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Abstract

DNAdamage response (DDR) pathway prevents high level endogenous and environmental DNA
damage being replicated and passed on to the next generation of cells via an orchestrated and inte-
grated network of cell cycle checkpoint signalling and DNA repair pathways. Depending on the
type of damage, and where in the cell cycle it occurs different pathways are involved, with the
ATM-CHK2-p53 pathway controlling the G1 checkpoint or ATR-CHK1-Wee1 pathway control-
ling the S and G2/M checkpoints. Loss of G1 checkpoint control is common in cancer through
TP53, ATMmutations, Rb loss or cyclin E overexpression, providing a stronger rationale for tar-
geting the S/G2 checkpoints. This review will focus on the ATM-CHK2-p53-p21 pathway and the
ATR-CHK1-WEE1 pathway and ongoing efforts to target these pathways for patient benefit.

Introduction

The DNA damage response (DDR) is essential to maintain genomic integrity in the face of a
continuous onslaught of DNA damage from endogenous and environmental sources.
Activation of this response involves the close coordination of DNA repair pathways and signal-
ling to cell cycle arrest to allow repair and prevent DNA damage being copied (G1 and S-phase
checkpoint) or transmitted to the next generation (G2/M checkpoint). The kinases ataxia-
telangiectasia mutated (ATM) and ataxia-telangiectasia mutated and rad3 related (ATR) are
DNA damage sensors that are at the apex of a phosphorylation and dephosphorylation cascade
signalling to both cell cycle arrest via inactivation of cyclin-dependent kinases (CDKs) (Fig. 1),
and DNA repair. ATM and ATR have overlapping but non-redundant activities with substantial
cross-talk between the two pathways (Ref. 1). This review will describe the role of these signalling
cascades and the development of drugs targeting them for anti-cancer therapy.

The role of ATM/CHK2 pathway in cell cycle checkpoints

ATM is activated in response to DNA double-strand breaks (DSBs) (Ref. 2). In undamaged cells,
ATM exists as a dimer. Upon recruitment by the MRE11/RAD50/NBS1 (MRN) complex to
DSBs, ATM autophosphorylates at serine 367 (ser367), serine 1893 (ser1893), serine 1981
(ser1981) and serine 2996 (ser2996) resulting in monomerisation and activation (Refs 3, 4).
Active ATM phosphorylates many target proteins regulating DNA repair, cell cycle arrest and
apoptosis including CHK2, p53 and H2AX (Ref. 5). ATM plays a crucial role in the activation
of the G1/S cell cycle checkpoint, primarily mediated through p53 activity. The most important
transducer of ATM signalling is CHK2, a kinase that signals to DNA repair, cell cycle arrest and
apoptosis. ATM phosphorylates CHK2 on threonine 68 (thr68) causing CHK2 dimerisation and
autophosphorylation of the kinase domain, required for full activation (Ref. 6).

Active CHK2 phosphorylates the Cdc25A and Cdc25C phosphatases, which results in their
inactivation/degradation. This promotes cell cycle arrest as active cdc25A/C remove inhibitory
phosphorylation on CDKs that drive cell cycle progression. Cdc25A dephosphorylates CDK2,
promoting progression into S phase. Cdc25C also dephosphorylates CDK1, which is usually
held in the inactive state via phosphorylation by WEE1 and Myt1, promoting the transition
into M phase (Refs 1, 7, 8). Although ATM can signal to G2 arrest via CHK2, the cell cycle
defects observed in ATM-deficient cells are primarily G1/S checkpoint deficiency (Refs 9–11).

CHK2 also causes cell cycle arrest by phosphorylating the tumour suppressor p53 on ser15
and ser20 resulting in p53 stabilisation and activation (Ref. 12). p53 is a transcription factor
which, when active, initiates the transcription of genes involved in DNA repair, cell cycle
arrest, apoptosis and metabolism as well as its own negative regulators (Ref. 13) for example,
mouse double minute 2 (MDM2), a ubiquitin ligase that targets p53 for degradation (Ref. 14).
In response to DNA damage, p53 is phosphorylated by many kinases including ATR and
CHK1 as well as ATM and CHK2, contributing to cross-talk between the two pathways.
This phosphorylation blocks the interaction between p53 and MDM2 leading to p53 protein
accumulation (Ref. 15). Active p53 promotes the transcription of CDKN1A, which encodes the
cyclin-dependent kinase inhibitor p21CIP1/WAF1 (Ref. 16). p21 mediates p53-dependent G1 cell
cycle arrest (Refs 17, 18). p53 activation also leads to the transcription of pro-apoptotic genes
including Puma, Noxa, BAX and Apaf1, resulting in apoptotic cell death if the damage is sus-
tained (Ref. 19). The regulation of p53-mediated G1 checkpoint arrest and/or apoptosis by the
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DDR kinases is likely dependent on the context of the DNA dam-
age, such as the type of DNA damage, cell cycle phase and
molecular pathology of the cell type in question.

Figure 2 illustrates how the ATM/CHK2/p53 signalling path-
way leads to cell cycle arrest and the maintenance of genome
integrity. This pathway suppresses tumorigenesis and as a conse-
quence, defects are often observed in cancer.

Role of ATM/CHK2 in DNA repair

Although not essential for the repair of the majority of DSBs,
ATM activity is required for the repair of a subset of DSBs gener-
ally associated with heterochromatin (Ref. 20). In response to
DNA DSBs and stalled replication forks the variant histone
H2AX is phosphorylated at ser139 by DNA-PK, ATM and ATR
resulting in the accumulation of γH2AX in the vicinity of the

