ON ARITHMETIC PROPERTIES OF THE TAYLOR SERIES OF RATIONAL FUNCTIONS

DAVID G. CANTOR

Pólya (3) has shown that if b_{n} is a sequence of algebraic integers and $\sum_{n=0}^{\infty} n b_{n} z^{n}$ is a rational function, then so is $\sum_{n=0}^{\infty} b_{n} z^{n}$. This result was generalized by Uchiyama (5) who showed that one may replace the assumption that the b_{n} are algebraic integers by the assumption that the b_{n} lie in a finitely generated submodule of the complex numbers, and by the author (1) who showed that if p is a non-zero polynomial with complex coefficients and if b_{n} is a sequence of algebraic integers such that $\sum_{n=0}^{\infty} p(n) b_{n} z^{n}$ is a rational function, then so is $\sum_{n=0}^{\infty} b_{n} z^{n}$. Our aim in this note is to give a common generalization of all of these theorems.

Let R be the integral closure, in the field of complex numbers \mathbf{C}, of a finitely generated subring of \mathbf{C}.

Theorem. Suppose that b_{n} is a sequence of elements of R and that p is a nonzero polynomial with complex coefficients. If $\sum_{n=0}^{\infty} p(n) b_{n} z^{n}$ is a rational function, then so is $\sum_{n=0}^{\infty} b_{n} z^{n}$.

Note that the theorem proved in (1) is the special case of the above theorem for which R is the ring of algebraic integers and that Uchiyama's theorem is obtained from the case $p(n)=n$ by observing that a module generated by $x_{1}, x_{2}, \ldots, x_{n}$ is contained in the integral closure of the ring generated by $x_{1}, x_{2}, \ldots, x_{n}$.

If K is an algebraic number field and S is a finite set of valuations of K containing all Archimedian valuations, we shall say, as usual, that $x \in K$ is an S-integer of K if $|x|_{0} \leqq 1$ for all valuations v of K not in S. The following is a slightly stronger version of (1, Lemma 2).

Lemma 1. Suppose that $\alpha \in K$ is not a non-negative integer and b_{n} is a sequence of S-integers of K. Suppose that there exist S-integers $d_{0}, d_{1}, d_{2}, \ldots, d_{r}$ of K such that $d_{0}=1, d_{r} \neq 0$, and

$$
\sum_{j=0}^{\tau} d_{j}(n-j-\alpha) b_{n-j}=0
$$

for all integers $n \geqq r$. Then

$$
\sum_{j=0}^{r} d_{j} b_{n-j}=0
$$

for all integers $n \geqq r$.

[^0]Proof. It is immediate that

$$
\begin{equation*}
\sum_{n=0}^{\infty}(n-\alpha) b_{n} z^{n}=\frac{C(z)}{D(z)}, \tag{1}
\end{equation*}
$$

where

$$
D(z)=\sum_{j=0}^{r} d_{j} z^{j} \quad \text { and } \quad C(z)=\sum_{n=0}^{r-1}\left(\sum_{j=0}^{n} d_{j}(n-j-\alpha) b_{n-j}\right) z^{n} .
$$

The degree of $C(z)$ is less than r, the degree of $D(z)$, and hence we can write the partial fraction expansion

$$
\begin{equation*}
\frac{C(z)}{D(z)}=\sum_{i=1}^{s} \frac{C_{i}(z)}{\left(1-\theta_{i} z\right)^{e_{i}}} \tag{2}
\end{equation*}
$$

where $1 / \theta_{1}, 1 / \theta_{2}, \ldots, 1 / \theta_{s}$ are the distinct roots of $D(z)$ with multiplicities $e_{1}, e_{2}, \ldots, e_{s}$, respectively, and the $C_{i}(z)$ are polynomials of degree less than e_{i}, respectively. Now

$$
\begin{equation*}
\frac{1}{\left(1-\theta_{i} z\right)^{e_{i}}}=\sum_{n=0}^{\infty}\binom{e_{i}+n-1}{e_{i}-1} \theta_{i} z^{n} z^{n} \tag{3}
\end{equation*}
$$

