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INCLUSION THEOREMS FOR FX-SPACES 

JOHANN BOOS 

1. Introduction. The main result of this paper is Theorem 1 (in 
connection with Corollary 1 (e) ), which says that the implication 

(*) Y n wE c F=>Y n WE c wF 

holds for every separable FAT-space F, for every FK-space E containing <p 
and for certain (for example, solid) FK-A B-spaces Y. At this, <p denotes the 
space of all finite sequences and WE is the set of all elements of E being 
weakly sectionally convergent. 

This result was proved by Bennett and Kalton ( [1] and [3] ) in the 
special case that E contains all null sequences and that Y is the space m of 
all bounded sequences or the space of all sequences almost converging to 
zero. Also (*) was proved by Snyder [10] in case of a semiconservative 
FAT-space E containing a BK-AK-space K0 with <p = KQ and in case of a 
sequence space Y with K0 c Y c M(K0) where M(Y) has a "gliding 
humps property" and M(X) denotes the set of all factor sequences from X 
into X. 

If E and F are the convergence domains of matrices A and B, 
respectively, then the implication (*) is a result of Leiger and the author 
[5]. This theorem of Mazur-Orlicz-type has as corollary a general 
consistency theorem, which includes the well known bounded consistency 
theorem of Mazur and Orlicz. 

2. Notation and preliminaries. As usual <o, m, f0, c, c0 and <p denote the 
vector space of all complex (or real) sequences 

x = (xk) = (xk)k^N> 

the space of all bounded sequences, of all sequences almost converging to 
zero, of all convergent sequences, of all null sequences and of all finite 
sequences, respectively. 

For fixed /?, 1 ^ p < oo, let 

p := | x = W l E f e r < o o ) , / : = Z1 

and for fixed [i = (fxk), 0 < [ik (k e N), let 
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1 x = (**) il — I e m J (ju-bounded sequences), 

| x = ( ^ ) l ( - ) e c 0 j and C 

^ '•= ix = (xk)\ (nkxk) e / } . 

If p = (pk) e m and 0 < pk (k e N), then the following notations will 
be used: 

c0(/>) : = {x = (xA) | ( \xk\
px) e c0} and 

m( />) := {* = ( * * ) ! ( |x, | f t) e m } . 

Furthermore, we consider the sequence spaces 

bv := \x = ( ^ ) | |U||6v := Ixjl + 2 I** ~ xk + \\ < °°j> 

8 : = {x = (**) lïhnUJ17* = 0} 

= c°\ \ I ) ( e n t^ r e sequences), 

Ur:= {* = (x,)|ïhn"|x,|1// : ^ j (r > 0) 

and 

\D\ : = { x = (**) | sup 2 \dnkxk\ < oo > 
V n k J 

(absolute-D-bounded sequences) 

in case of a matrix D = (<^). Let e : = (1, 1, . . . ) and ek : = (0, . . . , 0, 1, 
0, . . . ), where " 1 " is in the k-th position. For fixed x = (xk) e co and 
n e N, the w-//z section of x is 

/? 

* W := 2 **<?* = (*! , . . . , *„ , 0, . . . ) • 

For a sequence space £ we put 

= l y Œ co| V x e £": 2 j ^ ^ exists / (/?-dual of £ ) 
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and 

M(E) : = {y e w | V x e F: ( x ^ ) G F } 

(factor sequences from £ into 2s). 

Provided that m c M(E) then F is solid. 
A locally convex sequence space is called K-space if the coordinate 

functional x = (xk) -* *• is continuous for each y e N. A e s p a c e F being 
also a Fréchet space is called FK-space; if the topology is normable, then 
F is called BK-space. If (F, F) is a dual pair then o(E, F) and T(E, F) 
denote the weak topology and the Mackey topology, respectively. In case 
of a sequence space E and F : = we consider the natural bilinear 
form. 

For a fixed AT-space E with <p c E we consider distinguished subsets 
of F: 

LE := {x ^ E\ {x[n]\n G N} is bounded in F } 

(sectionally bounded sequences), 

^E := 1 * G ^ I 2 *kf(e ) ex i s t s f°r e a c n / e ^' 
v * 

(sequences with functionally convergent sections), 

P^; : = {x e F \x[n] -> x(a(£, F') ) } 

(sequences with weakly convergent sections), 

SE:= {x ^ E \x[n] -* xinE} 

(sectionally convergent sequences). 
Obviously <p c SE c P^ c F £ c L £ holds for every 2T-space E with 