Fig. 1. Cell cycle checkpoint signalling. DNA double-
strand breaks activate ATM, which phosphorylates and
activates CHK2, which phosphorylates and inactivates
cdc25A, preventing it from removing the inactivating
phosphate on CDK2 thereby inhibiting S-phase entry
and progression. Both ATM and CHK2 phosphorylate
p53 resulting in transactivation of p21 to inhibit CDK2.
SS-DNA (e.g. at stalled replication forks) activates ATR,
which phosphorylates and activates CHK1, which phos-
phorylates and inactivates cdc25c, preventing it from
removing the inactivating phosphate on CDK1 thereby
inhibiting G2/M progression. There is substantial cross-
talk between the two pathways with CHK1 also being
a target of ATM and cdc25A a target of CHK1 and
both ATR and CHK1 targeting p53. In addition, DNA
damage activates WEE1 which phosphorylates and inac-
tivates both CDK1 and CDK2. Black arrows indicate main
activation pathways, grey ones are secondary pathways
and red lines indicate inhibition.
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Fig. 2. Overview of ATM signalling in response to DNA damage. DNA double-strand breaks are recognised by the MRE11/RAD50/NBS1 (MRN) complex which recruits
ATM leading to ATM activation. Active ATM phosphorylates the histone variant H2AX (γH2AX) leading to amplification and spreading of the damage signal.
ATM-dependent phosphorylation of p53 and CHK2 leads to the activation of DNA repair processes and cell cycle arrest. Active p53 induces G1 arrest through tran-
scriptional activation of the CDKN1A gene which codes for the cyclin-dependent kinase (CDK) inhibitor p21. Active CHK2 also phosphorylates p53 as well as CDC25
phosphatases resulting in S and G2 arrest. 53BP1 is recruited to yH2AX and phosphorylated by ATM and CHK2 leading to DNA repair.
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DNA lesion. In ATM-deficient cells, around 10–15% of DNA
damage foci, identified by antibodies against γH2AX, are retained
72 hours after ionising radiation (IR) (Ref. 21). γH2AX recruits
mediator of DNA damage checkpoint 1 (MDC1) (Ref. 22).
Phosphorylation by ATM stabilises MDC1 on chromatin where
it acts as a molecular scaffold recruiting chromatin modifiers to
relax heterochromatin in the vicinity of the DSB (Ref. 23).
More MRN complexes are recruited to the site of the DSB by
the interaction between MDC1 and NBS1, which in turn recruits
and activates further ATM kinases, resulting in amplification of
the signal along chromatin (Refs 24, 25). ATM activation pro-
motes DNA repair indirectly via both non-homologous end join-
ing (NHEJ) and homologous recombination DNA repair (HRR),
two prominent DSB repair pathways. ATM-dependent phosphor-
ylation of 53BP1 recruited to damage markers on chromatin pre-
vents DSB end resection, promoting NHEJ (Ref. 26). Conversely,
ATM and CHK2 phosphorylate BRCA1 at the site of DNA dam-
age (Ref. 27). BRCA1 plays a critical role in the initiation of HRR
(described in the section ‘Role in DNA repair’) (Ref. 28). 53BP1
and BRCA1 show mutual antagonism and, although both pro-
teins are present throughout the cell cycle, pathway dominance
is largely governed by the cell cycle stage and cyclin-CDK activity
(Refs 29, 30).

In addition to BRCA1, ATM-mediated regulation of nucleases
is required for efficient DNA end resection and activation of ATR
at DSBs (Refs 31, 32). ATR signalling is discussed in the section
‘Role of ATR-CHK1-WEE1 in cell cycle checkpoints’. However,
a direct role of ATM in DNA repair is unclear as ATM is dispens-
able for the repair of the majority of DNA DSBs, although it has
an important role in initiating the chromatin remodelling cascade
induced by phosphorylation of histone H2AX, and signalling to
cell cycle checkpoint arrest (Ref. 22).

Pathway dysfunction in cancer

Aberrations in the ATM gene are commonly seen in cancer.
Homozygous germline mutations in ATM result in ataxia telangi-
ectasia (A-T), a well characterised recessive genetic disease which
predisposes to the development of cancer (Ref. 33). Somatic
mutations of ATM have been identified in many cancer types,
most commonly lymphoid malignancies, suggesting that ATM
loss contributes to tumorigenesis (Ref. 34). Loss of ATM expres-
sion has also been observed in many cancer types including colo-
rectal cancer, breast cancer, non-small cell lung cancer, lung
adenocarcinoma and pancreatic cancer (Refs 35–39). In addition
to ATM mutation, ATM loss of heterozygosity (LOH) may arise
through deletion of the long arm of chromosome 11 (11q).
Interestingly, other DDR components are often co-deleted with
ATM. Genes encoding MRE11, CHK1 and the histone variant
H2AX are also located on chromosome 11q (Fig. 3), and are fre-
quently deleted with ATM (Refs 40, 41). Allelic deletion of these
genes may contribute to DNA damage repair deficiencies which

could be targeted therapeutically. 11q deletion is commonly
observed in breast cancer, chronic lymphocytic leukaemia (CLL),
other lymphoid malignancies, and childhood neuroblastoma and
is associated with poor survival (Refs 41–43).

CHK2 mutations, although less common than mutations in
ATM, are also observed across cancer types including colon, kid-
ney, breast and prostate cancer (Ref. 44). Homozygous germline
CHK2 mutation is rare and manifests in Li-Fraumeni syndrome,
a cancer predisposition syndrome usually associated with muta-
tions in the gene encoding p53, TP53 (Ref. 45). Somatic mutations
in CHK2 have been observed across the entire amino acid
sequence and lead to functionally null or unstable CHK2 protein.

The most commonly mutated gene across cancer types is
TP53, which codes for the p53 protein. Around 80% of patients
with Li-Fraumeni patients have germline mutations of TP53
(Ref. 46). Somatic TP53 mutations are observed in around 40%
of all tumours (Refs 47, 48), the mutation rate varying between
cancer types from nearly 100% in ovarian cancer to <10% for
haematological malignancies (Ref. 47). Mutations in TP53 result
in a spectrum of p53 mutant proteins, from classical loss of tran-
scriptional function to gain of function mutants which alter tran-
scriptional networks and promote an oncogenic phenotype
(Ref. 49).

As with ATM, TP53 loss of heterozygosity through allelic
deletion of chromosome 17p is frequently observed in cancer
(Ref. 50). Loss of 17p is often accompanied by mutation of the
other TP53 allele, although 17p deletion alone has been shown
to predict poor prognosis in some myeloid malignancies
(Refs 51, 52).

Overall aberration in the ATM/CHK2/p53 axis frequently
occurs in cancer. Targeting cancer-specific defects in this pathway
could contribute to effective cancer treatments with reduced side
effects.

Rationale for the development of inhibitors

Neither ATM nor CHK2 kinases are essential for life, indicating
some redundancy with other DNA damage signalling and repair
pathways.

In humans, ATM mutations lead to the autosomal recessive
disease A-T. A-T patients are very radiosensitive and display
increased adverse and sometimes fatal reactions to both radiother-
apy and radio-mimetic chemotherapy (Ref. 33). In addition to the
identification of ATM mutations in cancer (discussed in the sec-
tion ‘Pathway dysfunction in cancer’), heterozygous carriers also
have an increased risk of developing cancer, particularly breast
and lymphoid (Refs 34, 53). ATM−/− mice are viable and display
many features of A-T including cerebellar dysfunction, infertility,
radio-sensitivity and cancer predisposition (Refs 54, 55).
Targeting ATM with small molecule inhibitors should sensitise
cells to radio- and chemotherapy thus reducing the dose required
and reducing off-target toxicities of these treatments. However,
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systemic ATM inhibition could also lead to increased toxicity
from chemotherapy agents. For example, combining chemother-
apy with other DDR inhibitors, such as MGMT and PARP inhi-
bitors, led to dose reductions of both the chemotherapy and DDR
inhibitors owing to increased toxicity (Refs 56, 57). Radiotherapy
is more targeted towards the tumour and as techniques become
more precise with improving technology. ATM inhibitors may
be particularly useful in this context.

