\right) \\
& =(2 n+1) r_{0}^{n} A_{n, j}\left(\cos \theta_{0}\right) \cos j\left(\beta-\phi_{0}\right)
\end{aligned}
$$

But now this gives

$$
\hat{f}\left(r_{0}, \theta_{0} ; \phi_{0}\right)=\sum_{n \geq 0}(2 n+1) r^{n} \int_{0}^{\pi} \int_{-\pi}^{+\pi} P_{n}(\cos \gamma) f(\alpha, \beta) \sin \alpha d \alpha d \beta
$$

with $\cos \gamma=\cos \theta \cos \alpha+\sin \theta \sin \alpha \cos (\beta-\phi)$. The Poisson's kernel is

$$
\sum_{n \geq 0}(2 n+1) r^{n} P_{n}(\cos \gamma)=\frac{1-r^{2}}{\left(1-2 r \cos \gamma+r^{2}\right)^{3 / 2}} \cdot \quad \text { cqfd. }
$$

Question. Is it possible to do the same thing for the Heisenberg group? This will answer a question raised in [4].

Bibliography

1. B. Gaveau and J. Vauthier, Integrales oscillantes stochastiques: L'equation de Pauli, Journal of Functional Analysis 44 (1981), pp. 388-400.
2. P. Levy, Le mouvement Brownien, Gauthier-Villars, Paris (1954).
3. H. P. MacKean, Stochastic integrals, Academic Press (1969).
4. P. Greiner, Special harmonics on the Heisenberg group, Canadian Mathematical Bulletin Vol. 23 (1980), pp. 383-393.

Department of Mathematics,
University of Toronto,
Toronto, Canada,
M5S 1A1.

[^0]: Received by the editors May 6, 1983.
 AMS Subject Classification: 60J45, 60 J 65.
 Key words: Poisson kernels, Brownian motion, Martingale.
 (C) Canadian Mathematical Society, 1984.

