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Abstract

Fairness in machine learning is of considerable interest in recent years owing to the propensity of
algorithms trained on historical data to amplify and perpetuate historical biases. In this paper,
we argue for a formal reconstruction of fairness definitions, not so much to replace existing defi-
nitions but to ground their application in an epistemic setting and allow for rich environmental
modeling. Consequently we look into three notions: fairness through unawareness, demographic
parity and counterfactual fairness, and formalize these in the epistemic situation calculus.
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1 Introduction

Machine Learning techniques have become pervasive across a range of different applica-

tions, and are the source of considerable excitement but also debate. For example, they

are now widely used in areas as disparate as recidivism prediction, consumer credit-risk

analysis and insurance pricing (Chouldechova 2017; Khandani et al. 2010). In some of

these applications, the prevalence of machine learning techniques has raised concerns

about the potential for learned algorithms to become biased against certain groups. This

issue is of particular concern in cases when algorithms are used to make decisions that

could have far-reaching consequences for individuals (for example in recidivism predic-

tion) (Chouldechova 2017; Angwin et al. 2016). Attributes which the algorithm should be

“fair” with respect to are typically referred to as protected attributes. The values to these

are often hidden from the view of the decision maker (whether automated or human).

There are multiple different potential fields that might qualify as protected attributes

in a given situation, including ethnicity, sex, age, nationality and marital status (Zemel

et al. 2013). Ideally, such attributes should not affect any prediction made by “fair” al-

gorithms. However, even in cases where it is clear which attributes should be protected,

there are multiple (and often mutually exclusive) definitions of what it means for an al-

gorithm to be unbiased with respect to these attributes, and there is disagreement within

the academic community on what is most appropriate (Dwork et al. 2011; Kusner et al.

2017; Zafar et al. 2017a).
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However, even amid pressing concerns that algorithms currently in use may exhibit

racial biases, there remains a lack of agreement about how to effectively implement

fairness, given the complex socio-technical situations that such applications are deployed

in and the background knowledge and context needed to assess the impact of outcomes

(e.g. denying a loan to someone in need).

To address such issues broadly, an interesting argument has been championed by the

symbolic community: by assuming a rich enough understanding of the application do-

main, we can encode machine ethics in a formal language. Of course, with recent advances

in statistical relational learning, neuro-symbolic AI and inductive logic programming

(Raedt et al. 2016; Muggleton et al. 2012), it is possible to integrate low-level pattern

recognition based on sensory data with high-level formal specifications. For example,

the Hera project (Lindner et al. 2017) allows for the implementation of several kinds

of (rule-based) moral theory to be captured. Geneth (Anderson and Anderson 2014)

uses inductive logic generalized moral principles from the judgments of ethicists about

particular ethical dilemmas, with the system’s performance being evaluated using an

ethical Turing test. On the formalization side, study of moral concepts has long been a

favored topic in the knowledge representation community (Conway and Gawronski 2013;

Alexander and Moore 2016; Czelakowski 1997; Hooker and Kim 2018), that can be further

coupled against notions of beliefs, desires and intentions (Broersen et al. 2001; Georgeff

et al. 1998). Finally, closer to the thrust of this paper, (Pagnucco et al. 2021) formal-

ize consequentialist and deontological ethical principles in terms of “desirable” states in

the epistemic situation calculus, and (Classen and Delgrande 2020) formalize obligations

using situation calculus programs.

2 Contributions

Our thesis, in essence, is this: complementing the vibrant work in the ML community,

it is worthwhile to study ethical notions in formal languages. This serves three broad

objectives:

A. We can identify what the system needs to know versus what is simply true (Reiter

2001b; Halpern and Moses 2014) and better articulate how this knowledge should

impact the agent’s choices. It is worth remarking that epistemic logic has served

as the foundation for investigating the impact of knowledge on plans and protocols

(Levesque 1996; Lespérance et al. 2000; Halpern et al. 2009).

B. We implicitly understand that we can further condition actions against background

knowledge (such as ontologies and databases), as well as notions such as intentions

and obligations (Sardina and Lespérance 2010).

C. We can position the system’s actions not simply as a single-shot decision or pre-

diction, as is usual in the ML literature, but as a sequence of complex events that

depend on observations and can involve loops and recursion: that is, in the form of

programs (Levesque et al. 1997).

It would beyond the scope of a single paper to illustrate the interplay between the

three objectives except in some particular application scenario. Thus, we focus on the

interplay between A and C in the sense of advocating a “research agenda,” rather than

a single technical result, or a demonstration of a single application. In particular, what
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we seek to do is a formal reconstruction of some fairness definitions, not so much to

replace existing definitions but to ground their application in an epistemic, dynamic

setting. Consequently we look into three notions: fairness through unawareness, demo-

graphic parity and counterfactual fairness, and formalize these in the epistemic situation

calculus (Scherl and Levesque 2003; Lakemeyer and Levesque 2011). In particular, our

contributions are as follows:

• Consider the notion of fairness through unawareness (FTU) in machine learning.

Here, a “fair” classifier is one that predicts outputs by not using any information

about protected attributes. In a dynamic setting, imagine a (virtual or physical)

robot that is acting in service of some objective φ. For example, in a loan setting,

which is classically treated as a static model in machine learning, we can expect

intelligent automated agents to carry out many operations: check the yearly budget

of the bank to determine the total amount to be loaned, rank applicants based on

risk, determine the impact of recession, and ultimately synthesize a plan to achieve

φ (loan approval), but by virtue of FTU, it should never be the case that the agent

has had access to protected information. In this paper, we provide a simple but

general definition to capture that idea, in a manner that distinguishes what is true

from what is known by the agent.