CHK2 kinase is also not essential. CHK2 knockout (KO) mice
show little to no phenotype but, in contrast to ATM KO, are
resistant to ionising radiation (IR) and have defects in p53-
mediated apoptosis pathways (Ref. 58). However, cancer-prone
phenotypes associated with the absence of CHK2 become appar-
ent when other DDR genes, such as CHK1, MRE11 and NBS1, are
impaired (Ref. 59). CHK1+/− CHK2−/− mice show high levels of
spontaneous damage and decreased apoptotic responses, increas-
ing cancer susceptibility showing some degree of co-operation
and redundancy. Overall, the context in which CHK2 inhibitors
will have therapeutic benefit remains unclear.

Preclinical development of ATM inhibitors
Many small-molecule ATP-competitive inhibitors of ATM have
been developed and generally act as radiosensitisers in vitro
(Ref. 60). The first described potent and specific ATM inhibitor,
KU55933, was developed by KuDos pharmaceuticals (now part
of AstraZeneca) (Ref. 61). It enhanced the cytotoxicity of IR
and topoisomerase I and II poisons, but its poor aqueous solubil-
ity and in vivo bio-availability precluded advanced preclinical
testing. KU60019, a structural derivative of KU55933 with
improved potency and aqueous solubility, effectively radiosensi-
tised glioblastoma in vivo when directly injected into the tumour
(Ref. 62), but still had poor in vivo bioavailability (Ref. 1).
KU60019 caused greater radiosensitisation in p53 deficient
tumours. However, using KU59403, another derivative of
KU55933, in matched p53 functional and dysfunctional cell
lines showed that the radio- and chemosensitising effects of
ATM inhibition was not p53 dependent (Ref. 63). While the
pharmacodynamic properties of KU59403 were still not suitable
for oral administration, systemic in vivo studies in mice were car-
ried out by intraperitoneal injection. As well as sensitizing to IR,
KU59403 also sensitised tumours to topoisomerase I and II inhi-
bitors, irinotecan and etoposide respectively, in vivo.

AZ32 is a moderately potent ATM inhibitor discovered by
chemical library screening at AstraZenena. The chemistry is dif-
ferent from that of the KuDos compounds and has been shown
to be orally bioavailable as well as capable of crossing the blood-
brain barrier in mice (Ref. 64). In vivo optimisation of AZ32 led to
the development of AZD1390 sensitised brain tumours to radio-
therapy in preclinical models justifying translation into a clinical
trial (section ‘Clinical trials with ATM and CHK2 inhibitors’)
(Ref. 65).

In addition to AZD1390, the compound AZD0156 was devel-
oped by AstraZeneca following optimisation of a different lead
scaffold (Ref. 66). AZD0156 shows good pharmacodynamic prop-
erties and is synergistic with the topoisomerase I inhibitor irino-
tecan and the PARP inhibitor olaparib in tumour xenograft
models. AZD0156 has also entered a phase 1 clinical trial.

CP-466722, another selective ATM inhibitor, was identified
by Pfizer and showed similar radio-sensitising properties to
KU55933 (Ref. 67). In vivo studies were not possible because of
the compound having a short half-life in mice (t1/2 < 1 hour).

In 2017, Dohmen et al. identified GSK635416A as a novel
radio-sensitiser in non-small cell lung cancer (NSCLC) cell lines
from a screen of published GlaxoSmithKline protein kinase inhi-
bitors, which was shown to act through inhibition of ATM
(Ref. 68). When combined with the PARP inhibitor olaparib,

GSK635416A showed an additive radio-sensitizing effect. No in
vivo studies have been published for this compound to date.

Preclinical development of CHK2 inhibitors
In contrast to CHK1 inhibitors, few CHK2-specific inhibitors
have been developed. In general, they show modest anti-
proliferative effects when compared with ATM, ATR and CHK1
kinase inhibitors (Ref. 69).

A screen of the AstraZeneca compound library yielded
AZD7762 as a potent CHK1 inhibitor with equal potency against
CHK2 (Ref. 70). This dual inhibitor will be discussed with other
CHK1 inhibitors in the section ‘Preclinical development of CHK1
inhibitors’.

A 2-arylbenzamidazole compound (ABI) was the first
CHK2-specific inhibitor to be proposed, showing high selectivity
(IC50 = 15 nM) over CHK1 (IC50 > 10 μM) (Ref. 71). However,
CHK2 inhibition in cells by ABI was greatly reduced compared
with cell-free assays achieving 42% inhibition of CHK2 at 5 μM.
When used as a tool, the compound showed dose-dependent
radioprotection in human CD4+ and CD8+ T-cells, similar to
the radioresistance of CHK2 null mice.

Attenuation of IR-induced apoptosis was seen in mouse thy-
mocytes after treatment with three other structurally distinct
CHK2 inhibitors, VRX0466617 (Ref. 72), PV1019 (Ref. 73) and
CCT241533 (Ref. 74). Another CHK2 inhibitor, BML-277
(CHK2 inhibitor II), first disclosed by Arienti et al. (Ref. 71),
was shown to be radioprotective in human glioma cell lines
(Ref. 75). These data are consistent with the observation that
CHK2 KO mice are radioresistant (section ‘Rationale for the
development of inhibitors’ (Ref. 58)). Studies in HT-29 (human
colon cancer) cells and HeLa (human cervical cancer) cells treated
with CCT241533 failed to show any impact on the radiomimetic
bleomyocin cytotoxicity (Ref. 76). Interestingly, BML-277 antago-
nised oxaloplatin cytoxicity in colorectal cancer cell lines
(Ref. 77). In contrast, survival analysis by colony formation
assay in U251 human glioblastoma cell line showed potentiation
of IR by PV1019. Whether these contrasting observations reflect
the differing molecular pathology of the cell lines remains to be
determined.

Although the role of CHK2 inhibition in response to IR is
unclear, there is some evidence that the combination of CHK2i
with topoisomerase I poisons and poly (ADP)-ribose polymerase
(PARP) inhibitors might be effective. PV1019 was shown to
potentiate the cytotoxic effects of topotecan and camptothecin
in ovarian cancer cell lines (Ref. 73). Potentiation of the effects
of the PARP inhibitors rucaparib and olaparib was seen with
the addition of CCT241533 (Ref. 76).

Clinical trials with ATM and CHK2 inhibitors

Three ATM inhibitors are currently being investigated in phase 1
clinical trials (Table 1). To date, no specific CHK2 inhibitor has
progressed to clinical trials but phase 1 studies of AZD7762, the
dual CHK1/CHK2 inhibitor have been undertaken in combin-
ation with gemcitabine. The results published from the completed
trial showed that AZD7762 leads to cardiac toxicity leading to 2
further trials being terminated and the clinical progression of
the inhibitor being discontinued (Ref. 78).