9 c E. An 2^-v42?-space (2?AT-.42?-space) and an FK-A K- space 
(2?AT-.4A^space) is an FAT-space (2?ÂT-space) F satisfying E — LE and 
E = SE, respectively. It is well known that each special sequence space, 
introduced above, is an FK-AB-space. An FAT-space F, containing <p © (e), 
is called conull, if e e W .̂ 

Let 

5 = (***) = ( U f l , J t G N 

(with coefficients in C). We put 

cB : = | x e c o | 2 ? . x : = l 2 ^ A ^ ) G N exists and Bx e c 

( (convergence) domain of 5 ) and 

lim^x : = lim Bx for each x e CB. 
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Obviously <p c cB holds if and only if each column of B is convergent. In 
this case 

bk : = lim bnk 
n 

denotes the limit of the k-th column of B. Two matrices A and B are called 
consistent on M, M c cA n cB, if lim^ x = lim5 x holds for each x e M. 
Furthermore we use the following notations: 

7g : = | * e eg | 2 bkxk exists j 

A^:/5 —» C, x —> A 5 (JC) : = lim5 x — 2 ^ ' A and 

Ai := {* e /f l| A5(x) = 0}. 
It is well known, that cB is an FX-space, and we write LB, FB, WB and SB 

instead of Lr , R , W". and S,. , respectively. The inclusions 

<p a WB = Aj n LB ^ RB = IB n LB a LB 

were proved by Wilansky [12] in case of c c cB, and they are also true in 
the general case <p c cB ( [13] ). 

If E is a vector space and M is a subset of E, then conv M denotes the 
convex hull of M in E and MT = M denotes the closure of M relative to a 
topology T on E. 

In the following an index sequence is a sequence (kv) in N with 
*„ < kv+x (v e N). 

3. Main result and corollaries. First of all we formulate the main result 
of this paper, then we draw some corollaries and discuss some special 
cases of this result and its corollaries. Furthermore we make some remarks 
on the bibliography. 

The proof of the main result will be given in the next section. To 
formulate the main result we need a special class <̂ * of "factor sequences" 
motivated by the proof of Theorem 1. 

Definition. Let y = (yk) Œ co, then, by definition, y e <?* if 

(yk ~ Jfc + i) e Co and yk ^ 0 (k e N) 

and there exist two index sequences (k ) and (kf) with the following 
properties: 

(i) k*<kJ<kf+x (j e N), 

(0 if *2/i_, <k^ k% 

l l i f f c 2 M < * ^ ^ + 1 
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(iii) yk^yn itk^<k^n^ fc2/i (/i G N) and 

(iv) yn ^ ^ if /c2*/i+1 < /c ^ n ^ fc2/l+1 (/x G N). 

THEOREM 1. Le/ £ be an FK-space containing <p, and let Y be an 
FK-AB-space such that $* c M(Y). Then the implication 

Y n wEacB^Yn WE<z wB 

holds for every matrix B. 

Proof. A proof of this result will be given in the next section. 

With the following remark we demonstrate that the condition "<f * c 
M(Y)" is fulfilled by the elements of a large class of FK-AB-spaces Y. 

Remarks 1. (a) By definition, every solid sequence space Y satisfies the 
condition é>* c M(Y); for example this is true if Y equals <o, ra, c0, lp 

(1 ^ p < oo) or mM, c0/i, /̂  (ji = O^X 0 < /x* (fc e N) ) or /(/?), 
c0(/>), w(/7) (/? - (f t) e m with ft > 0 (fc G N) ) or 8 or II r (r > 0) or 
\D\ (in case of a matrix /)). All these special sequence spaces are 
FK-AB-spaces. 

(b) The Fi^-v45-space y : = f0 is not solid, but g* c M(/0) is true 
because every y e $* satisfies 

(Jfc -Jfc + i) G c0 

( [7], Theorem 5). 

An immediate consequence of Theorem 1 and a result of Bennett and 
Kalton ( [2], Theorem 5) is the following corollary which for example says 
that the /?-dual of Y n WE is weakly sequentially complete (if Y and E 
satisfy the assumptions in Theorem 1). 

COROLLARY 1. Let E be an FK-space containing cp, let Y be an 
FK~AB-space such that ê* c M(Y), and let X : = Y n WE. Then each of 
the following {equivalent) conditions is true: 

(a) (X", o(X^, X) ) is sequentially complete; 
(b) if (F, T) is a separable FK-space and 

T:(X, T(X, XP) ) -> (F, T) 

w # linear mapping with closed graph, then T is continuous. 
(c) Every matrix mapping from (X, T(X, X^) ) into any separable FK-space 

is continuous. 
(d) If(F, T) is any separable FK-space containing Y Pi WE then T induces 

on Y O W^ 0 weaker topology than r(X, X^). 
(e) For eac/z separable FK-space F the implication 

Y n WE a F=> Y n WE a WF 

holds. 
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(f) For any matrix B the implication 

Y n wE c cB => Y n wE c wB 

is true. 