• Analogously, consider the notion of demographic parity (DP). It is understood as a

classifier that is equally likely to make a positive prediction regardless of the value

of the protected attribute. For example, the proportion of men who are granted

loans equals the proportion of women granted loans. So, if φ(x) is the granting of a

loan to individual x, how do we capture the notion that the agent has synthesized a

plan that achieves φ(x) for both males as well as females? What would it look like

for planning agents that want to conform to both FTU and DP? What if, instead

of DP, we wished to only look at those granted loans, and among this group, we

did not want the classifier to discriminate based on the individual’s gender? For all

these cases, we provide definitions in terms of the agent’s mental state and action

sequences that the agent knows will achieve φ(x) (Levesque 1996).

• Finally, counterfactual fairness insists that the prediction should not differ if the

individual’s protected attributes take on a different value. For a planning agent to

ensure this, we would need to make sure that deleting facts about the current value

for an individual x’s protected attribute and adding a different value still achieves

φ(x) after the sequence. We characterize this using the notion of forgetting because

we permit, in general, any arbitrary first-order theory for the initial knowledge

base, and not just a database interpreted under the closed-world assumption.

These definitions can be seen to realize a specification for “fair” cognitive robots: that

is, reasoning and planning agents (Lakemeyer and Levesque 2007) that ensure through

the course of their acting that, say, they never gain knowledge about the protected

attributes of individuals, and guarantee that individuals are not discriminated based on

values to these attributes.

It should be clear that our definitions are loosely inspired by the ML notions. And so

our formalization do not argue for one definition over another, nor challenge any existing

definition. We do, however, believe that studying the effects of these definitions in a

dynamic setting provides a richer context to evaluate their appropriateness. Moreover, a
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formalization such as ours lends itself to various types of implementations. For example,

the synthesis of (epistemic) programs and plans (Wang and Zhang 2005; Baral et al.

2017; Muise et al. 2015; Classen et al. 2008; McIlraith and Son 2002) that achieve goals in

socio-technical applications in a fair manner is an worthwhile research agenda. Likewise,

enforcing fairness constraints while factoring for the relationships between individuals

in social networks (Farnadi et al. 2018), or otherwise contextualizing attributes against

other concepts in a relational knowledge base (Aziz et al. 2018; Fu et al. 2020) are also

worthwhile. By stipulating an account in quantified logic, it becomes possible to further

unify such proposals in a dynamic setting.

Logic and fairness. Let us briefly remark on closely related efforts. At the outset,

note that although there has been considerable work on formalizing moral rules, there

is no work (as far as we are aware) on the formalization of fairness and bias in a dy-

namic epistemic setting, where we need to explicate the interaction between actions,

plans and meta-beliefs. However, there is some work that tackles epistemic and logical

aspects.

For example, the work of Kawamoto (2019) considers a statistical epistemic logic and

its use for the formalization of statistical accuracy as well as fairness, including the

criterion of equality of opportunity. There are a few key differences to our work: that

work is motivated by a probabilistic reconstruction of prediction systems by appeal-

ing to distance measures, and so knowledge is defined in terms of accessibility between

worlds that are close enough. The language, moreover, allows for “measurement” vari-

ables that are interpreted statistically. In contrast, our account is not (yet) probabilis-

tic, and if our account were to be extended in that fashion, the most obvious version

would reason about degrees of belief (Bacchus et al. 1999; Belle and Lakemeyer 2017);

see Bacchus et al. (1996) for discussions on the differences between statistical belief

and degrees of belief. Moreover, our account is dynamic, allowing for explicit modali-

ties operators for actions and programs. Consequently, our definitions are about study-

ing how, say, the agent remains ignorant about protected attributes when executing

a plan.

Be that as it may, the work of Kawamoto (2019) leads to an account where fairness

can be expressed as a logical property using predicates for protected attributes, remark-

ably similar in spirit to our approach if one were to ignore actions. This should, in the

very least, suggest that such attempts are very promising, and for the future, it would

be worthwhile to conduct a deeper investigation on how these formalization attempts

can be synthesized to obtain a general probabilistic logical account that combines the

strength of dynamic epistemic languages and statistical measures. (In a related vein to

Kawamoto (2019), Liu and Lorini (2022) seek to axiomatize ML systems for the purpose

of explanations in a modal logic.) An entirely complementary effort is the use of logic for

verifying fair models (Ignatiev et al. 2020), where existing definitions and classifiers are

encoded using logical functions and satisfiability modulo theories.

To summarize, all these differ from our work in that we are attempting to understand

the interplay between bias, action and knowledge, and not really interested in capturing

classifiers as objects in our language. Thus, our work, as discussed above, can be seen as

setting the stage for “fair” cognitive robots. There is benefit to unifying these streams,

which we leave to the future.
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3 A logic for knowledge and action

We now introduce the logic ES (Lakemeyer and Levesque 2004).1 The non-modal

fragment of ES consists of standard first-order logic with =. That is, connectives

{∧, ∀,¬}, syntactic abbreviations {∃,≡,⊃} defined from those connectives, and a supply

of variables {x, y, . . . , u, v, . . .}. Different to the standard syntax, however, is the inclusion

of (countably many) standard names (or simply, names) for both objects and actions R,
which will allow a simple, substitutional interpretation for ∀ and ∃. These can be thought

of as special extra constants that satisfy the unique name assumption and an infinitary

version of domain closure.

Like in the situation calculus, to model immutable properties, we assume rigid pred-

icates and functions, such as IsPlant(x) and father(x) respectively. To model changing

properties, ES includes fluent predicates and functions of every arity, such as Broken(x)

and height(x). Note that there is no longer a situation term as an argument in these

symbols to distinguish the fluents from the rigids. For example, ES also includes distin-

guished fluent predicates Poss and SF to model the executability of actions and capture

sensing outcomes respectively, but they are unary predicates (i.e. in contrast to the clas-

sical situation calculus (Reiter 2001a) because they no longer include situation terms.)

Terms and formulas are constructed as usual. The set of ground atoms P are obtained,

as usual, from names and predicates.