Role of ATR-CHK1-WEE1 in cell cycle checkpoints

The ATR-CHK1-WEE1 pathway activates both intra-S and G2/M
checkpoint control in response to replication stress (RS) and DNA
damage. RS is the momentary slowing or stalling of replication
fork progression that can be caused by replication outstripping
the rate of dNTP production or lesions in the DNA. ATR is
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activated by a number of DNA damaging factors, including ultra-
violet radiation, antimetabolite-induced dNTP depletion, topo-
isomerase poisons, alkylating agents or DNA crosslinking
agents (Ref. 79). Many of these factors result in single-strand
DNA (ss-DNA), which allows for the recruitment of ATR activat-
ing proteins TOPBP1 or ETAA1. Although ss-DNA arises pri-
marily from RS it is also a result of resected DSBs and

nucleotide excision repair (NER) intermediates. Replication pro-
tein A (RPA) coats the ss-DNA, protecting it from degradation
and enabling recruitment of ATR via ATR-interacting protein
(ATRIP). ATR is activated by either TOPBP1, which is recruited
by interaction with MRN complex that resects DSB to give long
ss-DNA overhangs and the 9-1-1 complex (a proliferating cell
nuclear antigen (PCNA)-like clamp that binds SS-DS DNA

Table 1. ATM inhibitors currently in clinical trials

Drug name Phase Monotherapy/combination Tumour type NCT

M3541 I In combination with palliative radiotherapy Solid tumour NCT03225105

AZD0156 I In combination with olaparib, irinotecan, fluorouracil, folinic acid Advanced solid tumours NCT02588105

AZD1390 I In combination with radiotherapy Brain cancer NCT03423628
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replication protein A (RPA) recruiting ATR via ATR-interacting protein (ATRIP). A. The ATR-CHK1 cascade is heavily involved in cell cycle checkpoint control. ATR acti-
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junctions) or by ETAA1, which is recruited to ss-DNA by inter-
action with RPA (Ref. 80). Upon activation, ATR activates CHK1
by phosphorylation at serine 345 causing CHK1 to autopho-
sphorylate at serine 296, to achieve full activation. Like CHK2,
CHK1 causes the inactivating phosphorylation of CDC25A/C
(Refs 81, 82), thereby preventing them from removing the inhibi-
tory phosphorylation on CDK2 and 1, respectively (as described
in Fig. 4). In yeast and xenopus, CHK1 phosphorylates and acti-
vates Wee1 kinase activity to phosphorylate, and hence inactivate,
CDK 1 and 2 (Refs 83, 84). This is yet to be shown in mammalian
cells. The net result of this kinase activation and phosphatase
inhibition is inhibition of CDK2, and thus S-phase entry and pro-
gression, and inhibition of CDK1 preventing entry into mitosis.

Role in DNA repair

The ATR-CHK1-WEE1 cascade also plays a role in HRR, a high
fidelity DSB repair pathway, restricted to late S and G2 phase as
it uses the sister chromatid as a DNA template (Ref. 85). During
HRR extensive DNA end-resection occurs, resulting in the
ss-DNA overhang that leads to ATR activation. HRR is also
responsible for the resolution of collapsed replication forks
caused by RS – the prime activator of the ATR-CHK1-WEE1
pathway. It is therefore not surprising that these kinases are
also associated with DNA repair by HRR (Ref. 86).

All three kinases in the cascade have demonstrated involve-
ment in HRR. In BRCA defective cells, ATR can act independently
of BRCA1 to recruit RAD51 to DSBs and stalled replication forks,
inhibition of ATR disrupted RAD51 loading suggesting key
involvement in HRR (Ref. 87). Similarly, CHK1 may promote
HRR by phosphorylating key HRR components BRCA2 and
RAD51 (Refs 81, 88). WEE1 is also involved in HRR owing to
its inhibitory phosphorylation of CDKs upon activation. The
resection of DNA ends, a necessary step in HRR is antagonised
by CDK activity (Ref. 89), inhibition of CDK activity by WEE1
(or cdc25 inactivation downstream of CHK1) promotes HRR,
therefore inhibition of either CHK1 or WEE1 will result in higher
CDK activity and compromise HRR (Ref. 90).

Pathway dysfunction in cancer

The importance of the ATR-CHK1-WEE1 cascade is highlighted
by the embryonic lethality of all three components (Refs 91–93).
No humans are recorded as being born without these essential
kinases but Seckel syndrome (SS) is a rare, autosomal recessive
disorder owing to a hypomorphic mutation in ATR, resulting in
delayed development but not cancer predisposition. SS mice are
not cancer-prone, even when crossed with p53 defective mice
(Ref. 94). There are contrasting data regarding the tumour predis-
position of ATR+/− mice with one study reporting increased
tumour incidence and others reporting no increase in tumour
incidence (Refs 91, 95). CHK1+/− mice are not predisposed to
tumourigenesis (Ref. 92), and no abnormalities are reported in
adult WEE1+/− mice (Ref. 93).

The general consensus seems to be that complete loss of ATR,
CHK1 or WEE1 signalling is incompatible with normal develop-
ment but that compromising the pathway by hypomorphic muta-
tion or heterozygous deletion does not predispose to tumour
development. However, upregulation of the pathway in tumours
may be indicators of poor prognosis. Two studies in breast cancer
indicate that high pCHK1 levels correlated with local recurrence
and worse cancer-specific survival (Refs 96, 97) and WEE1 over-
expression have been observed in several tumour types: hepatocel-
lular carcinoma (HCC), breast, glioblastoma, lung and colon
(Ref. 98).

Rationale for targeting ATR-CHK1-WEE1

Cancer cells are considered to have higher levels of RS than nor-
mal cells. There are several causes for this: (i) increased expression
of oncogenes or growth factor receptors that drive cells into
S-phase, (ii) accelerated cell cycle progression owing to increased
expression of CDKs or their cyclin partners or loss of their pro-
tein inhibitors, and (iii) loss of G1 checkpoint control (Refs 96–
99). Additionally, RS results in genomic instability that is an enab-
ling characteristic of cancer (Refs 100, 101), thereby creating a
vicious circle. RS is the prime trigger for ATR-CHK1-WEE1 sig-
nalling and cancer cells are therefore highly dependent on this
pathway (Refs 100, 102, 103). Thus, there is a potential to exploit
the increased RS, coupled with the loss of G1 control, in cancer
cells by targeting the ATR-CHK1-WEE1 pathway, without com-
promising normal cells with proficient G1 checkpoint control
(Ref. 104).

In addition to their pivotal role in the S and G2/M cell cycle
checkpoints, ATR-CHK1-WEE1 also promote HRR, as described
above. Therefore, inhibiting these kinases has the potential to
compromise HRR, thereby sensitising cells to DNA damaging
anticancer agents.