Suppose that $C_{i}(z)=\sum_{j=0}^{e_{i}-1} c_{i j} z^{j}$. Then

$$
\frac{C_{i}(z)}{\left(1-\theta_{i} z\right)^{e_{i}}}=\sum_{n=0}^{\infty} \lambda_{i}(n) \theta_{i}^{n} z^{n}
$$

where

$$
\lambda_{i}(n)=\sum_{j=0}^{e_{i}-1} c_{i j}\binom{e_{i}-n-j-1}{e_{i}-1} \theta_{i}^{-j}
$$

is a polynomial in n with algebraic coefficients of degree less than e_{i}. Thus, we can expand the right-hand side of (2) and obtain

$$
\begin{equation*}
\frac{C(z)}{D(z)}=\sum_{n=0}^{\infty} \sum_{i=1}^{s} \lambda_{i}(n) \theta_{i}^{n} z^{n} \tag{4}
\end{equation*}
$$

Let L be an algebraic number field which includes K and contains all of the coefficients of the λ_{i} and all of the θ_{i}. Let T be a finite set of valuations of L containing all valuations of L which extend valuations in S, and such that the non-zero coefficients of the λ_{i}, the θ_{i}, the differences $\theta_{i}-\theta_{j}$, where $i \neq j$, are T-units of L.

By (1, Lemma 1), there exist infinitely many pairs (k, P), where k is an integer and P is a prime ideal of L such that $k-\alpha \in P$. Let (k, P) be such a pair with P not corresponding to a valuation in T. Suppose that the norm of P is p^{f}, where p is a rational prime. Combining (1) and (4) we obtain

$$
\begin{equation*}
(n-\alpha) b_{n}=\sum_{i=1}^{s} \lambda_{i}(n) \theta_{i}^{n} \tag{5}
\end{equation*}
$$

We substitute $n=k+j p^{f}$ in (5) and obtain

$$
\left(k+j p^{f}-\alpha\right) b_{n}=\sum_{i=1}^{s} \lambda_{i}\left(k+j p^{f}\right) \theta_{i}^{k} \theta_{i}^{j p^{f}} .
$$

Reducing modulo P we obtain

$$
\begin{equation*}
\sum_{i=1}^{s} \lambda_{i}(\alpha) \theta_{i}^{k+j} \equiv 0 \quad(P) \tag{6}
\end{equation*}
$$

The determinant of the homogeneous linear equations in the $\lambda_{i}(\alpha)$, obtained from (6) by substituting successively $j=0,1,2, \ldots, s-1$, is $\prod_{i=1}^{s} \theta_{i}{ }^{k}$ times the Vandermonde determinant $\left\|\theta_{i}{ }^{j}\right\|$, and hence is not congruent to $0(P)$. It follows that each $\lambda_{i}(\alpha)$ is congruent to $0(P)$. Since this last congruence holds for infinitely many prime ideals P, we see that each $\lambda_{i}(\alpha)=0$. Thus, we can write

$$
\lambda_{i}(n)=(n-\alpha) \mu_{i}(n)
$$

where each $\mu_{i}(n)$ is a polynomial of lower degree than $\lambda_{i}(n)$. Since $n-\alpha$ is not 0 for $n \geqq 0$, we obtain from (5) that

$$
\begin{equation*}
b_{n}=\sum_{i=1}^{s} \mu_{i}(n) \theta_{i}^{n} . \tag{7}
\end{equation*}
$$

Since for each integer $k \geqq 0$, the function

$$
\sum_{n=0}^{\infty} n^{k} \theta_{i} z^{n}=\left(z \frac{d}{d z}\right)^{k}\left(1-\theta_{i} z\right)^{-1}
$$

is rational, it follows from (3) and (7) that $\sum_{n=0}^{\infty} b_{n} z^{n}$ can be written in the form $B(z) / D(z)$, where $B(z)$ is a polynomial of degree less than r, and hence $\sum_{i=0}^{r} d_{i} b_{n-i}=0$ for all $n \geqq r$.

Lemma 2. Suppose that $\alpha \in \mathbf{C}$ and b_{n} is a sequence of elements of R. If

$$
\sum_{n=0}^{\infty}(n-\alpha) b_{n} z^{n}
$$

is a rational function, then so is

$$
\sum_{n=0}^{\infty} b_{n} z^{n} .
$$

Proof. We first prove the lemma under the additional assumption that α is not a non-negative integer. We can write $\sum_{n=0}^{\infty}(n-\alpha) b_{n} z^{n}$ in the form $A(z)+C(z) / D(z)$, where $A(z), C(z)$, and $D(z)$ are polynomials with complex coefficients, the degree of $C(z)$ is less than d, the degree of $D(z)$, and $D(0)=1$. By changing a finite number of the b_{n}, if necessary, we may assume that $A(z)=0$. By enlarging R, if necessary, we may assume that α, the coefficients of C, the coefficients of D, and 1 are contained in R.