There are four modal operators in ES: [a],�,K and O. For any formula α, we read

[a]α,�α and Kα as “α holds after a,” “α holds after any sequence of actions” and “α is

known,” respectively. Moreover, Oα is to be read as “α is only-known.” Given a sequence

δ = a1 · · · ak, we write [δ]α to mean [a1] · · · [ak]α.
In classical situation calculus parlance, we would use [a]α to capture successor situa-

tions as properties that are true after an action in terms of the current state of affairs.

Together with the � modality, which allows to capture quantification over situations

and histories, basic action theories can be defined. Like in the classical approach, one is

interested in the entailments of the basic action theory.

Semantics. Recall that in the simplest setup of the possible-worlds semantics, worlds

mapped propositions to {0, 1}, capturing the (current) state of affairs. ES is based on

the very same idea, but extended to dynamical systems. So, suppose a world maps P
and Z to {0, 1}.2 Here, Z is the set of all finite sequences of action names, including the

empty sequence 〈〉. Let W be the set of all worlds, and e ⊆ W be the epistemic state. By

a model, we mean a triple (e, w, z) where z ∈ Z. Intuitively, each world can be thought

of as a situation calculus tree, denoting the properties true initially but also after every

sequence of actions.W is then the set of all such trees. Given a triple (e, w, z), w denotes

the real world, and z the actions executed so far.

1 Our choice of language may seem unusual, but it is worth noting that this language is a modal syn-
tactic variant of the classical epistemic situation that is better geared for reasoning about knowledge
(Lakemeyer and Levesque 2011). But more importantly, it can be shown that reasoning about ac-
tions and knowledge reduces to first-order reasoning via the so-called regression and representation
theorems (Lakemeyer and Levesque 2004). (For space reasons, we do not discuss such matters further
here.) There are, of course, many works explicating the links between the situation calculus and logic
programming; see, for example, Lee and Palla (2012). See also works that link the situation calculus
to planning, such as Classen et al. (2008); Belle (2022); Sardina et al. (2004); Baier et al. (2007).

2 We need to extend the mapping to additionally interpret fluent functions and rigid symbols, omitted
here for simplicity.
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To account for how knowledge changes after (noise-free) sensing, one defines w′ ∼z w,

which is to be read as saying “w′ and w agree on the sensing for z,” as follows:

• if z = 〈〉, w′ ∼z w for every w′; and
• w′ ∼z·a w iff w′ ∼z w, w

′[Poss(a), z] = 1 and w′[SF (a), z] = w[SF (a), z].

This is saying that initially, we would consider all worlds compatible, but after actions,

we would need the world w′ to agree on the executability of actions performed so far as

well as agree on sensing outcomes. The reader might notice that this is clearly a reworking

of the successor state axiom for the knowledge fluent in (Scherl and Levesque 2003).

With this, we get a simply account for truth. We define the satisfaction of formulas

wrt (with respect to) the triple (e, w, z), and the semantics is defined inductively:

• e, w, z |= p iff p is an atom and w[p, z] = 1;

• e, w, z |= α ∧ β iff e, w, z |= α and e, w, z |= β;

• e, w, z |= ¬α iff e, w, z �|= α;

• e, w, z |= ∀xα iff e, w, z |= αx
n for all n ∈ R;

• e, w, z |= [a]α iff e, w, z · a |= α;

• e, w, z |= �α iff e, w, z · z′ |= α for all z′ ∈ Z;
• e, w, z |= Kα iff for all w′ ∼z w, if w

′ ∈ e, e, w′, z |= α; and

• e, w, z |= Oα iff for all w′ ∼z w, w
′ ∈ e, iff e, w′, z |= α.

We write Σ |= α (read as “Σ entails α”) to mean for every M = (e, w, 〈〉), if M |= α′

for all α′ ∈ Σ, then M |= α. We write |= α (read as “α is valid”) to mean {} |= α.

Properties. Let us first begin by observing that given a model (e, w, z), we do not

require w ∈ e. It is easy to show that if we stipulated the inclusion of the real world in the

epistemic state, Kα ⊃ α would be true. That is, suppose Kα. By the definition above,

w is surely compatible with itself after any z, and so α must hold at w. Analogously,

properties regarding knowledge can be proven with comparatively simpler arguments

in a modal framework, in relation to the classical epistemic situation calculus. Valid

properties include:

1. �(K(α) ∧K(α ⊃ β) ⊃K(β));

2. �(K(α) ⊃K(K(α)));

3. �(¬K(α) ⊃K(¬K(α)));

4. �(∀x. K(α) ⊃K(∀x. α)); and
5. �(∃x. K(α) ⊃K(∃x. α)).

Note that such properties hold over all possible action sequences, which explains the

presence of the � operator on the outside. The first is about the closure of modus

ponens within the epistemic modality. The second and third are on positive and negative

introspection. The last two reason about quantification outside the epistemic modality,

and what that means in terms of the agent’s knowledge. For example, item 5 says that

if there is some individual n such that the agent knows Teacher(n), it follows that

the agent believes ∃xTeacher(x) to be true. This may seem obvious, but note that

the property is really saying that the existence of an individual in some possible world

implies that such an individual exists in all accessible worlds. It is because there is a fixed

domain of discourse that these properties come out true; they are referred to the Barcan

formula.
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As seen above, the logic ES allows for a simple definition of the notion of only-knowing

in the presence of actions (Levesque 1990), which allows one to capture both the beliefs

as well as the non-beliefs of the agent. Using the modal operator O for only-knowing, it

can be shown that Oα |= Kβ if α |= β but Oα |= ¬Kβ if α �|= β for any non-modal

{α, β} . That is, only-knowing a knowledge base also means knowing everything entailed

by that knowledge base. Conversely, it also means not believing everything that is not

entailed by the knowledge base. In that sense, K can be seen as an “at least” epistemic

operator, and O captures both at least and “at most” knowing. This can be powerful to

ensure, for example, that the agent provably does not know protected attributes.