Preclinical development of ATR inhibitors
An early study in 1998 found that overexpression of kinase-
inactive ATR caused sensitivity to IR, cisplatin and methyl
methanesulfonate (MMS) (Ref. 105). Caffeine was found to be
a weak ATR inhibitor (1999) and, although it lacked specificity,
it was still good enough to test the potential of ATR inhibition
(Ref. 106). It was shown to inhibit ATR activity at a radio sen-
sitising concentration (Ref. 107). Subsequently in 2002, Nghiem
et al., showed that expression of the kinase-dead ATR conferred
sensitivity to multiple anti-cancer/DNA damaging agents (UV,
hydroxyurea (HU), IR, cisplatin and aphidicolin). In terms of
the potential of single-agent ATR inhibitors this study also
showed that endogenous causes of replication stress (cyclin D,
E, CDK2 overexpression or p53 inactivation by MDM2 or
human papillomavirus (HPV) E6 expression) conferred sensitiv-
ity to kinase-dead ATR overexpression and/or caffeine
(Ref. 108).

ATR inhibitor development was slow to take off from these
early studies, possibly because of the difficulty in developing a
cell-free assay. Nevertheless, in 2011, NU6027, originally devel-
oped as a CDK2 inhibitor, was found to be a more potent inhibi-
tor of ATR that CDK2 in intact cells. NU6027 enhanced cisplatin
and HU cytotoxicity in an ATR-dependent manner, and the
major classes of DNA damaging anticancer drugs in MCF7 breast
cancer cells, and attenuated G2 cell cycle arrest. Cells defective in
HRR are exquisitely sensitive to PARP inhibitors and, in the first
investigation of its kind, NU6027 inhibited HRR and increased
PARP inhibitor cytotoxicity (Ref. 109).

In 2011 a novel ATRi screen identified ETP-46464 as an ATRi
that had increased cytotoxicity in cells overexpressing cyclin E. It
significantly sensitised cells to IR, abolishing the G2/M check-
point in these cells, independent of p53 status (Ref. 110). In
2015, Teng et al., went on to show that it also sensitised cells to
cisplatin treatment (Ref. 111). However, ETP-46464 lacked speci-
ficity as it also inhibited mTOR, DNA-PKcs and P13Kα, and had
poor in vivo pharmacological properties (Ref. 110).

AZ20 is an ATRi developed in 2013 from the P13K inhibitor,
LY294002, with good potency and selectivity (Ref. 112). In acute
myeloid leukaemia (AML) cell lines and patient samples, AZ20
acted synergistically with cytarabine, resulting in enhanced apop-
tosis and induced replication stress (Ref. 113). This drug also syn-
ergistically inhibited cell growth in combination with gemcitabine
in pancreatic cancer cell lines (Ref. 114).
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AZD6738 was developed from AZ20 in 2018, with improved
aqueous solubility and excellent pharmacokinetic qualities
(Ref. 115). It sensitised non-small cell lung cancer (NSCLC)
cells and xenografts to cisplatin and gemcitabine (Ref. 116), and
a panel of human cancer cells to radiation (Ref. 117). AZD6738
suppressed tumour growth and increased apoptosis in ATM
defective cells (Ref. 118).

VE-821 was one of the first potent ATRi with greatly improved
selectivity for ATR over other PI3K-like kinases discovered in
2011 (ATM, DNAPKcs, mTOR). VE-821, as a single agent,
increased apoptosis in cancer cells versus non-cancerous cells
(Ref. 119). VE-821 can sensitise cells to IR (Refs 120–122), gem-
citabine and camptothecin (Refs 119, 123). However, the strongest
synergy observed thus far is with platinum-based therapies cis-
platin and carboplatin (Refs 119, 124). Interestingly, when used
in combination with the PARPi veliparib, VE-821 further sensi-
tised BRCA defective cells beyond the sensitivity already observed
owing to HRR status (Ref. 124). In 2015 Middleton et al., showed
that defects in ATM, HRR (BRCA2, XRCC3) and BER (XRCC1)
resulted in increased sensitivity to VE-821. Interestingly, defective
Ku80 (involved in NHEJ) caused hypersensitivity to VE-821, but
the loss of its binding subunit, DNA-PKcs, did not (Ref. 125).

M6620 (also known as VE-822/VX-970 developed in 2012
and, from the same chemical series as VE-821) was the first highly
selective, potent ATR inhibitor to go into clinical trials and is cur-
rently in phase 2 trials. It potentiates a number of DNA damaging
agents including carboplatin, cisplatin, gemcitabine, irinotecan
and IR in a wide array of cancers (Refs 126–132). Nagel et al.,
found that M6620 combined with cisplatin showed a better
response in vivo than cisplatin combined with etoposide, another
chemotherapeutic, providing a solid rationale for combining cis-
platin and M6620 in the clinic and limiting inevitable side effects
with combining two chemotherapeutic agents (Ref. 132). As with
other ATR inhibitors, it was found that ATM conferred sensitivity
to ATR, both in vitro and in vivo (Refs 128, 133).

In 2017 Wengner et al., characterised a novel ATRi,
BAY1895344, which inhibited cell proliferation in an array of
human cancer cell lines as well as having a strong anti-tumour
effect as monotherapy in xenograft models. Synergistic anti-
cancer activity was reported when used in combination with
Radium-223 in xenograft models (Ref. 134).

Preclinical development of CHK1 inhibitors
UCN-01 was a first-generation, potent CHK1 inhibitor originally
developed in 1999 as a protein kinase C inhibitor (Ref. 135). In
vitro, it abrogated G2 checkpoint control and sensitised p53
defective cancer cells to DNA damaging agents (cisplatin, camp-
tothecin and IR). However, it has poor potency and specificity
and struggled to bypass a radiation-induced G2/M checkpoint
(Ref. 136).

In 2008 the biological effects of AZD7762, a potent dual CHK1
CHK2 inhibitor with equal potency against both kinases, was
shown to result primarily from inhibition of CHK1 (Ref. 70). In
vitro studies have demonstrated that AZD7762 potentiated the
cytotoxic effects of the nucleoside analogue gemcitabine, topo-
isomerase inhibitors and cisplatin (Refs 137–141). These findings
were reflected in vivo and AZD7762 showed good pharmacokin-
etics and tolerability in mice. However, the effect of dual CHK1/
CHK2 inhibition showed no increased benefit compared with
CHK1-specific targeting agents suggesting that most of the anti-
tumour effects are through inhibition of CHK1.

PF-477736 is a potent ATP-competitive CHK1 inhibitor with
>100-fold selectivity over CHK2 developed in 2008 (Ref. 142). It
has potent single-agent activity in triple-negative breast and ovar-
ian cancer cell lines (Ref. 143), as well as sensitising cells to che-
motherapeutic drugs gemcitabine, carboplatin, doxorubicin,

mitomycin C and toptotecan (Refs 142, 144–146). PF-477736
also sensitises HPV positive head and neck cancer cells to radi-
ation (Ref. 147). PF-477736 caused synergistic cytotoxicity in
combination with targeted therapies irutinib and bosutinib in
mantle cell lymphoma (MCL) and chronic myeloid leukaemia
(CML), respectively (Refs 148, 149). PF-477736 was more cyto-
toxic in p53 mutant and Myc-driven cancers (Refs 142, 150).