We use the next remarks to point out some known special cases of 
Theorem 1, and to enter into similar results of the bibliography. 

Remarks 2. (a) In case of an FK-space E with c0 c E and in case 
Y : = m and Y : = f0, respectively, Theorem 1 was proved by Bennett and 
Kalton ( [1], Theorem 16, and [3], Theorem 9, respectively). The 
assumption "c0 c £"' is a decisive factor for the proofs of Bennett and 
Kalton. 

(b) Snyder ( [10], Theorem 9) proved a general result similar to Theorem 
1, but with certain assumptions on Y and E\ Let K0 be a semiconservative 
BK-AK-space such that <p is dense in ^ 5 and K0 c M(K0), let Y be a 
sequence space such that K0 c Y c M(K0) is fulfilled and such that M(Y) 
has a "gliding humps property". Then the implication 

Y n wE c cB =» Y n wE c wB 

holds for each matrix B and any FAT-space E containing K0. 

(c) Leiger and the author ( [5], Satz 1) proved Theorem 1 in the case 
<p a E := cA and S c M(Y\ where A is an infinite matrix and <f is a 
special class of sequences with S c <f*. We remark that the usual 
F^45-spaces Y satisfy <?* c M(7 ) if ê c M( Y). 

To point out the significance of the result in Remark 2 (c) we formulate 
this theorem and some of its applications as corollaries of Theorem 1. 

COROLLARY 2 (see [5], Satz 1). Let A be a matrix with <p c c^, and let Y 
be an FK-AB-space such that S* c M(Y). Then the implication 

Y n WA c cB >̂ Y n WA c wB 

is true for every matrix B. 

Since WA has codimension 1 in FA the following consistency theorem is 
an immediate consequence of Corollary 2. 

COROLLARY 3 (see [5], Folgerung 2). Let Y be an FK-AB-space with 
£* c M( Y), and let A, B be matrices with <p a Y n FA a cB. If 

u G {0} U (Y n FA\WA) 

is chosen such that 

Y n FA =(Y n wA)®(u), 

then the consistency of A and B on <p © (u) implies the consistency on 
Yn FA. 
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Remarks 3. If Y : = m and A is a coregular (conservative) matrix, then in 
Corollary 3 we can choose u : = e and thus Corollary 3 is the well known 
bounded consistency theorem of Mazur-Orlicz-Brudno (see [8] and [9], 
Theorem 2, and [6], Satz 1). [In this case m n FA = m C\ cA holds, and 
A, B are consistent on c if and only if they are consistent on<p© (^)) 

If A is coregular and Y := |v4| n |2?|, Corollary 3 is the consistency 
theorem of Volkov ( [11], Satz 1). 

Furthermore Corollary 3 was proved by the author in case of Y : = co 
and a coregular matrix A. 

Section 2 of [5] contains more details about consequences of Corollary 2 
and 3 and about the bibliography. 

4. Proof of the main result. We prepare the proof of Theorem 1 by three 
lemmas. The first of them says that every x G WE, E an FAT-space, can be 
approximated by modificated sections of x. In case x : = e e WE this can 
be illustrated as follows: e can be approximated by sequences in <p which 
first equal 1 and then they decrease to 0 in finitely many steps, where the 
minimal length and the maximal height of the steps can be chosen. 

LEMMA 1. Let (E, T) be an FK-space containing <JP, let !! be aparanorm on 
E providing T, and let (T]V) be an index sequence. If x G WE, then 

x G conv{x[l]v] 1 v G N}T 

and there exists a sequence (x^) of convex combinations 

(1) *<'>:= 2 fV„*W 

v=sr 

sn tr G N with sr < tn 

1 tr \ 

r + 1 *>=.?,. 7 

of sections of x such that 

(2) ;c(r) -> JC /« (F, T). 

Proof. Because oï x ^ WE the sequence (JC )̂, and hence (.x™), is 
a(E, Er)-convergent to x. Thereby 

x G conv{jc[7?"] | P ^ /?}T 

holds for every p G N. Therefore we can choose inductively a sequence 
( z ^ ) in 

conv{x^ | v G N} 
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such that 

\Z{U) - x\ < - (H €E N ) 

n 

and z^n) has a representation 
HA i 

z"" = 2 \J^ 
V = V 

n 

[vn> wn G N with n^vn^wn< vw + 1, 

0 ^ A „ ^ 1, XWW|i ^ 0 and 2 A„„ = 1 1. 