We will now consider the axiomatization of a basic action theory in ES. But before

explaining how successor state axioms are written, one might wonder whether a succes-

sor state axiom for K is needed, as one would for Knows in the epistemic situation

calculus. It turns out because the compatibility of the worlds already accounted for the

executability of actions and sensing outcomes in accessible worlds, such an axiom is

actually a property of the logic:

|= �[a]K(α) ≡ (SF (a) ∧K(SF (a) ⊃ [a]α)) ∨ (¬SF (a) ∧K(¬SF (a) ⊃ [a]α)).

(As is usual, free variables are implicitly quantified from the outside.) Thus, what will

be known after an action is understood in terms of what was known previously together

with the sensing outcome. The example below will further clarify how SF works.

Basic action theories. To axiomatize the domain, we consider the analogue of the

basic action theory in the situation calculus (Reiter 2001a). It consists of:

• axioms that describe what is true in the initial states, as well as what is known

initially;

• precondition axioms that describe the conditions under which actions are exe-

cutable using a distinguished predicate Poss;

• successor state axioms that describe the conditions under which changes happen

to fluents after actions (incorporating Reiter’s monotonic solution to the frame

problem); and

• sensing axioms that inform the agent about the world using a distinguished predi-

cate SF.

Note that foundational axioms as usually considered in Reiter’s variant of the situation

calculus (Reiter 2001a) are not needed as the tree-like nature of the situations is baked

into the semantics.

Let us consider a simple example of a loan agency set up for the employees of a

company. For simplicity, assume actions are always executable: �Poss(a) = true. Let

us also permit a sensing axiom that allows one to look up if an individual is male:

�SF (a) ≡ (a = isMale(x)∧Male(x))∨a �= isMale(x). For simplicity, we assume binary

genders, but it is a simple matter of using a predicate such as Gender(x, y) instead to

allow individuals x to take on gender y from an arbitrary set.

To now consider successor state axioms, let us suppose having a loan is simply a matter

of the manager approving, and unless the manager denies it at some point, the individual

continues to hold the loan. For illustration purposes, we will consider a company policy

that approves loans for those with high salaries. High salaries are enabled for an “eligible”

individual if they are promoted by the manager, and salaries remain high unless they get

https://doi.org/10.1017/S1471068423000157 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000157


872 V. Belle

demoted. Finally, we model eligibility and maleness as a rigid, but this is not necessary,

and we can permit actions that updates the gender of individuals in the database. These

are formalized as the axioms below, where the left hand side of the equivalence captures

the idea that for every sequence of actions, the effect of doing a on a predicate is given

by the right hand side of the equivalence.

�[a]hasLoan(x) ≡ a = approve(x) ∨ (hasLoan(x) ∧ a �= deny(x)).

�[a]highSalary(x)≡(a=promote(x) ∧ Eligible(x)) ∨ (highSalary(x) ∧ a �=demote(x)).
�[a]Eligible(x) ≡ Eligible(x).
�[a]Male(x) ≡Male(x).

We will lump the successor state, precondition and sensing axioms as Σdyn . The sentences

that are true initially will be referred to by Σ0; however, the agent cannot be expected

to know everything that is true, and so let Σ′0 be what is believed initially. It may seem

natural to let Σ′0 ⊆ Σ0, but that is not necessary. The agent might be uncertain about

what is true (e.g. Σ0 might have p but Σ′0 has p ∨ q instead).3 However, for simplicity,

we will require that agents at least believe the dynamics works as would the real world.

Therefore, we consider entailments wrt the following background theory :

Σ = Σ0 ∧ Σdyn ∧O(Σ′0 ∧ Σdyn). (1)

In our example, let us suppose: Σ0 = {Male(ni),¬Male(n′i), Eligible(ni),¬Eligible(n′i) |
i ∈ N} whereas, what is believed by the agent initially is: Σ′0 = {Eligible(ni),
¬Eligible(n′i) | i ∈ N} So there are two groups of individuals, ni and n′i, the first

male and the second female, the first considered eligible and the second not considered

eligible. All that the agent knows is the eligibility of the individuals. Note that N here

is any set, possibly an infinite one, that is, the language allows N = N. For ease of read-

ability, however, we let N = {1} in our examples below, and we write n1 as n and n′1
as n′.4

It is worth quickly remarking that many features of the language are omitted here

for simplicity. For example, ES can be extended with second-order variables (Classen

and Lakemeyer 2008), which allows one to consider the equivalent of GOLOG programs

(Levesque et al. 1997). Likewise, notions of probabilistic actions (Bacchus et al. 1999),

epistemic achievability (Lespérance et al. 2000), and causality (Batusov and Soutchanski

2018) in addition to studying program properties (Classen 2018) are interesting dimen-

sions to explore in the fairness context.

Forgetting. In some of the definitions of fairness, we will need to force the set-

ting where information about protected attributes is forgotten. While standard ML ap-

proaches propose to do this via column deletion (e.g. remove all entries for the gender

3 If the agent believes facts that are conflicted by observations about the real world, beliefs may need
to be revised (Delgrande and Levesque 2012), a matter we ignore for now. Our theory of knowledge is
based on knowledge expansion where sensing ensures that the agent is more certain about the world
(Scherl and Levesque 2003; Reiter 2001a).

4 Note that although the language has infinitely many constants, a finite domain can be enforced using
domain relativization. For example, let: ∀x(Individual(x) ≡ x = john∨ . . .∨x = jane). This declares
finitely many individuals. Then instead of saying ∃x. Eligible(x), which in general means that any
one of the infinitely many constants is eligible, we would write: ∃x(Individual(x) ∧ Eligible), which
declares that only one from {john, . . . , jane} is eligible.
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attribute), a richer notion is arguably needed for a first-order knowledge base. We appeal

to the notion of forgetting (Lin and Reiter 1994).