In 2017, a novel CHK1 inhibitor, MK-8776 (also known
as SCH900776 and identified in 2011), abrogated IR-induced
G2/M checkpoint activation, resulting in aberrant mitosis, and
was a potent radiosensitiser in breast and cervical cell lines
(Refs 151, 152). MK-8776 also radiosensitised non-small cell
lung cancer and head and neck cancer cell lines, in p53 non-
functional cells (Ref. 153). Montano et al., reported that
MK-8776 sensitised cells to an array of DNA damaging agents:
HU (20–70 fold), cytarabine (15–35 fold) and gemcitabine (5–
10 fold), with no sensitisation reported with cisplatin or 5-fluor-
ouracil (5-FU) (Ref. 154). However, a later study by Herudkova
et al. found that MK-8776 significantly sensitised cells to cisplatin
and another platinum-based therapy, LA-12 (Ref. 155).

SRA737 (previously CCT244747, which was discovered in
2012) is a novel, potent, orally active CHK1 inhibitor, with
good selectivity (Refs 156, 157). It was developed at the ICR
and is active as a single agent in MYCN-driven neuroblastoma
and in combination with IR, gemcitabine and irinotecan
(Refs 156, 157). SRA737 has synergistic antitumour activity
with the PARP inhibitors niraparib and olaparib in mammary
and ovarian cancer cells in vitro and in vivo (Ref. 158).

In 2015 LY2606368, a specific CHK1 inhibitor with strong
single-agent activity in vitro and in vivo was discovered
(Refs 159–162). It demonstrated synergy with PARP inhibitors
olaparib and BMN673 in ovarian and gastric cancer, respectively
(Refs 163, 164) and potentiated cisplatin even in a panel of
platinum-resistant human cancers cell lines (Refs 161, 165).

Pre-clinical development of WEE1i
Despite the key role for WEE1 in S and G2 arrest, very few small-
molecule inhibitors have been developed. In 2001, PD0166285
was the first potent WEE1 inhibitor. It radiosensitised ovarian,
colon, lung and ovarian tumour cells in a p53-dependent manner
(Ref. 166). It was a potent radiosensitiser in glioblastoma, but a
major limitation to its development is its inability to penetrate
the blood-brain-barrier (Refs 167–169). Furthermore, PD0166285
was non-selective, it also inhibited CHK1, Src non-receptor tyrosine
kinase, epidermal growth factor receptor (EGFR), platelet-derived
growth factor β (PDGF-β) and fibroblast growth factor receptor-1
(FGFR-1) (Ref. 170).

In 2009 AZD1775/MK-1775 was discovered as a specific,
potent WEE1 inhibitor that showed excellent selectivity
(Ref. 171). It was effective as a single agent (Ref. 172), as well
as in synergistically increasing the cytotoxicity of various DNA
damaging agents (IR, gemcitabine, carboplatin, cisplatin, 5-FU,
pemetrexed, doxorubicin and camptothecin), in vitro and in
vivo (Refs 171, 173–176). Earlier studies reported p53 status as
a determinant for sensitivity to AZD1775 (Refs 171, 174).
However, more recent studies have shown MK-1775 cytotoxicity
to be independent of p53 (Refs 172, 177). Heijink et al. carried
out a genome-wide unbiased screen and concluded that the activ-
ity of DNA replication proteins, beyond p53, is a key determinant
of WEE1 inhibitor sensitivity (Ref. 177).

Synergy between inhibitors of ATR-CHK1-WEE1

Studies of the combination of inhibitors of the pathway with one
another have thus far shown potential. ATR inhibition by VE-821
and CHK1 inhibition by AZD7762 caused synergistic cell death in
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vitro and in vivo (Ref. 178). VX-970 (VE-822) was well tolerated
in combination with AZD7762 in mice and resulted in increased
survival of tumour-bearing mice (Ref. 178). ATR inhibition by
AZD6738 was also synergistic with WEE1 inhibition by
AZD1775 in causing the accumulation of DNA damage, via
forced mitotic entry, and growth inhibition. This combination
also inactivated HRR- sensitising cells to cisplatin and PARP
inhibition (Ref. 179). An anti-metastatic effect was observed in
vitro when ATR inhibitors AZ06738 and ETP-46464 were com-
bined with WEE1 inhibitor AZD1775 (Ref. 180).

CHK1 and WEE1 inhibitors are another well-tolerated, syner-
gistic combination as demonstrated in several studies in a variety
of different cancer models, a few examples are given here. CHK1
inhibitor MK-8776 sensitised AML cells to AZD1775 ex-vivo and
the combination was effective against neuroblastoma xenografts
(Refs 181, 182). A study by Hauge et al., showed synergistic anti-
tumour effects between the WEE1 inhibitor AZD1775 and CHK1
inhibitors AZD7762 and LY2603618. A combination of these
inhibitors resulted in mitotic catastrophe and reduced cell survival
because of the combined effects on S phase and DNA damage
associated with unscheduled replication initiation (Ref. 183).
Similarly, the combination of CHK1 inhibitor AZD7762 and
WEE1 inhibitor AZD1775 caused increased cytotoxicity and
apoptosis in metastatic melanoma cell lines (Ref. 184). Synergy
was also reported with CHK1 inhibitor PF-477736 and WEE1
inhibitor AZD1775 in MCL cells (Ref. 185).

Pre-clinical synergy of ATR-CHK1-WEE1 inhibitors and PARP
inhibitors

Inhibitors of the ATR-CHK1-WEE1 cascade have shown synergy
with PARP inhibitors. Peasland et al., were the first to show that
the ATR inhibitor, NU6027, was synthetically lethal in combin-
ation with the PARP inhibitor, rucaparib in breast and ovarian
cancer cells (Ref. 109). Subsequently, the ATR inhibitor VE-821
was found to sensitise BRCA mutant cells to veliparib (Ref. 125)
and a synthetically lethal screen found VE-821 had profound syn-
ergy with PARP inhibition in both HRR competent and defective
cells (Ref. 186). Kim et al., showed that inhibiting PARP resulted
in increased reliance on the ATR-CHK1 pathway for genomic sta-
bility and that the combination of olaparib with ATRi AZD6738
effectively reduced tumour burden in patient-derived xenografts
of serous ovarian cancer (Ref. 187).

A series of PARP inhibitors (rucaparib, olaparib, veliparib and
NU1025) synergised with various CHK1 inhibitors (UCN-01,
AZD7762 and LY2603618) to increase DNA damage and apop-
tosis in vitro in breast cancer cells (Ref. 188). The PARPi olaparib
in combination with CHK1 inhibitor MK-8776, supressed colony
formation in BRCA mutant models to a greater degree than either
inhibitor as a single agent (Ref. 187). The PARP inhibitor
Talazoparib was also synergistic with LY2606368, both in vitro
and in vivo in gastric cancer (Ref. 164). Similarly, LY2606368
also showed inhibited HRR function and synergised with olaparib
to decrease cell survival in BRCA wild-type cells (Ref. 163).