A straightforward calculation shows that (x(r)), defined by 

1 (l/2)(r+l)(r + 2) 

x(r) : = — Î — 2 z(w) (r e N), 
r -f 1 «=( l /2) r ( r+l ) + l 

satisfies the conditions (1) and (2). 
The next lemma is due to Snyder [10] and can be used to modify 

sequences x e WE by certain factor sequences y such that yx e W£:. 

LEMMA 2. Le/ 2s Z>e ATI FK-space containing <p tf/?<2 to (y ) be aw /Wex 
sequence with yj = 1. Furthermore let y — (yk) e oo aft<2 

such that 

sup H/^Hfc, < oo. 
J 

Then for each x e WE the condition 

oo 

yx & E and yx = ^ y 7 ) x /« (£", a(£', 2s') ) 
2 = 1 

implies yx e H^. 

Proof. The proof of this result is quite similar to that of Lemma 3 in [10] 
and will be left to the reader. 

LEMMA 3. Let (2s, T) Z?e a conull FK-space containing <p, and let D be a 
matrix with tp © (e) c c^, that is, the limits 
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d : = lim 2 dnk and dk : = lim dnk (k e N) 
n k = \ n 

exist. If there is a subsequence of(2tk==] dk) converging to a limit unequal 
to d, then there exists an element y = (yk) e <̂ * such that y e WE and 

y & CD-
Proof. First, we choose an a e K and an index sequence (T]V) such 

that 

a ¥= d and a = lim 2 dk. 
v k = \ 

Without loss of generality we may assume that 

(3) 2 dk 
k=i)v+\ 

< 2~v (*>, /x G N). 

According to Lemma 1 (in case of x : = e) we choose a sequence (x{r)) in 
conv{<?^ | v G N} such that 

(4) jc(r) - » e in (£ , T) 

and 

(5) *<'> = 2 Mn J7?,] 

sr, /r G N with sr < /r < s r + 1 , 

1 tr \ 
0 ë [Lrv ^ ——-, /ir, ^ 0 and 2 Mr„ = 1 )• 

Now we construct inductively index sequences (£•), («•), (r•) and (&.*)• 
Let a- : = 2~7 (7 G N) and k* := kx : = 1, and let ! ! be a paranorm 

providing the FAT topology T of E. Because of <p c cD we may choose a 
positive integer Wj such that 

2 !</„,* 
A = l 

K,i - d\\ < «i-

Furthermore, by (4) and e e CD we may choose a positive integer ^ such 
that 

\x{r) _ ^ r + zi), < ( / . ^ r j a n d ^ G N ) 

and 
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V + jl 

! 2 dnk\ < a2 (« = /il9 f = r]5 and \x G N). 

We assume that k*__}J k._,, « _j and r _! have been chosen. Then we 
put 

(6) kf : = r)s and k : = TJ, . 

Especially 

(7) kf_x <kj_x <kf<kj 

is valid (compare (5) ). Because of <p c cD we may take « > w-_j such 
that 

(8) 2 14,* " </*l < «,-. 

Furthermore, by (4) and e G cD, we may choose r- > r7_j so that 

(9) !x(r) - x ( r+M)! < «,-+, (r ^ r} and ju G N) 

and 

(10) 
P + jU, 

£ = *> 

< Û ' - + 1 (« ^ «•, *> i? i]5 and ju G N). 

Now we define 

(11) yU) := x(r2j) - x(r2j-ù (j e N ) 

and 

oo 

(12) v := 2a y"j) (pointwise sum). 
7 = 1 

The sequences _y and y^ have the following properties: 

(13) yW = 0 (k ^k%OTk>k2j+x) 

and 

(14) ^ » = 1 (k2j <k^ k%.+ l) 

because of (6), (11) and (5), 

f0, if 
<l5> " M , . , , 
because of (13), (14) and (12), 

* 2 „_ , < k =i k^ 

1, if *2„ < * = £ * $ , + , 
(M G N) 
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(16) \\yU)\\hv^ 2 (y e N), 0 ^ yk tk 1 (k 

(y/c ~ yk + ù G ô and^ G ^* 

because of (5), (13), (14) and (15). 
Furthermore, by (9), the sequence 

N), 

(I, H.™ 
is a Cauchy sequence in (E, T), and therefore y e £ since £ is complete 
and j ; is the pointwise sum of 2 ; .y^ (see (12) ). 