Lin and Reiter defined the notion of forgetting, which is adapted to ES below. They

show that while forgetting ground atoms is first-order definable, forgetting relations needs

second-order logic. We only focus on the case of atoms, but it would interesting to study

how fairness notions are affected when protected attributes are completely absent from

a theory.

Suppose S denotes a finite set of ground atoms. We write M(S) to mean the set of

all truth assignments to S. Slightly abusing notation, given a ground atom p, we write

w′ ∼p w to mean that w′ and w agree on everything initially, except maybe p. That is,

for every atom q �= p, w[q, 〈〉] = w′[q, 〈〉]. Next, for every action sequence z �= 〈〉 and
every atom q′, w[q′, z] = w′[q′, z].

Definition. Given a formula φ not mentioning modalities, we say φ′ is the result of

forgetting atom p, denoted Forget(φ, p), if for any world w, w |= φ′ iff there is a w′

such that w′ |= φ and w ∼p w
′. Inductively, given a set of atoms {p1, . . . , pk}, define

Forget(φ, {p1, . . . , pk}) as Forget(Forget(φ, p1), . . . , pk).
It is not hard to show that forgetting amounts to setting an atom to true everywhere

or setting it false everywhere. In other words:

Proposition. Forget(φ, S) ≡ ∨
M∈M(s) φ[M ], where φ[M ] is equivalent to φ∧∧i(pi = bi)

understood to mean that the proposition pi is accorded the truth value bi ∈ {0, 1} by M.

Abusing notation, we extend the notion of forgetting of an atom p for basic action

theories and the background theory as follows in applying it solely to what is true/known

initially:

• Forget(Σ0 ∧ Σdyn , p) = Forget(Σ0, p); and

• Forget(Σ, p) = Forget(Σ0, p) ∧ Σdyn ∧O(Forget(Σ′0, p) ∧ Σdyn).

One of the benefits of lumping the knowledge of the agent as an objective formula in

the context of the only-knowing operator is the relatively simple definition of forgetting.

Proposition. Suppose φ is non-modal. Suppose p is an atom. For every objective ψ such

that Forget(φ, p) |= ψ it is also the case that O(Forget(φ, p)) |= Kψ.

Because Oφ |= Kψ for every {φ, ψ} provided φ |= ψ, the above statement holds imme-

diately. In so much as we are concerned with a non-modal initial theory and the effects of

forgetting, our definition of Forget(Σ, p) above (notational abuse notwithstanding) suf-

fices. In contrast, forgetting with arbitrary epistemic logical formulas is far more involved

(Zhang and Zhou 2009).

4 Existing notions

As discussed, we will not seek to simply retrofit existing ML notions in a logical language;

rather we aim to identify the principles and emphasize the provenance of unfair actions

in complex events. Nonetheless, it is useful to revisit a few popular definitions to guide

our intuition.

Fairness through unawareness. Fairness through unawareness (FTU) is the sim-

plest definition of fairness; as its name suggests, an algorithm is “fair” if it is unaware of

the protected attribute ap of a particular individual when making a prediction (Kusner

et al. 2017).
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Definition. For some set of attributes X any mapping f : X −→ ŷ, where ap �∈ X

satisfies fairness through unawareness (Kusner et al. 2017). (Assume y denotes the true

label.)

This prevents the algorithm learning direct bias on the basis of the protected attribute,

but does not prevent indirect bias, which the algorithm can learn by exploiting the

relationship between other training variables and the protected attribute (Pedreschi et al.

2008; Hardt et al. 2016). Moreover, if any of the training attributes are allocated by

humans there is the potential for bias to be introduced.

Statistical measures of fairness. Rather than defining fairness in terms of the scope

of the training data, much of the existing literature instead assesses whether an algorithm

is fair on the basis of a number of statistical criteria that depend on the predictions made

by the algorithm (Hardt et al. 2016; Kusner et al. 2017; Zemel et al. 2013). One widely

used and simple criterion is demographic parity (DP). In the case that both the predicted

outcome and protected attribute ap are both binary variables, a classifier is said to satisfy

predictive parity (Hardt et al. 2016) if: P (ŷ = 1|ap = 1) = P (ŷ = 1|ap = 0). By this

definition, a classifier is considered fair if it is equally likely to make a positive prediction

regardless of the value of the protected attribute ap.

Fairness and the individual. Another problem with statistical measures is that,

provided that the criterion is satisfied, an algorithm will be judged to be fair regardless of

the impact on individuals. In view of that, various works have introduced fairness metrics

which aim to ensure that individuals are treated fairly, rather than simply considering

the statistical impact on the population as a whole (Dwork et al. 2011; Kusner et al.

2017). Counterfactual fairness (CF), for example, was proposed as a fairness criterion in

Kusner et al. (2017). The fundamental principle behind this definition of fairness is that

the outcome of the algorithm’s prediction should not be altered if different individuals

within the sample training set were allocated different values for their protected attributes

(Kusner et al. 2017). This criterion is written in the following form: P (ŷAp←ap
|A =

a,X = x) = P (ŷAp←a′
p
|A = a,X = x) ∀y, a′. The notation ŷ ←Ap←ap

is understood as

“the value of ŷ if Ap had taken the value ap” (Kusner et al. 2017).

5 Formalizing Fairness

At the outset, let us note a few salient points about our formalizations of FTU, DP and

CF:

1. Because we are not modeling a prediction problem, our definitions below should

be seen as being loosely inspired by existing notions rather that faithful recon-

structions. In particular, we will look at “fair outcomes” after a sequence of ac-

tions. Indeed, debates about problems with the mathematical notions of fairness in

single-shot predictions problems are widespread (Dwork et al. 2011; Kusner et al.

