ON ARITHMETIC PROPERTIES OF THE TAYLOR SERIES OF RATIONAL FUNCTIONS

DAVID G. CANTOR

Pólya (3) has shown that if b_n is a sequence of algebraic integers and $\sum_{n=0}^{\infty} nb_n z^n$ is a rational function, then so is $\sum_{n=0}^{\infty} b_n z^n$. This result was generalized by Uchiyama (5) who showed that one may replace the assumption that the b_n are algebraic integers by the assumption that the b_n lie in a finitely generated submodule of the complex numbers, and by the author (1) who showed that if p is a non-zero polynomial with complex coefficients and if b_n is a sequence of algebraic integers such that $\sum_{n=0}^{\infty} p(n)b_n z^n$ is a rational function, then so is $\sum_{n=0}^{\infty} b_n z^n$. Our aim in this note is to give a common generalization of all of these theorems.

Let R be the integral closure, in the field of complex numbers \mathbf{C} , of a finitely generated subring of \mathbf{C} .

THEOREM. Suppose that b_n is a sequence of elements of R and that p is a nonzero polynomial with complex coefficients. If $\sum_{n=0}^{\infty} p(n)b_n z^n$ is a rational function, then so is $\sum_{n=0}^{\infty} b_n z^n$.

Note that the theorem proved in (1) is the special case of the above theorem for which R is the ring of algebraic integers and that Uchiyama's theorem is obtained from the case p(n) = n by observing that a module generated by x_1, x_2, \ldots, x_n is contained in the integral closure of the ring generated by x_1, x_2, \ldots, x_n .

If K is an algebraic number field and S is a finite set of valuations of K containing all Archimedian valuations, we shall say, as usual, that $x \in K$ is an S-integer of K if $|x|_v \leq 1$ for all valuations v of K not in S. The following is a slightly stronger version of (1, Lemma 2).

LEMMA 1. Suppose that $\alpha \in K$ is not a non-negative integer and b_n is a sequence of S-integers of K. Suppose that there exist S-integers $d_0, d_1, d_2, \ldots, d_\tau$ of K such that $d_0 = 1, d_\tau \neq 0$, and

$$\sum_{j=0}^{\tau} d_j (n-j-\alpha) b_{n-j} = 0$$

for all integers $n \geq r$. Then

$$\sum_{j=0}^r d_j b_{n-j} = 0$$

for all integers $n \geq r$.

Received November 28, 1967 and in revised form, July 16, 1968. This research was supported in part by National Science Foundation Grant GP-5497.

Proof. It is immediate that

(1)
$$\sum_{n=0}^{\infty} (n-\alpha)b_n z^n = \frac{C(z)}{D(z)},$$

where

$$D(z) = \sum_{j=0}^{r} d_{j} z^{j}$$
 and $C(z) = \sum_{n=0}^{r-1} \left(\sum_{j=0}^{n} d_{j} (n-j-\alpha) b_{n-j} \right) z^{n}$.

The degree of C(z) is less than r, the degree of D(z), and hence we can write the partial fraction expansion

(2)
$$\frac{C(z)}{D(z)} = \sum_{i=1}^{s} \frac{C_i(z)}{(1 - \theta_i z)^{e_i}}$$

where $1/\theta_1, 1/\theta_2, \ldots, 1/\theta_s$ are the distinct roots of D(z) with multiplicities e_1, e_2, \ldots, e_s , respectively, and the $C_i(z)$ are polynomials of degree less than e_i , respectively. Now

(3)
$$\frac{1}{(1-\theta_i z)^{e_i}} = \sum_{n=0}^{\infty} {e_i + n - 1 \choose e_i - 1} \theta_i^n z^n.$$

Suppose that $C_i(z) = \sum_{j=0}^{e_i-1} c_{ij} z^j$. Then

$$\frac{C_i(z)}{(1-\theta_i z)^{e_i}} = \sum_{n=0}^{\infty} \lambda_i(n) \theta_i^n z^n,$$

where

$$\lambda_{i}(n) = \sum_{j=0}^{e_{i}-1} c_{ij} \binom{e_{i} - n - j - 1}{e_{i} - 1} \theta_{i}^{-j}$$

is a polynomial in n with algebraic coefficients of degree less than e_i . Thus, we can expand the right-hand side of (2) and obtain

(4)
$$\frac{C(z)}{D(z)} = \sum_{n=0}^{\infty} \sum_{i=1}^{s} \lambda_i(n)\theta_i^n z^n.$$

Let *L* be an algebraic number field which includes *K* and contains all of the coefficients of the λ_i and all of the θ_i . Let *T* be a finite set of valuations of *L* containing all valuations of *L* which extend valuations in *S*, and such that the non-zero coefficients of the λ_i , the θ_i , the differences $\theta_i - \theta_j$, where $i \neq j$, are *T*-units of *L*.