Applying Lemma 2 we still have to verify y £ cD. Obviously, we may 
assume that 2 ^ dnkyk exists for each n e N. We prove the divergence of 

( 2 dnjkyk)jeN. 

First of all we establish that 

p : = lim 2 d^y* 
" A: = 1 

exists; this is easy to check by condition (3) because 

yk = y? (% < k = M = ^ + i ) 

holds for every v e N. 
For each y G N we put 

^/*+i 

4 : = 2 d kyk, Bj\= 2 J A^ and 
A:=l * = £ , - + l 

CJ- 2 4^. 
*=*;+,+ 1 

Let j be an odd, positive integer, that is j : = 2JU — 1 for a certain 
/A e N. 

Then the following statements are true: 

*2„-i = « (M > 1) 

(because of (14) ) and 

oo 

ic2,_,l â 2 2 à kyk 

(see (15)) 
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< 2 2 «2̂  

(because of (6), (10) and (16) ) 

—> 0 (JU, —» oo) 

and 

^ 2 / x - l 

1 2 / i - l P = lim 2 ^AJA 
/A A = l 

because of (put n : = «2„_i) 

* 2 J L I - 1 - J B I 

A: = 1 ' A = 1 

* 2 j u - l + 2 «„ 

(see (8) and (3) ) 

—> 0 (jLt —> OO). 

Consequently we have demonstrated 

oo 

(17) 2 d„kyk->p ( M - o o ) . 
A = l 

" 2 M - 1 

Now let 7 be an even, positive integer, that is j : = 2ju for a certain 
JLt G N . 

The statements 

C2il -* 0 (/i G N) and .42w -> 0 (/x -> oo) 

may be proved similar to the case "y : = 2/x — 1". 
Furthermore we have 

* 2 , 2 . <„ 
A=A2 / 1+1 

(see (15) ) and consequently 

B2lx-> d - a (/i -» oo), 

because in (put « : = n2lJ) 
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K2p+\ 

dnk 

( OO l<2fi \ kip OO 

2 dnk - 2 dk\ - S (^ - dk) - 2 <A 
Z- = 1 £- = 1 / l = \ L=L* . . -4-1 

the first term converges to J — a and the second and third term converge 
to 0 because of (8) and (10), respectively. Hence we have verified 

OO 

(18) 2 dnkyk^P + d- a 0i->oo). 
k = \ M 

Because of d — a ^ 0 the statements (17) and (18) imply Dy £ c, that is 
y £ cD. This completes the proof of Lemma 3. 

Proof of Theorem 1. Theorem 1 is established if we prove the following 
implications: 

(i) Y n WE ^ cB => Y n WE a LB. 

(ii) Y O WE c cB =» Y n ^ c IB (thus Y n WE: c FB). 

(iii) y n ^ c / ^ ^ r n ^ c A ^ (thus 7 n ^ c wB). 

The first statement is contained in [5], Satz 2. We are going to reduce the 
conditions (ii) and (iii) to Lemma 3. 

(ii) Let Y n WE c c5, thus 7 n W£ c LB by (i), but 

y n wE t iB. 

Consequently we may choose a m G Y n Jf̂  so that x € /#, and we may 
assume xk ¥- 0 for each A: e N without loss of generality. Therefore we 
define 

z = (zk) : = ( - ) and D = (</„*) : = (&„***). 

Then 

e e zWE = WzE and <p © (e) c cD 

and 

(.I, ̂ )̂ N m\c 

(because of x e L B \ I B ) , where dk denotes the limit of the k-th column 
of D. 

Consequently, by Lemma 3 (for zE) there exists a sequence 
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y e S* with j ; e zH^- = WzE and j € cD, 

that is 

yx e 7 n WE 

(because of <f * c M (Y)) and 

this is a contradiction to Y Pi ^ c c5. 
(iii) Now we suppose 

Y H WE G IB but Y H WE <£ Aj. 

Then we may choose 

x <^ Y n WE <z IB such that JC £ A^ 

and without loss of generality we can assume xk ^ 0 (/c e N). 
Furthermore we define z and D as in part (ii). 

Consequently we obtain 

e e zWE = WzE and <p ® (e) c /D 

and even 

lim 2 ^ — lim ZJ dk ¥= 0. 
n k n k 

If we again apply Lemma 3 in case of zE (instead of E), we obtain a 
sequence y Œ <£* such that 

y e zWE = WzE and y <£ cD, 

that is 

yx G F Pi WE and yjc £ c#; 

this is a contradiction to Y n J ^ c /# c c5 and completes the proof of 
Theorem 1. 
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