Suppose that ϕ is a homomorphism of R into $\tilde{\mathbf{Q}}$, the field of algebraic numbers. Write

$$
C(z)=\sum_{i=0}^{s} c_{i} z^{i} \text { and } D(z)=\sum_{i=0}^{r} d_{i} z^{i} .
$$

Then $d_{0}=1$ and $d_{r} \neq 0$. Now

$$
\begin{equation*}
\sum_{i=1}^{r} d_{i}(n-i-\alpha) b_{n-i}=0 \tag{8}
\end{equation*}
$$

if $n \geqq r$. Applying ϕ to (8) shows that

$$
\sum_{n=0}^{\infty} \phi(n-\alpha) \phi\left(b_{n}\right) z^{n}
$$

is a rational function and that all of the $\phi\left(b_{n}\right)$ lie in the field K_{1} generated by $\phi(\alpha)$, the $\phi\left(d_{i}\right)$, and $\phi\left(b_{0}\right), \phi\left(b_{1}\right), \ldots, \phi\left(b_{r-1}\right)$. Suppose that R is the integral closure in \mathbf{C} of the ring $R_{1}=\mathbf{Z}\left[x_{1}, x_{2}, \ldots, x_{h}\right]$ and K is the field generated by the $\phi\left(x_{i}\right)$ over K_{1}. Let S be a finite set of valuations of the algebraic number field K containing all Archimedean valuations, and such that each $\phi\left(x_{i}\right)$ is an S-integer of K. Each b_{n} satisfies a monic polynomial with coefficients in R_{1}, and hence each $\phi\left(b_{n}\right)$ satisfies a monic polynomial whose coefficients are S-integers of K. It is immediate that each $\phi\left(b_{n}\right)$ is an S-integer of K. If $A(z)=\sum_{i=0}^{t} a_{i} z^{i}$ is any polynomial with coefficients in R, we write

$$
\phi(A)(z)=\sum_{i=0}^{t} \phi\left(a_{i}\right) z^{i} .
$$

Now,

$$
\sum_{n=0}^{\infty}(n-\phi(\alpha)) \phi\left(b_{n}\right) z^{n}=\frac{\phi(C)(z)}{\phi(D)(z)} .
$$

Now, suppose that ϕ satisfies the additional hypotheses that $\phi\left(d_{r}\right) \neq 0$ and $\phi(\alpha)$ is not a non-negative integer. Then by Lemma $1, \sum_{n=0}^{\infty} \phi\left(b_{n}\right) z^{n}$ is a rational function and can be written in the form $A_{\phi}(z) / \phi(D)(z)$, where A_{ϕ} is a polynomial with algebraic coefficients of degree less than r. Put $B_{n}=\operatorname{det}\left(b_{i+j}\right)$, $0 \leqq i, j \leqq n ; B_{n}$ is a Hankel determinant, and by Kronecker's theorem (4, p. 5), $\phi\left(B_{n}\right)=0$ for $n \geqq r$. We now show that $B_{n}=0$ for $n \geqq r$. Suppose not, and that $B_{n_{0}} \neq 0$, where $n_{0} \geqq r$. We may suppose that the x_{i} are non-zero and are chosen so that $x_{1}, x_{2}, \ldots, x_{g}$ form a transcendence basis for R, and, if α is transcendental, that $x_{1}=\alpha$. The quantities $x_{g+1}, x_{g+2}, \ldots, x_{h}, d_{r}$, and $B_{n_{0}}$ all satisfy irreducible polynomials with coefficients in $\mathbf{Z}\left[x_{1}, x_{2}, \ldots, x_{g}\right]$. Let $q\left(x_{1}, x_{2}, \ldots, x_{g}\right)$ be the product of the leading terms and constant terms of these polynomials. If $\beta_{1}, \beta_{2}, \ldots, \beta_{g}$ are algebraic numbers such that $q\left(\beta_{1}, \beta_{2}, \ldots, \beta_{g}\right) \neq 0$, then the homomorphism of $\mathbf{Z}\left[x_{1}, x_{2}, \ldots, x_{g}\right]$ into the field of algebraic numbers, given by $x_{i} \rightarrow \beta_{i}, 1 \leqq i \leqq g$, can be extended to a homomorphism $\phi_{0}: R \rightarrow \widetilde{\mathbf{Q}}$; see (2). Furthermore, $\phi_{0}\left(d_{\tau}\right)$ and $\phi_{0}\left(B_{n_{0}}\right)$ satisfy polynomials with non-zero constant terms, hence are not 0 . If α is algebraic, then $\phi_{0}(\alpha)=\alpha$, and hence $\phi_{0}(\alpha)$ is not a non-negative integer, while if α is transcendental, then $\alpha=x_{1}$ and $\phi_{0}(\alpha)=\beta_{1}$. It is possible to choose β_{1} such that β_{1} is not a non-negative integer and $q\left(\beta_{1}, x_{2}, \ldots, x_{g}\right)$ is not the 0 poly-
nomial. Then $\beta_{2}, \ldots, \beta_{g}$ can be chosen so that $q\left(\beta_{1}, \beta_{2}, \ldots, \beta_{g}\right) \neq 0$. Thus, we have constructed a homomorphism $\phi_{0}: R \rightarrow \tilde{\mathbf{Q}}$ such that