Fewer studies have looked at PARP and WEE1 inhibition
combined, perhaps owing to the availability of only one WEE1
inhibitor with the desired selectivity and specificity (AZD1775).
AZD1775 has only been tested in combination with olaparib
but these results have been promising and when used in combin-
ation, the inhibitors act synergistically to radiosensitise pancreatic,
and KRAS-mutant NSCLC cells further than when either is used
as a single agent (Refs 189, 190).

ATR inhibitors in clinical trials
M6620 (VE-822/VX-970) was the first ATR inhibitor to reach
clinical trials. Thomas et al., first reported ATR inhibition in

combination with chemotherapy in patients, with the maximum
dose of topotecan being well tolerated when used in combination
with M6620 (Ref. 191). There are currently three active clinical
trials using M6620, one of which is the first in a human study
looking at the pharmacokinetics of M6620 in combination with
gemcitabine, cisplatin, etoposide carboplatin and irinotecan
(NCT02157792). A number of phase 1 and 2 studies are currently
recruiting patients for the use of M6620 single agent and in com-
bination with a number of DNA damaging agents including irradi-
ation, cisplatin, carboplatin, gemcitabine, irinotecan and topotecan
(see Table 2). Another selective, bioavailable ATR inhibitor cur-
rently in phase 1 and 2 trials is AZD6738. Of these trials, nine
are investigating the use of AZD6738 with the PARP inhibitor ola-
parib, which has strong support from pre-clinical data (Ref. 187).
The ATR inhibitor BAY1895344 is in a first in human phase I safety
trial in patients with advanced solid tumours and lymphomas
(NCT03188965). M4344/VX-803 is an orally bioavailable ATR
inhibitor currently recruiting in phase 1 clinical trial where it
will be used as a monotherapy and in combination with cisplatin,
carboplatin or gemcitabine (NCT02278250). The ATR inhibitor
BAY1895344 has recently shown to have anti-tumour activity
and is well tolerated at active doses in cancers with defects in
DDR, such as loss of ATM (Ref. 192) (NCT03188965).

CHK1 inhibitors in clinical trials
Although there is significant interest surrounding CHK1 inhibitors,
clinical progression has often been hindered because of the lack
of bio-availability and off-target effects (Ref. 157). UCN-01 was
used in combination with carboplatin in a phase 1 study
(NCT00036777) and progressed into phase 2 clinical trials in 2010
in patients with metastatic melanoma, but the trial was terminated
prematurely because of discouraging results (NCT00072189).
CHK1 inhibitors with greater specificity have now entered clinical
evaluation. SRA737 is currently in phase 1/2 clinical trials, both as
a monotherapy and in combination with gemcitabine +/− cisplatin
(NCT02797964) (NCT02797977). MK-8776 is also in phase 1 and
2 trials as a monotherapy and in combination with gemcitabine,
cytarabine and hydroxyurea (NCT00779584) (NCT01870596). Of
the four clinical trials it is currently in, two have been completed,
with one terminated and one withdrawn owing to a lack of patients
(see Table 3). However, in vitro studies have shown MK-8776 to
have a short half-life, as well as undergoing rapid demethylation in
vivo, resulting in a less selective metabolite (MU379) (Ref. 193).
Phase 1 clinical trials, in patients with advanced solid tumours, of
PF-477736 in combination with gemcitabine were terminated early
for business reasons, rather than safety concerns (NCT00437203).
Prexasertib (LY2606368) is currently in phase 2 trials a monotherapy
agent, specifically in patients with cancers that are p53 mutant, have
DDR defects such as BRCAmutation, increased replication stress or
CCNE1 amplification, as these are determinants of CHK1 inhibitor
sensitivity (NCT02735980, NCT02203513, NCT03414047,
NCT02873975). Prexasertib has also entered phase 1 and 2 clinical
trials in combination with pemetrexed (NCT01296568,
NCT00415636, NCT01139775, NCT00988858), gemcitabine
(NCT01358968, NCT01341457, NCT01296568, NCT00839332) or
cisplatin (NCT02555644, NCT01139775) but has currently only
been in one clinical trial with a PARP inhibitor (NCT03057145),
despite promising synergy being observed pre-clinically (Refs 163,
164).

WEE1 inhibitors in clinical trials
AZD17775 is the only WEE1 inhibitor to reach clinical develop-
ment and is already in a number of phase 1 and 2 trials being
used in combination with treatments such as carboplatin,
gemcitabine, cisplatin, cytarabine and olaparib (Refs 194, 195,
196). Recently a dose-escalation trial of AZD1775 in
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Table 2. ATR inhibitors currently in clinical trials

Drug name Phase Monotherapy/combination Tumour type NCT

M6620/
VX-970

I In combination with whole brain radiotherapy NSCLC, SCLC or neuroendocrine tumours that have
metastasised to the brain

NCT02589522

In combination with irinotecan hydrochloride Solid metastatic tumours that are unable to be
operated on

NCT02595931

Assessing pharmacokinetics of M6620 in
combination with gemcitabine, cisplatin,
etoposide, carboplatin or irinotecan

First-in-human study, in patients with advanced
solid tumours

NCT02157792

As monotherapy or in combination with
carboplatin and paclitaxel. A rollover study from
VX13-970-002

Advanced solid tumours NCT03309150

In combination with chemoradiotherapy
treatment (cisplatin and capecitabine)

Oesophageal cancer NCT03641547

In combination with cisplatin and radiotherapy Locally advanced head and neck squamous cell
carcinoma

NCT02567422

II In combination with avelumab and carboplatin PARPi-resistant, recurrent, platinum-sensitive
ovarian, primary peritoneal or fallopian tube

NCT03704467

In combination with cisplatin or gemcitabine
hydrochloride

Metastatic urothelial cancer NCT02567409

In combination with carboplatin +/− docetaxel Metastatic castration-resistant prostate cancer NCT03517969

In combination with gemcitabine Recurrent ovarian, primary peritoneal or fallopian
tube

NCT02595892

In combination with topotecan Relapsed SCLC or extrapulmonary small cell cancer NCT03896503

Monotherapy Advanced solid tumour NCT03718091

In combination with irinotecan Metastatic or unresectable TP53 mutant gastric or
gastroesophageal junction cancer

NCT03641313

AZD6738 I In combination with acalabrutinib Relapsed/refractory aggressive Non-Hodgkins
Lymphoma

NCT03527147

Monotherapy Head and neck squamous cell carcinoma NCT03022409

Monotherapy and in combination with palliative
radiotherapy

Solid tumours NCT02223923

Monotherapy Relapsed/refractory CLL, PLL or B cell lymphomas NCT01955668

In combination with gemcitabine Advanced solid tumours NCT03669601

In combination with paclitaxel Metastatic cancer failed standard chemotherapy NCT02630199