2017; Zafar et al. 2017a), leading to recent work on looking at the long-term ef-

fects of fairness (Creager et al. 2020). However, we are ignoring probabilities in the

formalization in current work only to better study the principles behind the above

notions – we suspect with a probabilistic epistemic dynamic language (Bacchus

et al. 1999), the definitions might resemble mainstream notions almost exactly and

yet organically use them over actions and programs, which is attractive.
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2. The first-order nature of the language, such as quantification, will allow us to easily

differentiate fairness for an individual versus groups. In the mainstream literature,

this has to be argued informally, and the intuition grasped meta-linguistically.

3. Because we model the real world in addition the agent’s knowledge, we will be able

to articulate what needs to be true vs just believed by the agent. In particular, our

notion of equity will refer to the real world.

4. De-re vs de-dicto knowledge will mean having versus not having information about

protected attributes respectively. Sensing actions can be set up to enable de-re

knowledge if need be, but it is easy to see in what follows that de-dicto is preferable.

5. Action sequences can make predicates true, and this will help us think about equity

in terms of balancing opportunities across instances of protected attributes (e.g.

making some property true so that we achieve gender balance).

Fairness through unawareness. Let us begin with FTU: recall that it requires that

the agent does not know the protected attributes of the individuals. To simplify the

discussion, let us assume we are concerned with one such attribute θ(x), say, Male(x),

in our examples for concreteness. We might be interested in achieving hasLoan(x) or

highSalary(x), for example, either for all x or some individual.

Definition. A sequence δ = a1 · · · ak implements FTU for φ wrt protected attribute

θ(x) iff Σ |= [δ]Kφ; and for every δ′ ≤ δ: Σ |= [δ′]¬∃x(Kθ(x)).

The attractiveness of a first-order formalism is that in these and other definitions below

where we quantify over all individuals, it is immediate to limit the applicability of the

conditions wrt specific individuals. Suppose n is such an individual. Then:

Definition. A sequence δ = a1 · · · ak implements FTU for φ wrt attribute θ(x) for

individual n iff (a) Σ |= [δ]Kφ; and (b) for every δ′ ≤ δ: Σ |= [δ′]¬Kθ(n).

Example. Consider Σ from (1), Male(x) as the protected attribute, and suppose δ =

approve(n) · approve(n′). It is clear that δ implements FTU for both the universal φ =

∀xhasLoan(x) as well as an individual φ = hasLoan(n). Throughout the history, the

agent does not know the gender of the individual.

Before turning to other notions, let us quickly reflect on proxy variables. Recall that in

the ML literature, these are variables that indirectly provide information about protected

attributes. We might formalize this using entailment:

Definition. Given a protected attribute θ(x) and theory Σ, let the proxy set

Proxy(θ(x)) be the set of predicates {η1(x), . . . ηk(x)} such that: Σ |= ∀x(ηi(x) ⊃ θ(x)),
for i ∈ {1, . . . , k}.
That is, given the axioms in the background theory, ηi(x) tells us about θ(x).

Example. Suppose the agent knows the following sentence: ∀x(EtonForBoys(x) ⊃
Male(x)). Let us assume EtonForBoys(x) is a rigid, like Male(x). Let us also assume

that K(EtonForBoys(n)). It is clear that having information about this predicate for

n would mean the agent can infer that n is male.

The advantage of looking at entailment in our definitions is that we do not need to

isolate the proxy set at all, because whatever information we might have the proxy set

and its instances, all we really need to check is that Σ �|= ∃xKθ(x).5

5 With this discussion, we do not mean to insist that analyzing “relevant” predicates for θ(x) is a
pointless endeavor. Rather we only want to point out that regardless of the information available to
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Demographic parity. Let us now turn to DP. In the probabilistic context, DP is a

reference to the proportion of individuals in the domain: say, the proportion of males

promoted is the same as the proportion of females promoted. In logical terms, although

FTU permitted its definition to apply to both groups and individuals, DP, by definition,

is necessarily a quantified constraint. In contrast, CF will stipulate conditions solely on

individuals.

Definition. A sequence δ = a1 · · · ak implements DP for φ(x) wrt attribute θ(x) iff:

Σ |= [δ]K((∀xθ(x) ⊃ φ(x)) ∧ (∀x¬θ(x) ⊃ φ(x))).
To reiterate, in probabilistic terms, the proportion of men who are promoted equals

the proportion of women who are promoted. In the categorial setting, the agent knows

that all men are promoted as well as that all women are promoted.

Example. Consider δ = approve(n) · approve(n′). It implements DP for hasLoan(x)

wrt attribute isMale(x).

Note that even though the agent does not know the gender of the individuals, in every

possible world, regardless of the gender assigned to an individual n in that world, n has

the loan. In other words, all men and all women hold the loan. This is de-dicto knowledge

of the genders, and it is sufficient to capture the thrust of DP.

We might be tempted to propose a stronger requirement, stipulating de-re knowledge:

Definition. A sequence δ = a1 · · · ak implements strong DP for φ(x) wrt attribute θ(x)

iff: (a)Σ |= [δ]K((∀xθ(x) ⊃ φ(x)) ∧ (∀x¬θ(x) ⊃ φ(x))); and (b) Σ |= [δ]∀x(Kθ(x) ∨
K¬θ(x)).

That is, the agent knows whether x is a male or not, for every x.

Example. Consider δ = isMale(n)·isMale(n′)·approve(n)·approve(n′). It implements

strong DP for hasLoan(x) wrt attribute isMale(x). Of course, by definition, δ also

implements DP for hasLoan(x).

FTU-DP. In general, since we do not wish the agent to know the values of protected

attributes, vanilla DP is more attractive. Formally, we may impose a FTU-style constraint

of not knowing on any fairness definition. For example,

Definition. A sequence δ = a1 · · · ak implements FTU-DP for φ(x) wrt attribute θ(x)

iff: (a) Σ |= [δ]K((∀xθ(x) ⊃ φ(x)) ∧ (∀x¬θ(x) ⊃ φ(x))); and (b) for every δ′ ≤ δ:

Σ |= [δ′]¬∃xKθ(x).