$$
\phi_{0}\left(B_{n_{0}}\right) \neq 0, \quad \phi_{0}\left(d_{r}\right) \neq 0
$$

and such that $\phi_{0}(\alpha)$ is not a non-negative integer. This contradicts what we proved earlier and shows that $B_{n_{0}}=0$. Thus,

$$
B_{r}=B_{r+1}=B_{r+2}=\ldots=0 .
$$

By Kronecker's theorem (4, p. 5), $\sum_{n=0}^{\infty} b_{n} z^{n}$ is a rational function. It remains to prove the lemma when α is a non-negative integer. In this case, put $\alpha^{\prime}=-1$ and $b_{n}{ }^{\prime}=b_{n+\alpha+1}$; it is clear that

$$
\sum_{n=0}^{\infty}\left(n-\alpha^{\prime}\right) b_{n}{ }^{\prime} z^{n}=\sum_{n=\alpha+1}^{\infty}(n-\alpha) b_{n} z^{n-\alpha-1}
$$

is a rational function. By what we have already proved, $\sum_{n=0}^{\infty} b_{n}{ }^{\prime} z^{n}$ is a rational function, and hence so is $\sum_{n=0}^{\infty} b_{n} z^{n}$.

Proof of theorem. Without loss of generality, we may assume that $p(n)$ is monic and factor it as $\prod_{i=1}^{t}\left(n-\alpha_{i}\right)$. Put

$$
b_{n}{ }^{(s)}=b_{n} \prod_{i=1}^{s}\left(n-\alpha_{i}\right) \quad \text { and } \quad g_{s}(z)=\sum_{n=0}^{\infty} b_{n}{ }^{(s)} z^{n},
$$

where $0 \leqq s \leqq t$. Applying the hypothesis that $g_{t}(z)$ is rational and using Lemma 2 repeatedly we find successively that

$$
g_{t-1}(z), g_{t-2}(z), \ldots, g_{0}(z)=\sum_{n=0}^{\infty} b_{n} z^{n}
$$

are rational functions.

References

1. D. Cantor, On arithmetic properties of coefficients of rational functions, Pacific J. Math. 15 (1965), 55-58.
2. S. Lang, Introduction to algebraic geometry (Interscience, New York, 1958).
3. G. Pólya, Arithmetische Eigenschaften der Reihenentwicklungen, J. Reine Angew. Math. 151 (1921), 1-31.
4. R. Salem, Algebraic numbers and Fourier analysis (D. C. Heath, Boston, Massachusetts, 1963).
5. S. Uchiyama, On a theorem of G. Pólya, Proc. Japan Acad. 41 (1965), 517-520.

University of California,
Los Angeles, California

[^0]: Received November 28, 1967 and in revised form, July 16, 1968. This research was supported in part by National Science Foundation Grant GP-5497.