By (1, Lemma 1), there exist infinitely many pairs (k, P), where k is an integer and P is a prime ideal of L such that $k - \alpha \in P$. Let (k, P) be such a pair with P not corresponding to a valuation in T. Suppose that the norm of P is p^{f} , where p is a rational prime. Combining (1) and (4) we obtain

(5)
$$(n-\alpha)b_n = \sum_{i=1}^s \lambda_i(n)\theta_i^n.$$

We substitute $n = k + jp^{r}$ in (5) and obtain

$$(k+jp^{f}-\alpha)b_{n} = \sum_{i=1}^{s} \lambda_{i}(k+jp^{f})\theta_{i}^{k}\theta_{i}^{jpf}$$

Reducing modulo P we obtain

(6)
$$\sum_{i=1}^{s} \lambda_{i}(\alpha) \theta_{i}^{k+j} \equiv 0 \quad (P).$$

The determinant of the homogeneous linear equations in the $\lambda_i(\alpha)$, obtained from (6) by substituting successively $j = 0, 1, 2, \ldots, s - 1$, is $\prod_{i=1}^{s} \theta_i^k$ times the Vandermonde determinant $||\theta_i^j||$, and hence is not congruent to 0 (P). It follows that each $\lambda_i(\alpha)$ is congruent to 0 (P). Since this last congruence holds for infinitely many prime ideals P, we see that each $\lambda_i(\alpha) = 0$. Thus, we can write

$$\lambda_i(n) = (n - \alpha) \mu_i(n),$$

where each $\mu_i(n)$ is a polynomial of lower degree than $\lambda_i(n)$. Since $n - \alpha$ is not 0 for $n \ge 0$, we obtain from (5) that

(7)
$$b_n = \sum_{i=1}^s \mu_i(n)\theta_i^n.$$

Since for each integer $k \ge 0$, the function

$$\sum_{n=0}^{\infty} n^k \theta_i^n z^n = \left(z \frac{d}{dz} \right)^k \left(1 - \theta_i z \right)^{-1}$$

is rational, it follows from (3) and (7) that $\sum_{n=0}^{\infty} b_n z^n$ can be written in the form B(z)/D(z), where B(z) is a polynomial of degree less than r, and hence $\sum_{i=0}^{r} d_i b_{n-i} = 0$ for all $n \ge r$.

LEMMA 2. Suppose that $\alpha \in \mathbf{C}$ and b_n is a sequence of elements of R. If

$$\sum_{n=0}^{\infty} (n-\alpha)b_n z^n$$

is a rational function, then so is

$$\sum_{n=0}^{\infty} b_n z^n.$$

Proof. We first prove the lemma under the additional assumption that α is not a non-negative integer. We can write $\sum_{n=0}^{\infty} (n-\alpha)b_n z^n$ in the form A(z) + C(z)/D(z), where A(z), C(z), and D(z) are polynomials with complex coefficients, the degree of C(z) is less than d, the degree of D(z), and D(0) = 1. By changing a finite number of the b_n , if necessary, we may assume that A(z) = 0. By enlarging R, if necessary, we may assume that α , the coefficients of D, and 1 are contained in R.

Suppose that ϕ is a homomorphism of R into $\tilde{\mathbf{Q}}$, the field of algebraic numbers. Write

$$C(z) = \sum_{i=0}^{s} c_i z^i$$
 and $D(z) = \sum_{i=0}^{r} d_i z^i$.

Then $d_0 = 1$ and $d_\tau \neq 0$. Now

(8)
$$\sum_{i=1}^{r} d_{i}(n-i-\alpha)b_{n-i} = 0$$

if $n \ge r$. Applying ϕ to (8) shows that

$$\sum_{n=0}^{\infty} \phi(n-\alpha) \phi(b_n) z^n$$

is a rational function and that all of the $\phi(b_n)$ lie in the field K_1 generated by $\phi(\alpha)$, the $\phi(d_i)$, and $\phi(b_0)$, $\phi(b_1)$, ..., $\phi(b_{r-1})$. Suppose that R is the integral closure in \mathbb{C} of the ring $R_1 = \mathbb{Z}[x_1, x_2, \ldots, x_h]$ and K is the field generated by the $\phi(x_i)$ over K_1 . Let S be a finite set of valuations of the algebraic number field K containing all Archimedean valuations, and such that each $\phi(x_i)$ is an S-integer of K. Each b_n satisfies a monic polynomial with coefficients in R_1 , and hence each $\phi(b_n)$ satisfies a monic polynomial whose coefficients are S-integers of K. It is immediate that each $\phi(b_n)$ is an S-integer of K. If $A(z) = \sum_{i=0}^{t} a_i z^i$ is any polynomial with coefficients in R, we write

$$\phi(A)(z) = \sum_{i=0}^{l} \phi(a_i) z^i.$$

Now,

$$\sum_{n=0}^{\infty} (n - \phi(\alpha))\phi(b_n)z^n = \frac{\phi(C)(z)}{\phi(D)(z)}.$$