Again, it is worth remarking that mixing and matching constraints is straightforward

in a logic, and the semantical apparatus provides us with the tools to study the resulting

properties.

Example. The example for de-dicto DP is applicable here too. Consider δ = approve(n)·
approve(n′). It implements FTU-DP for hasLoan(x) wrt attribute isMale(x). That

is, (a) Σ �|= ∃xKθ(x); (b) Σ �|= [approve(n)]∃xKθ(x); and (c) Σ �|= [approve(n) ·
approve(n′)]∃xKθ(x).

Reversing the actions, not surprisingly, δ′ = approve(n′) · approve(n) does not affect

the matter: δ′ also implements FTU-DP. Had the sequence including sensing, a reversal

could matter.

the agent, as long as we check that it is actually ignorant about the gender, other relevant predicates
may not matter. Of course, a biased agent can enable actions that favors individuals based on such
proxy predicates instead, but in that case, such proxy predicates would also need to be included in
the protected attribute list.
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One can also consider situations where some knowledge of protected attributes is use-

ful to ensure there is parity but to also account for special circumstances. In this, the

protected attribute itself could be “hidden” in a more general class, which is easy enough

to do in a relational language.

Example. Suppose we introduce a new predicate for underrepresented groups. We might

have, for example: ∀x(¬Male(x) ∨ . . . ∨ RaceMinority(x) ⊃ Underrepresented(x)).

This could be coupled with a sensing axiom of the sort: �SF (checkU(x)) ≡
Underrepresented(x). Add the predicate definition and the sensing axioms to the initial

theories and dynamic axioms in Σ respectively. Consider δ = checkU(n) · checkU(n′) ·
approve(n) · approve(n′). Then δ implements strong DP for hasLoan(x) wrt attribute

Underrepresented(x). That is, both represented and underrepresented groups have

loans.

Equality of opportunity. One problem with DP is that (unless the instance rate of

y = 1 happens to be the same in both the ap = 0 group and ap = 1 group), the classifier

cannot achieve 100% classification accuracy and satisfy the fairness criterion simultane-

ously (Hardt et al. 2016). Also, there are scenarios where this definition is completely

inappropriate because the instance rate of y = 1 differs so starkly between different de-

mographic groups. Finally, there are also concerns that statistical parity measures fail

to account for fair treatment of individuals (Dwork et al. 2011). Nonetheless it is often

regarded as the most appropriate statistical definition when an algorithm is trained on

historical data (Zafar et al. 2017b; Zemel et al. 2013).

A modification of demographic parity is “equality of opportunity” (EO). By this def-

inition, a classifier is considered fair if, among those individuals who meet the positive

criterion, the instance rate of correct prediction is identical, regardless of the value of the

protected attribute (Hardt et al. 2016). This condition can be expressed as (Hardt et al.

2016): P (y = 1|ap = a, ŷ = 1) = P (y = 1|ap = a′, ŷ = 1) ∀ a, a′. In (Hardt et al. 2016),

it is pointed out that a classifier can simultaneously satisfy equality of opportunity and

achieve perfect prediction whereby ŷ = y (prediction=true label) in all cases.

In the logical setting, this can be seen as a matter of only looking at individuals that

satisfy a criterion, such as being eligible for promotion or not being too old to run for

office.

Definition. A sequence δ implements EO for φ(x) wrt attribute θ(x) and criterion η(x)

iff:

Σ |= [δ]K((∀x(η(x) ∧ θ(x)) ⊃ φ(x)) ∧ (∀x¬(η(x) ∧ θ(x)) ⊃ φ(x))).
Example. Consider δ = promote(n) · promote(n′), let φ(x) = highSalary(x) and the

criterion η(x) = Eligible(x). Although the promote action for n′ does not lead her to

obtain a high salary, because we condition the definition only for eligible individuals, δ

does indeed implement EO. Note again that the agent does not know the gender for n′,
but in every possible world, regardless of the gender n′ is assigned, n′ is known to be

ineligible. In contrast, n is eligible and δ leads to n having a high salary. That is, every

eligible male now has high salary, and every eligible female also has high salary. (It just

so happens there are no eligible females, but we will come to that.)

In general, the equality of opportunity criterion might well be better applied in in-

stances where there is a known underlying discrepancy in positive outcomes between two

different groups, and this discrepancy is regarded as permissible. However, as we might
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observe in our background theory, there is systematic bias in that no women is considered

eligible.

Counterfactual fairness. Let us now turn to CF. The existing definition forces us

to consider a “counterfactual world” where the protected attribute values are reversed,

and ensure that the action sequence still achieves the goal.

Definition. A sequence δ = a1 · · · ak implements CF for φ wrt attribute θ(x) for indi-

vidual n iff:

• Σ |= (θ(n) = b) for b ∈ {0, 1} and Σ |= [δ]Kφ; and

• Forget(Σ, θ(n)) ∧ (θ(n) �= b) |= [δ]Kφ.

Example. Let us consider the case of loan approvals. Consider the individual n and

the action δ = approve(n). Let φ = hasLoan(n), and the protected attribute Male(x).

Clearly Σ |= Male(n), and indeed Σ |= [δ]hasLoan(n). If we consider Σ′ where the

gender for n is swapped, it is still the case that Σ′ |= [δ]hasLoan(n). Thus δ implements

CF for hasLoan(n) wrt Male(n).

The definition of CF is well-intentioned, but does not quite capture properties that

might enable equity. Indeed, there is a gender imbalance in the theory, in the sense that

only the male employee is eligible for promotions and the female employee can never

become eligible. Yet CF does not quite capture this. Let us revisit the example with

getting high salaries:

Example. Consider δ = promote(n) for property highSalary(n) wrt attributeMale(n).

It is clear that δ implements CF because the gender is irrelevant given that n is el-

igible. However, given δ′ = promote(n′), we see that δ′ does not implement CF for

highSalary(n′) wrt Male(n′). Because n′ is not eligible, highSalary(n′) does not be-

come true after the promotion.