Monotherapy Chronic myelomonocytic leukaemia or
myelodysplastic syndrome

NCT03770429

I/II In combination with carboplatin, olaparib or
durvalumab

Head and neck squamous cell carcinoma,
advanced solid malignancy, NSCLC, gastric and
breast cancer

NCT02264678

Monotherapy and in combination with
acalabrutinib

Relapsed or refractory high-risk CLL NCT03328273

II Monotherapy Neoadjuvant chemotherapy-resistant residual triple
negative breast cancer

NCT03740893

Monotherapy and in combination with PARPi
olaparib

Renal cell carcinoma, urothelial carcinoma,
pancreatic cancers and solid tumours that have
spread to nearby tissue

NCT03682289

In combination with PARPi olaparib Recurrent ovarian cancer NCT03462342

In combination with PARPi olaparib SCLC NCT03428607

In combination with PARPi olaparib IDH1 and IDH2 mutant tumours NCT03878095

In combination with PARPi olaparib Second- or third-line triple-negative breast cancer NCT03330847

In combination with PARPi olaparib Resistant prostate cancer NCT03787680

In combination with PARPi olaparib Advanced solid tumour NCT02576444

In combination with PARPi olaparib Platinum refractory extensive-stage SCLC NCT02937818

In combination with immunotherapy
durvalumab

Metastatic NSCLC which has progressed on an
anti-PD-1 therapy

NCT03334617

(Continued )
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combination with gemcitabine and radiation showed promising
results with good tolerability in patients with locally advanced
pancreatic cancer (Ref. 197). The majority of clinical trials are
still recruiting, suggesting this kinase inhibitor has exciting
potential once trials have been completed and data is collected
and analysed (Table 4).

DNA checkpoint kinase and immune checkpoint inhibitor
combinations

Immune checkpoint inhibitors block the immunosuppressive
mechanisms employed by cancers to prevent an effective anti-
tumour immune response and have been found to be efficacious

in many types of cancer. There is increasing evidence that tumour
mutational burden increases the immunogenicity of cancers
through the production of mutation-associated neoantigens,
including those associated with microsatellite instability from
defective DNA mismatch repair (Ref. 198). Damaged cytosolic
DNA may also directly activate the immune system by stimulating
interferon via the STING pathway (Stimulation of Interferon
Genes) leading to enhanced immune checkpoint inhibitor
responses in pre-clinical models. In ATM-deficient mice and
patients with ataxia telangiectasia enhanced interferon production
through the STING pathway has been observed (Ref. 198). ATM
inhibition has recently been found to increase type 1 interferon
signalling in a STING independent manner (Ref. 199). Clinical

Table 2. (Continued.)

Drug name Phase Monotherapy/combination Tumour type NCT

In combination with immunotherapy
durvalumab

NSCLC with PD-1 immune checkpoint inhibitor
resistance

NCT03833440

In combination with immunotherapy
durvalumab

Solid tumour, gastric cancer with failed secondary
chemotherapy, melanoma patients

NCT03780608

BAY1895344 I Monotherapy (first-in-human) Advanced solid tumours and lymphomas NCT03188965

M4344/
VX-803

I Monotherapy and in combination with cisplatin,
carboplatin and gemcitabine

Advanced solid tumours NCT02278250

Table 3. CHK1 inhibitors currently in clinical trials

Drug name Phase Monotherapy/combination Tumour type NCT

MK-8776/
SCH900776

I In combination with and without cytarabine Acute leukaemia NCT00907517

In combination with hydroxyurea Advanced solid tumours NCT01521299

II In combination with and without cytarabine Acute myeloid leukaemia NCT01870596

LY2606368/
prexasertib

I In combination with desipramine, pemetrexed or
gemcitabine

Drug interaction study NCT01358968

In combination with gemcitabine Solid tumours NCT01341457

In combination with pemetrexed or gemcitabine Advanced/metastatic solid tumours NCT01296568

In combination with pemetrexed Advanced/metastatic solid tumours NCT00415636

Monotherapy Japanese patients with advanced solid
tumour

NCT02514603

Monotherapy Paediatric solid tumours NCT02808650

In combination with ralimetanib Advanced solid tumour NCT02860780

In combination with olaparib Advanced solid tumour NCT03057145

In combination with cisplatin, cetuximab or
radiotherapy

Head and neck cancer NCT02555644

In combination with PD-L1 inhibitor Advanced solid tumours NCT03495323

In combination with cytarabine Chronic/acute myeloid leukaemia NCT02649764

I/II In combination with and without gemcitabine Pancreatic cancer NCT00839332

In combination with cisplatin or pemetrexed NSCLC NCT01139775

II Monotherapy Extensive stage SCLC NCT02735980

Monotherapy Platinum resistant ovarian cancer NCT03414047

Monotherapy Solid tumour with HRR defects or CCNE1
amplification

NCT02873975

In combination with or without pemetrexed Advanced or metastatic NSCLC NCT00988858

Monotherapy BRCA mutant breast or ovarian cancer
Triple-negative breast cancer
HGSOC
Castrate-resistant prostate cancer

NCT02203513
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trials evaluating DNA damage repair inhibitors with immune
checkpoint inhibitors are ongoing, including PARP, ATR and
CHK1 inhibitors (Table 2).

Concluding remarks and future directions

Targeting DDR checkpoint signalling has evolved to the clinic
based on sound scientific hypotheses and preclinical data.
Early less specific inhibitors may have clouded the case for
development but now more specific inhibitors are under inves-
tigation both as monotherapy and in combination with conven-
tional cytotoxic chemotherapy or novel agents. The preclinical
data suggest that targeting the ATR-CHK1-WEE1 pathway is
likely to be more fruitful than targeting ATM and CHK2 signal-
ling. To date, the most active combinations for each class of
kinase inhibitor include ATR inhibitors with cis/carboplatin
and CHK1 inhibitors with gemcitabine. A developing field is a
potentiation with immune checkpoint inhibitors via several
mechanisms of action. Identification of predictive biomarkers,
particularly for monotherapy, however, has been challenging,
for example, whether the presence of TP53 mutations confers
sensitivity.

The potential for some of these agents to be associated with
second malignancy must not be forgotten, which is particularly
a concern for young patients treated with these agents. Since
defects in ATM and CHK2 are associated with tumours, but
defects in ATR, CHK1 and WEE1 are not, one might predict
that as single agents, inhibitors of the former might be asso-
ciated with second malignancies but not the latter. However,
in combination with cytotoxics already associated with second
malignancies, the incidence is likely to be increased unless
lower doses of the primary cytotoxic can be used in combin-
ation to achieve the same efficacy. Nevertheless, we must
remember that the malignancies for which these agents are
most likely to be used, especially in children, are the ones
that are most difficult to cure with current strategies in
which cure has yet to be achieved for the majority at any
cost rather than at least cost.
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