Now, suppose that ϕ satisfies the additional hypotheses that $\phi(d_r) \neq 0$ and $\phi(\alpha)$ is not a non-negative integer. Then by Lemma 1, $\sum_{n=0}^{\infty} \phi(b_n) z^n$ is a rational function and can be written in the form $A_{\phi}(z)/\phi(D)(z)$, where A_{ϕ} is a polynomial with algebraic coefficients of degree less than r. Put $B_n = \det(b_{i+j})$, $0 \leq i, j \leq n$; B_n is a Hankel determinant, and by Kronecker's theorem (4, p. 5), $\phi(B_n) = 0$ for $n \ge r$. We now show that $B_n = 0$ for $n \ge r$. Suppose not, and that $B_{n_0} \neq 0$, where $n_0 \geq r$. We may suppose that the x_i are non-zero and are chosen so that x_1, x_2, \ldots, x_g form a transcendence basis for R, and, if α is transcendental, that $x_1 = \alpha$. The quantities $x_{g+1}, x_{g+2}, \ldots, x_h, d_r$, and B_{n_0} all satisfy irreducible polynomials with coefficients in $\mathbb{Z}[x_1, x_2, \ldots, x_g]$. Let $q(x_1, x_2, \ldots, x_q)$ be the product of the leading terms and constant terms of these polynomials. If $\beta_1, \beta_2, \ldots, \beta_g$ are algebraic numbers such that $q(\beta_1, \beta_2, \ldots, \beta_g) \neq 0$, then the homomorphism of $\mathbb{Z}[x_1, x_2, \ldots, x_g]$ into the field of algebraic numbers, given by $x_i \rightarrow \beta_i$, $1 \leq i \leq g$, can be extended to a homomorphism $\phi_0: R \to \widetilde{\mathbf{Q}}$; see (2). Furthermore, $\phi_0(d_r)$ and $\phi_0(B_{n_0})$ satisfy polynomials with non-zero constant terms, hence are not 0. If α is algebraic, then $\phi_0(\alpha) = \alpha$, and hence $\phi_0(\alpha)$ is not a non-negative integer, while if α is transcendental, then $\alpha = x_1$ and $\phi_0(\alpha) = \beta_1$. It is possible to choose β_1 such that β_1 is not a non-negative integer and $q(\beta_1, x_2, \ldots, x_q)$ is not the 0 poly-

DAVID G. CANTOR

nomial. Then β_2, \ldots, β_g can be chosen so that $q(\beta_1, \beta_2, \ldots, \beta_g) \neq 0$. Thus, we have constructed a homomorphism $\phi_0: R \to \tilde{\mathbf{Q}}$ such that

$$\phi_0(B_{n_0})\neq 0, \qquad \phi_0(d_r)\neq 0,$$

and such that $\phi_0(\alpha)$ is not a non-negative integer. This contradicts what we proved earlier and shows that $B_{n_0} = 0$. Thus,

$$B_r = B_{r+1} = B_{r+2} = \ldots = 0.$$

By Kronecker's theorem (4, p. 5), $\sum_{n=0}^{\infty} b_n z^n$ is a rational function. It remains to prove the lemma when α is a non-negative integer. In this case, put $\alpha' = -1$ and $b_n' = b_{n+\alpha+1}$; it is clear that

$$\sum_{n=0}^{\infty} (n-\alpha')b_n'z^n = \sum_{n=\alpha+1}^{\infty} (n-\alpha)b_nz^{n-\alpha-1}$$

is a rational function. By what we have already proved, $\sum_{n=0}^{\infty} b_n' z^n$ is a rational function, and hence so is $\sum_{n=0}^{\infty} b_n z^n$.

Proof of theorem. Without loss of generality, we may assume that p(n) is monic and factor it as $\prod_{i=1}^{t} (n - \alpha_i)$. Put

$$b_n^{(s)} = b_n \prod_{i=1}^{s} (n - \alpha_i)$$
 and $g_s(z) = \sum_{n=0}^{\infty} b_n^{(s)} z^n$,

where $0 \leq s \leq t$. Applying the hypothesis that $g_t(z)$ is rational and using Lemma 2 repeatedly we find successively that

$$g_{t-1}(z), g_{t-2}(z), \ldots, g_0(z) = \sum_{n=0}^{\infty} b_n z^n$$

are rational functions.

References

- 1. D. Cantor, On arithmetic properties of coefficients of rational functions, Pacific J. Math. 15 (1965), 55-58.
- 2. S. Lang, Introduction to algebraic geometry (Interscience, New York, 1958).
- G. Pólya, Arithmetische Eigenschaften der Reihenentwicklungen, J. Reine Angew. Math. 151 (1921), 1-31.
- 4. R. Salem, Algebraic numbers and Fourier analysis (D. C. Heath, Boston, Massachusetts, 1963).
- 5. S. Uchiyama, On a theorem of G. Pólya, Proc. Japan Acad. 41 (1965), 517-520.

University of California, Los Angeles, California

382