Equity. Among the many growing criticisms about formal definitions of fairness is that

notions such as CF fail to capture systemic injustices and imbalances. We do not suggest

that formal languages would address such criticisms, but they provide an opportunity to

study desirable augmentations to the initial knowledge or action theory.

Rather than propose a new definition, let us take inspiration from DP, which seems

fairly reasonable except that it is the context of what the agent knows. Keeping in mind

a desirable “positive” property such as Eligible(x), let us consider DP but at the world-

level:

Definition. Given a theory Σ, protected attribute θ(x), positive property η(x), where

x is the individual, define strong equity : Σ |= ∀x(θ(x) ⊃ η(x)) ∧ ∀x(¬θ(x) ⊃ η(x)).
In general, it may not be feasible to ensure that properties hold for all instances of

both genders. For example, there may be only a handful of C-level executives, and we

may wish that there are executives of both genders.

Definition. Given a theory Σ, protected attribute θ(x), positive property η(x), where

x is the individual, define weak equity : Σ |= ∃x(θ(x) ∧ η(x)) ∧ ∃x(¬θ(x) ∧ η(x)). It is

implicitly assumed that the set of positive and negative instances for θ(x) is non-empty:

that is, assume the integrity constraint: Σ |= ∃x, y(θ(x) ∧ ¬θ(y)).
We assume weak equity and focus on FTU below. The definitions could be extended

to strong equity or other fairness notions depending on the modeling requirements.
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Definition. A sequence δ = a1 · · · ak implements equitable FTU for φ wrt protected

attribute θ(x) and property η(x) iff (a) either weak equity holds in Σ and δ implements

FTU; or (b) δ implements equitable FTU for φ wrt θ(x) and η(x) for the updated theory

Forget(Σ, S), where S = {η(ni) | i ∈ N} .
Note that we are assuming that N is finite here because we have only defined forgetting

wrt finitely many atoms. Otherwise, we would need a second-order definition.

Example. Consider δ = promote(n) · promote(n′) for goal φ = ∀x(highSalary(x))
wrt protected attribute Male(x) and property Eligible(x). It is clear that weak equity

does not hold for Σ because there is a female who is not eligible. In this case, consider

Σ′ = Forget(Σ, S) where S = {Eligible(n), Eligible(n′)} . And with that, Σ′ also does

not mention that n is eligible, so the promotion actions does not lead to anyone having

high salaries. So δ does not enable knowledge of φ.

Example. Let us consider Σ′ that is like Σ except that Eligible(x) is not rigid, and can

be affected using the action make(x): �[a]Eligible(x) ≡ Eligible(x) ∨ (a = make(x)).

That is, either an individual is eligible already or the manager makes them. Of course,

δ = promote(n)·promote(n′) from above still does not implement equitable FTU, because

we have not considered any actions yet to make individuals eligible. However, consider

δ′ = make(n) · make(n′) · promote(n) · promote(n′). Because Σ does not satisfy weak

equity, we turn to the second condition of the definition. On forgetting, no one is eligible

in the updated theory, but the first two actions in δ′ makes both n and n′ eligible, after
which, they are both promoted. So δ′ enables knowledge of ∀x(highSalary(x)). Thus,
the actions have made clear that eligibility is the first step in achieving gender balance,

after which promotions guarantee that there are individuals of both genders with high

salaries.

6 Conclusions

In this paper, we looked into notions of fairness from the machine learning literature,

and inspired by these, we attempted a formalization in an epistemic logic. Although

we limited ourselves to categorical knowledge and noise-free observations, we enrich the

literature by considering actions. Consequently we looked into three notions: fairness

through unawareness, demographic parity and counterfactual fairness, but then expanded

these notions to also tackle equality of opportunity as well as equity. We were also able

to mix and match constraints, showing the advantage of a logical approach, where one

can formally study the properties of (combinations of) definitions. Using a simple basic

action theory we were nonetheless able to explore these notions using action sequences.

As mentioned earlier, this is only a first step and as argued in works such as Pagnucco

et al. (2021); Dehghani et al. (2008); Halpern and Kleiman-Weiner (2018) there is much

promise in looking at ethical AI using rich logics. In fact, we did not aim to necessarily

faithfully reconstruct existing ML notions in this paper but rather study underlying prin-

ciples. This is primarily because we are not focusing on single-shot prediction problems

but how actions, plans and programs might implement fairness and de-biasing. The fact

that fairness was defined in terms of actions making knowledge of the goal true, exactly

as one would in planning (Levesque 1996), is no accident.

State-of-the-art analysis in fairness is now primarily based on false positives and false

negatives (Verma and Rubin 2018). So we think as the next step, a probabilistic language
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such as Bacchus et al. (1999) could bring our notions closer to mainstream definitions,

but now in the presence of actions. In the long term, the goal is to logically capture bias

in the presence of actions as well as repeated harms caused by systemic biases (Creager

et al. 2020). Moreover, the use of logics not only serve notions such as verification and

correctness, but as we argue, could also provide a richer landscape for exploring ethical

systems, in the presence of background knowledge and context. This would enable the

use of formal tools (model theory, proof strategies and reasoning algorithms) to study

the long-term impact of bias while ensuring fair outcomes throughout the operational

life of autonomous agents embedded in complex socio-technical applications.

Of course, a logical study such as ours perhaps has the downside that the language of

the paper is best appreciated by researchers in knowledge representation, and not imme-

diately accessible to a mainstream machine learning audience. But on the other hand,

there is considerable criticism geared at single-shot prediction models for not building

in sufficient context and commonsense. In that regard, operationalizing a system that

permits a declaration of the assumptions and knowledge of the agents and their actions

might be exactly “what the doctor ordered.” See also efforts in causal modeling (Chockler

and Halpern 2004) that are close in spirit.
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